61 research outputs found

    Processing of natural temporal stimuli by macaque retinal ganglion cells

    Get PDF
    This study quantifies the performance of primate retinal ganglion cells in response to natural stimuli. Stimuli were confined to the temporal and chromatic domains and were derived from two contrasting environments, one typically northern European and the other a flower show. The performance of the cells was evaluated by investigating variability of cell responses to repeated stimulus presentations and by comparing measured to model responses. Both analyses yielded a quantity called the coherence rate (in bits per second), which is related to the information rate. Magnocellular (MC) cells yielded coherence rates of up to 100 bits/sec, rates of parvocellular (PC) cells were much lower, and short wavelength (S)-cone-driven ganglion cells yielded intermediate rates. The modeling approach showed that for MC cells, coherence rates were generated almost exclusively by the luminance content of the stimulus. Coherence rates of PC cells were also dominated by achromatic content. This is a consequence of the stimulus structure; luminance varied much more in the natural environment than chromaticity. Only approximately one-sixth of the coherence rate of the PC cells derived from chromatic content, and it was dominated by frequencies below 10 Hz. S-cone-driven ganglion cells also yielded coherence rates dominated by low frequencies. Below 2–3 Hz, PC cell signals contained more power than those of MC cells. Response variation between individual ganglion cells of a particular class was analyzed by constructing generic cells, the properties of which may be relevant for performance higher in the visual system. The approach used here helps define retinal modules useful for studies of higher visual processing of natural stimuli

    Loss of the mammal-specific tectorial membrane component CEA cell adhesion molecule 16 (CEACAM16) leads to hearing impairment at low and high frequencies

    Get PDF
    The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function we inactivated murine Ceacam16 by homologous recombination. In young Ceacam16-/- mice the hearing threshold for frequencies below 10 kHz and above 22 kHz was raised. This hearing impairment progressed with age. A similar phenotype is observed in hearing-impaired members of Family 1070 with non-syndromic autosomal dominant hearing loss (DFNA4) who carry a missense mutation in CEACAM16. CEACAM16 was found in interdental and Deiters cells and was deposited in the tectorial membrane of the cochlea between postnatal day 12 and 15, when hearing starts in mice. In cochlear sections of Ceacam16-/- mice tectorial membranes were significantly more often stretched out as compared to wild-type mice where they were mostly contracted and detached from the outer hair cells. Homotypic cell sorting observed after ectopic cell surface expression of the carboxy-terminal immunoglobulin variable-like N2 domain of CEACAM16 indicated that CEACAM16 can interact in trans. Furthermore, Western blot analyses of membrane-bound CEACAM16 under reducing and non-reducing conditions demonstrated oligomerization via unpaired cysteines. Taken together, CEACAM16 probably can form higher order structures with other tectorial membrane proteins such as α-tectorin and β-tectorin and influences the physical properties of the tectorial membrane. Evolution of CEACAM16 might have been an important step for the specialization of the mammalian cochlea allowing hearing over an extended frequency range

    Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea.

    Get PDF
    Key Points: The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells. In contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human Hypothyroidism, Deafness and Real anomaly (HDR) Syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. Abstract: The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human Hypoparathyroidism, Deafness and Renal Anomaly syndrome arises from functional deficits in IHCs as well as to loss of function from OHCs and both afferent and efferent neurons

    MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca2+ near stereocilia

    Get PDF
    The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb−/− double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild‐type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild‐type and Tecta/Tectb−/− mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb−/− mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic‐like Ca2+ concentration (40 μM) in vitro. The resultant large MET current depolarizes OHCs to near –40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET‐dependent otoacoustic emissions in vivo in the Tecta/Tectb−/− mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation

    Small molecule activators of the Trk receptors for neuroprotection

    Get PDF
    The neurotophin signaling network is critical to the development and survival of many neuronal populations. Especially sensitive to imbalances in the neurotrophin system, cholinergic neurons in the basal forebrain are progressively lost in Alzheimer's disease. Therapeutic use of neurotrophins to prevent this loss is hampered, however, by a number of pharmacological challenges. These include a lack of transport across the blood-brain barrier, rapid degradation in the circulation, and difficulty in production. In this review we discuss the evidence supporting the neurotrophin system's role in preventing neurodegeneration and survey some of the pharmacological strategies being pursued to develop effective therapeutics targeting neurotrophin function

    Synaptotagmin IV determines the linear Ca2+ dependence of vesicle fusion at auditory ribbon synapses

    Get PDF
    Mammalian cochlear inner hair cells (IHCs) are specialized for the dynamic coding of continuous and finely graded sound signals. This ability is largely conferred by the linear Ca2+ dependence of neurotransmitter release at their synapses, which is also a feature of visual and olfactory systems. The prevailing hypothesis is that linearity in IHCs occurs through a developmental change in the Ca2+ sensitivity of synaptic vesicle fusion from the nonlinear (high order) Ca2+ dependence of immature spiking cells. However, the nature of the Ca2+ sensor(s) of vesicle fusion at hair cell synapses is unknown. We found that synaptotagmin IV was essential for establishing the linear exocytotic Ca2+ dependence in adult rodent IHCs and immature outer hair cells. Moreover, the expression of the hitherto undetected synaptotagmins I and II correlated with a high-order Ca2+ dependence in IHCs. We propose that the differential expression of synaptotagmins determines the characteristic Ca2+ sensitivity of vesicle fusion at hair cell synapses

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Aktuelle tierexperimentelle Ansätze in der Tinnitusforschung

    No full text

    Molecular basis of a relation of tinnitus and stress

    No full text
    corecore