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Processing of Natural Temporal Stimuli by Macaque Retinal
Ganglion Cells

J. H. van Hateren,1 L. Rüttiger,2,3 H. Sun,4 and B. B. Lee2,4

1Department of Neurobiophysics, University of Groningen, 9747 AG Groningen, The Netherlands, 2Department of
Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany, 3Tübingen Hearing Research
Center, University Clinics, 72076 Tübingen, Germany, and 4State University of New York College of Optometry, New York,
New York 10036

This study quantifies the performance of primate retinal gan-
glion cells in response to natural stimuli. Stimuli were confined
to the temporal and chromatic domains and were derived from
two contrasting environments, one typically northern European
and the other a flower show. The performance of the cells was
evaluated by investigating variability of cell responses to re-
peated stimulus presentations and by comparing measured to
model responses. Both analyses yielded a quantity called the
coherence rate (in bits per second), which is related to the
information rate. Magnocellular (MC) cells yielded coherence
rates of up to 100 bits/sec, rates of parvocellular (PC) cells were
much lower, and short wavelength (S)-cone-driven ganglion
cells yielded intermediate rates. The modeling approach
showed that for MC cells, coherence rates were generated
almost exclusively by the luminance content of the stimulus.
Coherence rates of PC cells were also dominated by achro-

matic content. This is a consequence of the stimulus structure;
luminance varied much more in the natural environment than
chromaticity. Only approximately one-sixth of the coherence
rate of the PC cells derived from chromatic content, and it was
dominated by frequencies below 10 Hz. S-cone-driven gan-
glion cells also yielded coherence rates dominated by low
frequencies. Below 2–3 Hz, PC cell signals contained more
power than those of MC cells. Response variation between
individual ganglion cells of a particular class was analyzed by
constructing generic cells, the properties of which may be
relevant for performance higher in the visual system. The ap-
proach used here helps define retinal modules useful for studies
of higher visual processing of natural stimuli.

Key words: retinal ganglion cells; magnocellular; parvocellu-
lar; natural stimuli; information theory; macaque

There is growing interest in the way the visual system processes
natural stimuli. Theoretical studies have used the statistical prop-
erties of stimuli from natural environments to predict spatial,
temporal, and chromatic properties of various stages in visual
processing (Srinivasan et al., 1982; Field, 1987; Atick, 1992; van
Hateren, 1993; Dong and Atick, 1995; Olshausen and Field, 1997;
van Hateren and Ruderman, 1998; for review, see Simoncelli and
Olshausen, 2001). Natural, or at least naturalistic, stimuli have
been used to physiologically investigate system function under
normal environmental conditions. Species studied have ranged
from invertebrates (Laughlin, 1981; van Hateren, 1992; Passaglia
et al., 1997; Kern et al., 2001; Lewen et al., 2001; van Hateren and
Snippe, 2001) through nonmammalian vertebrates (Vu et al.,
1997; Berry, 2000) to mammals (Dan et al., 1996; Baddeley et al.,
1997; Stanley et al., 1999; Vinje and Gallant, 2000). Study of
primates is of particular interest in that they are the only mam-
mals with trichromatic vision (Jacobs, 1993), and the visual ca-
pabilities of Old World primates are close to those of human. The
macaque retina is a suitable locus for such a study, because

ganglion cell types and their receptor and bipolar inputs are
physiologically and anatomically well characterized (Kaplan et
al., 1990; Dacey, 2000), and this can aid interpretation of re-
sponses to natural scenes.

Although our final goal is a full spatiotemporal and chromatic
analysis of ganglion cell responses to natural stimuli, we begin
with a simpler stimulus, a spatially homogenous field modulated
only in time and spectral properties. The results are conceptually
and computationally easier to analyze than those of full spatio-
temporal stimuli, because the stimulus contains only two (time
and spectrum) rather than four dimensions (when two spatial
ones are added). Furthermore, many complex properties of the
visual system, such as luminance and contrast gain controls, are
already present in the time domain. We here attempt to capture
responses to naturalistic stimuli in these dimensions, before at-
tempting a full spatiotemporal model.

We used two different examples of a temporal stimulus, which
we call chromatic time series of intensities (CTSIs). One was
derived from a typical northern European environment, and the
other was recorded from a flower show, which provided a different
distribution of chromaticities (see Fig. 1). Stimuli were presented
while responses were recorded from magnocellular (MC), parvo-
cellular (PC), or short wavelength (S) cone-driven ganglion cells.
We showed that linear models do not describe responses to
natural stimuli well and developed nonlinear models that perform
more satisfactorily. These models are developed for two main
purposes. First, they allow us to analyze and quantify how infor-
mation on luminance and spectral aspects of the stimuli are

Received May 28, 2002; revised Sept. 3, 2002; accepted Sept. 3, 2002.
This work was supported by The Netherlands Organization for Scientific Research

NWO through the Research Council for Earth and Life Sciences ALW (J.H.v.H.),
Deutsche Forschungsgemeinschaft Grant Le 524/14-2 (L.R.), and National Institutes
of Health Grant NEI R01-13112 (B.B.L.). We thank H. P. Snippe for critical input
and comments on this manuscript.

Correspondence should be addressed to Dr. J. H. van Hateren, Department of
Neurobiophysics, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The
Netherlands. E-mail: hateren@phys.rug.nl.
Copyright © 2002 Society for Neuroscience 0270-6474/02/229945-16$15.00/0

The Journal of Neuroscience, November 15, 2002, 22(22):9945–9960



distributed among the different classes of ganglion cells. Second,
they form a step toward the development of full spatiotemporal
models that could be used as preprocessing modules for studies of
higher visual processing.

MATERIALS AND METHODS
Preparation and recording. Ganglion cell activity was recorded from the
retina of the anesthetized macaque (Macaca fascicularis). The animals
were initially sedated with an intramuscular injection of ketamine (10
mg/kg). Anesthesia was maintained with inhaled isoflurane (0.2–2%) in
a 70:30 N2O/O2 mixture. Local anesthetic was applied to points of
surgical intervention. EEG and electrocardiogram were monitored con-
tinuously to ensure animal health and adequate depth of anesthesia.
Muscle relaxation was maintained by a constant infusion of gallamine
triethiodide (5 mg � kg �1 � hr �1, i.v.) with accompanying dextrose Ring-
er’s solution (5 ml/hr). Body temperature was kept close to 37.5°. End
tidal CO2 was adjusted to close to 4% by adjusting the rate of respiration.
All procedures were approved by the State of Lower Saxony Animal
Welfare Committee and the Animal Care Committee of State University
of New York College of Optometry.

A tungsten-in-glass recording microelectrode was introduced to the ret-
ina via a scleral hole using established techniques. The details of the
preparation can be found in Lee et al. (1989). The location of the receptive
field of each cell was mapped onto a tangent screen 114 cm from the eye.
Cell identification was achieved using a battery of tests including chromatic
sensitivity and time course of responses and other tests shown to reliably
distinguish between MC and PC cells and those with S-cone input (Lee et
al., 1989). Eccentricity of receptive fields ranged between 5 and 15°. The
results presented in this article are based on 42 ganglion cells recorded from
six animals. Partial measurements on another 35 cells from nine animals
were fully consistent with those reported here.

Stimuli. Measurements on retinal ganglion cells were performed with
two different naturalistic stimuli (“laboratory environment” and “flower
show”) that were measured in two alternative environments, using dif-
ferent measurement equipment and different equipment to present the
stimuli to the macaque retina.

The laboratory environment stimulus was recorded near the labora-
tory of one of the authors (Groningen, August). This environment
consisted of many shades of green and brown (bushes, a variety of plants,
grass, soil) but also contained flower beds and some manmade materials
(pavement, concrete, buildings). The environment was scanned during
walking with a hand-held optical device consisting of a lens focused onto
a pinhole in front of a light guide. The resulting angular sensitivity of the
detector had a full width at half-maximum of 8.7 arc min. The light was
split (through a dichroic mirror, a half-silvered mirror, and spectral
filters) into three chromatic channels, each equipped with a photomulti-
plier (Hamamatsu H5701-50). By combining filters (Edmund Optics), we
tuned the three chromatic channels to approximately match the spectral
sensitivities of the long (L), middle (M), and short wavelength (S) cones.
A linear transformation of the three photomultiplier outputs was then
used to improve the fidelity of the cone excitations.

During the sample period, signals from the photomultipliers were
recorded on a portable DAT-recorder (Sony PC-208A). The resulting
three signals were down-sampled and transformed to be presented on a
Maxwellian view system with three light-emitting diodes (LEDs) with
dominant wavelength 460, 554, and 638 nm (Lee et al., 1990). LED
intensity was driven by a frequency-modulated pulse train that gave a
highly linear output. Stimuli were presented at a sample rate of 400 Hz
with 12-bit resolution. A 4.7° homogenous stimulus field was used. The
duration of the CTSI was either 1 or 10 min. Results for 1 and 10 min
presentations were very similar. The CTSI was typically repeated six
times, with each repeat preceded by a period of steady illumination.
There was generally no systematic change in responses from the first to
the last repeat, indicating that the state of cells was stationary. Because
the three LEDs of the Maxwellian view system did not completely span
the recorded color space, the stimulus had to be modified. For cells
receiving input from only the L- and M-cones (MC and PC cells), the
appropriate combinations of M- and L-cone excitations could be
achieved by modulation of all three diodes, S-cone excitation being
allowed to vary. For cells with S-cone input, the diode outputs were
adjusted to provide the appropriate (M � L) signal. This is a physiolog-
ically reasonable procedure, because the S-cone antagonistic L-, M-cone
inputs have been shown to sum linearly (Smith et al., 1992). Figure 1, A,
C, and D, shows several basic characteristics of the stimulus. In Figure

1 A, a scatter diagram of the chromaticity coordinates is shown; in Figure
1 D, the distribution of illuminances is shown; and in Figure 1C, the
illuminance power spectrum normalized by the average illuminance of
the stimulus (1179 td) is shown.

The flower show stimulus was recorded at the Westfriese Flora
(Bovenkarspel, The Netherlands), which is claimed to be the world’s
largest indoor flower show. We recorded a movie with a digital video
camera (JVC GR-DVL9600) while walking through the exhibition. The
camera was used in progressive scan mode, at 25 frames per second (fps).
The camera was held steady, either with only unintentional manual
vibration or with deliberate manual displacements and smooth scans.
Every 2–3 sec a shift of varying angle was made toward a new camera
heading. The movie was presented to the monkey six times faster than
recorded (see below), and so there were effectively two to three gaze
shifts per second in the stimulus. This recording procedure was an
attempt to roughly mimic typical eye movements. The recorded movie
was transported to a PC and stored as separate frames in a noncom-
pressed format. Although the movie was intended primarily for a full
spatiotemporal analysis of ganglion cell performance (our unpublished
results), we reduced it to a temporal stimulus for the present purpose.
This was done by averaging the effective L-, M-, and S-cone illuminances
produced by the display over a circular weighting profile shaped as a
cosine in the interval ��/2 to �/2 (full diameter 15 arc min, positioned
in the center of the movie). The display was driven to produce these
illuminances over a field of 4.6° � 4.6°, of which the contrast was tapered
with a Kaiser-Bessel window to reduce potential edge effects. The
stimulus was viewed through a 4 mm artificial pupil. The movie was
compressed to an mpeg-1 movie at 25 fps and displayed at 150 fps on a
PC with Windows 98SE by using Microsoft Mediaplayer 6.4 controlled by
a script increasing the displayed frames per second sixfold. The PC had
a dual-head display video card (Matrox G400), with a dedicated display
for stimulation (Iiyama Vision Master Pro 410, running at a resolution of
640 � 480 at 150 Hz refresh rate). The CTSI movie had a duration of 1
min and was typically repeated six times during a neural recording. Each
repeat was preceded by an equal energy white of the same mean illumi-
nance as the movie. Again, we found that there was generally no system-
atic change in response from the first to the last repeat.

Synchronization with the data acquisition was provided by synchroni-
zation pulses carried by the audio track of the movie. The display used
for stimulation was gamma corrected with a calibrated photomultiplier;
spectral calibration was performed with an Ocean Optics spectrometer.
Because the mpeg compression can change the illuminances somewhat,
the calibrations were not performed on the original frames but on the
frames resulting from decompressing the mpeg movies. Note that the
entire calibration procedure deals only with the stimulus as actually
delivered to the macaque retina; no attempt was made to calibrate, for
example, the video camera (which uses automatic gain control, digital
compression, and spectral properties deviating from those of the cones).
Thus, the stimulus on the display is expected to only approximate the
real one at the flower show. Therefore, this stimulus is different in this
respect from the one recorded in the environment of the laboratory and
presented with the LEDs, because for the latter we reproduced the
stimulus as actually present in the natural environment. Figure 1, B, E, C,
and F, shows characteristics of this stimulus: a scatter diagram of chro-
maticity coordinates (Fig. 1 B), which differed substantially between the
environments, the distribution of illuminances (Fig. 1 E), and the illumi-
nance power spectrum normalized by the average illuminance, 222.2 td
(Fig. 1C). Differences in the distribution of illuminances between the two
CTSIs are caused partly by genuine differences between the environ-
ments and partly by nonlinearities in the video camera and display.
Figure 1 F compares achromatic to chromatic contrast in the flower show
stimulus. For this calculation the L-, M-, and S-cone illuminances (l, m,
and s; see below) were transformed similarly to the scheme of Ruderman
et al. (1998), with, e.g., l̂ � logl � �logl�, where the logarithm has base e,
and �.� denotes averaging over the time series. The achromatic signal
is then defined as a � (l̂ � m̂)/�2, and two different chromatic signals as
clm � (l̂ � m̂)/�2 and cs � (2s � (l̂ � m̂))/�6. The curves in Figure 1F
are the amplitude spectra of these signals. Similar curves were obtained
for the CTSI from the laboratory environment.

For both the laboratory environment and flower show stimulus, we
calculated L-, M-, and S-cone illuminance (l, m, and s, trolands) for input
to the models. The signals l, m, and s were determined from the Smith/
Pokorny cone fundamentals (Smith and Pokorny, 1975), which are de-
fined such that illuminance is given by l � m, whereas s is normalized
with respect to an equal energy white (Boynton and Kambe, 1980).
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Data evaluation. All calculations in this article were standardized to a
time resolution of 1 msec. Stimuli presented at 400 and 150 Hz were
interpolated to 1 kHz, and spike times recorded at 10 kHz resolution
were reduced to 1 msec bins. A time resolution of 1 msec provides a
frequency bandwidth of 500 Hz.

Expected coherence (Haag and Borst, 1998) and expected coherence
rate (van Hateren and Snippe, 2001) were computed as follows. From the
responses �i(t) to m stimulus repeats, the average:

�� �t	 �
1
m�

i�1

m

� i�t	, (1)

is calculated. The power spectrum of ��(t) is Sraw, a (biased) estimate of
the signal power spectrum. For each response, the deviation �i(t) � ��(t)
is calculated; its power spectrum is Ni. Then Nraw � 
 i � 1

m Ni/m is a
(biased) estimate of the noise power spectrum. Unbiased estimates of
signal and noise power can be obtained (van Hateren and Snippe, 2001)
as S̃ � Sraw � Nraw/(m � 1) and N̂ � Nraw m/(m � 1), which yields the
signal-to-noise ratio (SNR):

SNR �
Ŝ
N̂

�
m � 1

m
Sraw

Nraw
�

1
m

. (2)

The expected coherence is (Haag and Borst, 1998):

�exp
2 �

SNR
SNR � 1 , (3)

and the expected coherence rate is:

Rexp � ��
0

f0

log2�1 � �exp
2 	df, (4)

where the integral extends to a frequency f0 where the coherence has
become zero. Because the SNR and thus �exp

2 is unbiased through
Equation 2, �exp

2 fluctuates around zero for high frequencies (see Figs.
4B, 6, 9), and Rexp( f0) becomes essentially flat for sufficiently high f0.
Thus the choice of f0 is not critical, as long as it is high enough.

Models were evaluated by calculating the coherence �b
2 between model

response (i.e., the transformed stimulus, smod, calculated at a resolution
of 1 msec) and measured response (see Fig. 5), with:

�b
2��	 �

�r��	s*mod��	��smod��	r*��	�

�smod��	s*mod��	��r��	r*��	�
, (5)

where the brackets denote ensemble averaging over the spectra smod of
different time stretches of the model response and the spectra r of the
corresponding response stretches; * denotes the complex conjugate, and
� is the angular frequency. The numerator is the power of the cross-
spectrum of model response and measured response; the denominator is
the product of their power spectra. If the number of different time
stretches n is not large, �b

2 is biased, which can be corrected by assuming
that r can be written as r(�) � p(�) � � �), with � independent noise.
Then the calculated �b

2 for n stretches of r and s yields:

�b
2 �

p2 �
1
n

�2

p2 � �2 , (6)

whereas:

�2 � lim
n3�

�b
2 �

p2

p2 � � 2 �
n

n � 1 �b
2 �

1
n � 1 . (7)

Note that the coherence between r and smod (Eq. 5) is the same as the
coherence between r and r� (see Fig. 5). This can be easily seen by writing
r� � W � smod, with W the transfer function of the Wiener filter. W will

Figure 1. Characteristics of the stimuli. A, x–y chromaticity coordinates of the stimulus recorded in the environment of the laboratory and played back
on the LEDs of the Maxwellian view. B, x–y chromaticity coordinates of the flower show, as presented on the monitor. C, Normalized power spectra of
the two stimuli. The power spectra were normalized by dividing by the square of the average illuminance of the stimuli, 1179 td for the LEDs (laboratory
environment) and 222.2 td for the display (flower show). Frequencies are smoothed (averaged with a group of neighboring frequencies, with the group
size proportional with frequency). D, E, Histograms of illuminance values of the stimulus from the laboratory environment and the flower show. F,
Comparison of achromatic (a) and chromatic contrast (clm, cs) in the flower show stimulus; see Materials and Methods for details.
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then cancel from the numerator and denominator of the coherence of r
and r�, which then reduces to Equation 5.

The coherence rate Rcoh for � 2 is defined as:

Rcoh � ��
0

f0

log2�1 � �2	df. (8)

The coherence rates defined in Equations 4 and 8 are formal definitions,
which are valid for any coherence regardless of whether the system is
linear and whether the signals are Gaussian and independent. The
coherence rate quantifies, with a single number, how close the coherence
function is to 1 over the entire frequency axis. For the interpretation of
the coherence rate, however, it is important to note that the coherence
itself addresses only the linear relationship between two signals. For a
further discussion of the formal use of the coherence rate and its relation
to the information rate, see van Hateren and Snippe (2001).

Parameters of a particular nonlinear model were varied (using a
simplex optimization algorithm) (Press et al., 1992) to maximize Rcoh.
The form of the models was varied, essentially by selecting and tuning
individual elements, to bring Rcoh as close as possible to Rexp. Coherence
functions and responses were generally calculated for the same full
stretch of data as used for fitting the parameters of each model. As a
control against overfitting, we also calculated coherence functions and
responses for different parts of the stimulus, or different repeats, than
those used for the fitting procedure and found the results to be virtually
identical.

The response r� (see Fig. 5) follows from:

r���	 �
�r��	s*mod��	�

�smod��	s*mod��	�
smod��	, (9)

where the quotient is the filter minimizing the (rms) error between r and
r� (Theunissen et al., 1996). This filter will be designated as “Wiener
filter” below (Papoulis, 1977). It is the cross-spectrum of measured
response and model response normalized by the power spectrum of the
model response. Because the measured response contained much power
at high frequencies (spikes are temporally sharp), the cross-spectrum also
extended to high frequencies. For � 2 this was automatically compensated
by the power spectrum �rr*�, which also extended to high frequencies.
This resulted in coherence functions (see Figs. 4, 6, and 9) that have
low-pass characteristics, without the application of additional low-pass
filtering. However, this high-frequency compensation did not work for r�
as in Equation 9, because the denominator with the power spectrum of
the model response was in fact small for high frequencies (as is the
stimulus from which the model response derives). To exclude the possi-
bility that the constructed response r� (see Figs. 2, 3, and 8) was domi-
nated by high-frequency noise, it was necessary to low-pass filter the
response r. This was done by a cascade of eight first-order low-pass filters,
each with a time constant 	 � 2 msec (for MC cells) and 	 � 4 msec (for
PC cells and S-cone cells); the resulting filters have impulse responses
with full widths at half-maximum of 12.5 and 25 msec, respectively,
corresponding to cutoff frequencies (at 50% of the maximum amplitude)
of 34 and 17 Hz. For the model development, low-pass filtering was
immaterial, because parameter values and coherence functions were
virtually identical with or without this filtering. Coherence functions and
coherence rates presented in this article were calculated without low-pass
filtering. Furthermore, for interpreting the constructed responses r� as in
Figures 2, 3, and 8, the filtering was not critical, at least within the present
framework of analysis, because the low-pass filter essentially filters away
only those frequencies where the coherence is close to zero.

Information rates can be obtained from normalized spike rates (Bren-
ner et al., 2000); see Equation 12. The spike rate can be calculated as the
average response ��(t) (Eq. 1), but for small numbers of repeats this will
be noisy. Let us assume that, in the frequency domain, the response can
be written as r(�) � p(�) � �(�), with r the Fourier transform of �i(t), p
the Fourier transform of the underlying spike rate that we want to
estimate, and � independent noise. The Wiener estimate of p based on
the average r̄ of m repeats is then p � (Sr�p/Sr�r�)r�. The expectation value of
the cross-spectrum is Sr�p � p 2, and that of the power spectrum is
Sr�r� � p 2 � � 2/m. Therefore, an estimate of p is obtained as:

p̂ �
SNR

SNR � 1/m r�, (10)

with the SNR given by Equation 2. Transforming p̂ to the time domain
then gives an estimate of the spike rate, 
(t), as used in Equation 12. The
factor multiplying r̄ in Equation 10 is a low-pass filter. It was smoothed by
block averaging with a width proportional to the frequency to prevent
fluctuations of the filter at high frequencies affecting the estimate of
Equation 12.

RESULTS
Below we give examples of responses of macaque retinal ganglion
cells to a CTSI. Next we describe the expected coherence and
coherence rate of individual cells, based on repeated stimulus
presentations. For the various classes of retinal ganglion cells we
then develop models that produce a coherence rate as close as
possible to that inferred from response repeatability. Finally, we
introduce the concept of a generic cell and proceed to analyze
how the retinal cells distribute among themselves information on
luminance and chromatic aspects of the stimulus.

Examples of responses
Figure 2 shows responses of an on-center MC cell to a 3 sec
stimulus segment from the laboratory environment CTSI. Each
response is shown as a spike train (short vertical bars) and, for
presentational purposes, as a filtered version that gives an esti-
mate of local spike rate (see Materials and Methods). The aver-
age of these local spike rates is also shown. It can be seen, both
from the local rates and from the spike trains, that responses are
similar but not identical. The traces marked m1–m3 are model
calculations that will be discussed in a later section.

Examples of responses of a �L-M PC cell and a �S-ML cell
are given in Figure 3. The top two panels show the illuminance of
the stimulus and two measures of its spectral properties. The four
rows marked �L-M give spike trains and local spike rates of the
on-center PC cell. The cell responds clearly to increases in the l �
m difference signal. The stretch of stimulus shown was selected to
include several such increases, but for the entire time series they
were relatively rare. For much of the time, this cell responded
mainly to changes in luminance.

The traces marked �S-ML in Figure 3 give responses of an
S-cone excitatory cell. This cell responded well to increases of s
relative to l � m and is suppressed when the stimulus shifts to
longer wavelengths. The stimulus segment shown was again se-
lected to include large fluctuations of S-cone excitation; when this
was low, these cells fired at low rates. They also responded to
luminance changes, but in general less vigorously than PC cells.

Coherence and models of individual cells
Expected coherence
From spike trains as in Figures 2 and 3, it was possible to quantify
the repeatability of responses, to obtain a measure of the relation
of signal to noise, and then to derive the capacity of each neuron
to transmit information. Figure 4A shows the analysis procedure,
which was based on the method of Haag and Borst (1998) for
graded potential neurons [see also Borst and Theunissen (1999)
and van Hateren and Snippe (2001)]. The averaged response is an
estimate of the “signal,” from which the signal power spectrum is
calculated. The averaged response is subtracted from each indi-
vidual response to give a residual that can be considered as
“noise.” Averaging the power spectra of these residuals gives an
estimate of the noise power spectrum. The SNR is the ratio of
signal power spectrum to noise power spectrum. For small num-
bers of repeats it will be biased because the estimated signal
power spectrum will contain some noise power, and the estimated
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noise power spectrum will contain some signal power. This can be
corrected by a bias factor (see Materials and Methods).

A measure of response repeatability, the expected coherence
�exp

2 , follows from �exp
2 � SNR/(SNR � 1), assuming noise is

additive (Haag and Borst, 1998). Thus �exp
2 approaches 1 when

the SNR approaches infinity, �exp
2 � 0.5 when SNR � 1, and �exp

2

� 0 when SNR � 0. A useful quantity that sums the behavior of
�exp

2 over the frequency domain is the expected coherence
rate Rexp (Eq. 4). This is identical, through the equation relating
�exp

2 and SNR, to Shannon’s equation for the information rate in
a channel with Gaussian signals and noise, Rinf � log2(1 �

SNR)df. Rexp is therefore expressed in bits/sec. Here neither
signals nor noise is Gaussian, thus Rexp cannot be expected to give
an unbiased estimate of the information rate (see Information
rates, below). To stress this qualification, we use the term “coher-
ence rate” rather than “information rate” for Rexp and related
quantities.

The coherence between two signals (here between the “true,”

Figure 2. Examples of responses of an on-center MC cell and model
responses. The top eight rows of spike rates show eight different responses
of the same cell to the stimulus shown at the top (3 sec of a 10 min
stimulus; laboratory environment). The short vertical bars show the timing
of individual spikes; local spike rate was estimated here by filtering this
spike train with a low-pass filter with a full width at half-maximum of 12.5
msec. Bottom rows show the average of the eight local spike rate traces, the
response of a linear model (m1), the response of a model with a bandpass
filter, a compressive nonlinearity, and a rectification (m2), and the re-
sponse of the model shown in Figure 7A (m3). Parameters for model m3
(see the legend of Fig. 7A) were 	1 � 6.9 msec, 	2 � 60 msec, k1 �
1.2 � 10 � 2 td �1/2, 	� � 10 msec, c1 � 9.5 � 10 � 3, q0 � 0.57, q1 � 8.7, c2 �
1.8 � 10 � 4, 	3 � 208 msec, and k2 � 1.1.

Figure 3. Examples of responses of a PC and small-bistratified cell, and
model responses. The top panel shows the stimulus (overlapping with that
of Fig. 2); (l-m)/(l�m) shows the normalized difference of L- and M-cone
excitation; (s-0.5(l�m))/(l�m) shows the difference of S-cone excitation
and the excitations of the other cones. The top four rows of spike rates
show responses of a PC cell (�L-M on-center) to this stimulus, with spike
trains as in Figure 2; the local spike rate was estimated from the spike
trains using a low-pass filter with a full width at half-maximum of 25 msec.
The next row shows the average of these four responses. The row marked
�L-M/m3 shows the response of the model in Figure 7B, with parameters
(see the legend of Fig. 7B) 	1 � 6.5 msec, 	2 � 82 msec, k1 � 1.7 � 10 � 2

td �1/2, q � 0.07, � � 1.3, k2 � 32, and o1 � 0.45. The four rows marked
�S-ML show responses of a small-bistratified cell, the next row shows
their average, and the bottom row (�S-ML/m) shows the response of the
model in Figure 7C, with parameters (see the legend of Fig. 7C) 	1 � 8.0
msec, 	2 � 60 msec, k1 � 1.2 � 10 � 2 td �1/2, q1 � 0.5, q2 � 0.5, � � 0.5,
� � 0.5, 	3 � 200 msec, g1 � 1.28, g2 � 17, o1 � �1.5, o2 � �0.11, � �
1.3, k2 � 6.0.
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noise-free response and each measured response) quantifies, on a
scale of 0–1, how strongly the two signals are (linearly) related for
each frequency. If the coherence is 1 at a particular frequency,
there is no noise and the frequency components of the two signals
can be linearly predicted from one another. Noise will decrease
the coherence. A coherence of 0 means the signals are not linearly
related at that frequency.

Examples of expected coherence functions are shown in Figure
4B for several cell classes and for both CTSIs. Note that the
coherence functions shown here and below have inherent low-
pass characteristics (see Materials and Methods); no explicit
low-pass filtering on the raw spike trains was used here. Coher-
ences of MC cells (such as the on-center cell shown) were larger
and extended to higher frequencies than those of PC cells (such as
the �L-M on-center cells) and the small-bistratified cells (�S-ML
cells). Coherences obtained with the flower show CTSI are higher
than those obtained with the laboratory environment CTSI. The
former are close to zero above 75 Hz, because of the limitation of
the frame rate of the display (150 fps). Although the coherence of
MC cells stimulated with LEDs driven at 400 samples per second
(laboratory environment) extends to frequencies �100 Hz, it is
low for frequencies above 75 Hz. This suggests that the frame rate

of the display used for the flower show stimulus does not strongly
limit the coherence rates obtained with this stimulus. The coher-
ence rates corresponding to the coherence functions in Figure 4B
are 55 and 114 bits/sec for the two CTSIs for the on-center MC
cells, 12 and 39 bits/sec for the �L-M cells, and 32 and 55 bits/sec
for the �S-ML cells.

Model development and optimization
Coherence functions and coherence rates can also be obtained
between the stimulus and the response. For Gaussian signals and
noise, the coherence rate between stimulus and response is iden-
tical to the information rate derived from the stimulus reconstruc-
tion method described by Bialek et al. (1991) and formulated in
the frequency domain by Theunissen et al. (1996). The coherence
is the cross-power spectrum of the two signals normalized by their
power spectra. Here we do not reconstruct the stimulus from the
response but construct the response from the stimulus. We also
extend the analysis to include nonlinear models; Figure 5 shows
the method (van Hateren and Snippe, 2001). A nonlinear model
transforms the stimulus into a signal smod. The Wiener filter is the
optimal constructing filter as defined in Equation 9. Computing
the coherence �2 and coherence rate Rcoh � �log2(1 � �2)df

Figure 4. Computation and examples of expected coherence. A, The expected coherence is calculated from the SNR estimated from the responses to
stimulus repeats. From the average response the signal power spectrum is calculated; the difference between each response and the average yields noise
power spectra, which are subsequently averaged. The SNR is the ratio of the signal and noise power spectra. B, Examples of expected coherence
functions of two on-center MC cells (one for the stimulus obtained in the environment of the laboratory, and one for the stimulus recorded at the flower
show), and similarly for two PC cells (�L-M on-center cells) and two small-bistratified cells (�S-ML cells). Expected coherence rates corresponding to
these coherence functions are 55 and 114 bits/sec for the MC cells, 12 and 39 bits/sec for �L-M, and 32 and 55 bits/sec for �S-ML.
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between smod and an actually measured response r then quantifies
how well the model performs compared with the real system (the
retinal ganglion cell).

Ideally, the model should perform as does the cell itself. The
performance of the cell itself was quantified above, namely as its
expected coherence rate, Rexp, i.e., the expectation value of the
coherence rate between the “true” response of the cell (i.e.,
without noise) and actually measured responses. We can thus
adopt the following strategy (van Hateren and Snippe, 2001) for
finding an adequate model. The parameters of a particular model
are varied to maximize its coherence rate Rcoh with the responses
of a particular cell. This is compared with the expected coherence
rate Rexp of the same cell. If Rcoh is systematically smaller than
Rexp for a particular class of ganglion cells, the model needs to be
amended. Amendments are then made, and they are accepted if
they bring Rcoh (after maximizing again) closer to Rexp. The type
of amendments needed can often be inferred from a comparison
of expected and model coherence functions, and of the response
r and the constructed response r� (Fig. 5), but much of the model
optimization is a process of trial and error.

Figure 6 illustrates for an MC on-center cell how increasingly
complex models approach the expected coherence function (thick
line, Rexp � 55 bits/sec). Responses r� constructed with these
models are shown in Figure 2, with the same low-pass filter used
to derive local spike rates. Model m1 is a straightforward linear
model (i.e., the Wiener filter alone), and its coherence falls far
short of the expected value (Fig. 6); the corresponding coherence
rate, Rcoh, was 8.5 bits/sec. The first problem of a linear model is
that it ignores the rectification of the signal, which is marked in
MC cells. Model m2 is an attempt to take this into account. It

consists of a low-pass filter (Fig. 7A, LP1), a high-pass filter (as in
Fig. 7A, with q fitted to a fixed value), a compressive nonlinearity
(Fig. 7A, NL2), and a rectification. Although this model performs
much better than m1 (Fig. 6), Rcoh � 31 bits/sec is still appreciably
smaller than Rexp (55 bits/sec). As trace m2 in Figure 2 shows, the
responses to large “on” transients in the stimulus are now well
accounted for, but small transients are missed. There are two
mechanisms that repair this deficiency. First, a luminance gain
control module helps to enhance response to small luminance
variations embedded in regions where the average luminance is
low. Adding the luminance gain control shown in Figure 7A
increases Rcoh to 35 bits/sec for this cell. Second, model m2 does
not saturate at high contrasts, i.e., it lacks a contrast gain control
module. The most satisfactory model found so far, which includes
a contrast gain control module, m3, is shown in Figure 7A and
gave a Rcoh � 42 bits/sec. Although this is still smaller than Rexp,
it accounts for approximately three-quarters of Rexp in this par-
ticular cell.

It should be noted that Figure 7A shows only that part of the
MC cell model preceding the Wiener filter (as in Fig. 5). The inset
in Figure 6 shows the impulse response of the Wiener filter of this
cell with model m3, with the horizontal line in front designating
the zero level, and a time scale of 50 msec. The fact that the
Wiener filter is here essentially a simple low-pass filter suggests
that the model itself incorporates most of the required filtering
(both linear and nonlinear). For example, the biphasic impulse
responses of MC cells (Lee et al., 1994) are produced mainly by
the high-pass filter in the model.

Models of retinal ganglion cells
We first developed models for all ganglion cell types from which
we recorded. The model for the MC cells was represented in
Figure 7A (a sign change half-way into the model provides a
signal inversion for off-center cells). The model derives primarily
from results from the literature. It assumed that MC cells receive
summed input from L- and M-cones in a ratio of 1.6:1. The model
consists of an initial luminance gain control (Lankheet et al.,
1993; Snippe et al., 2000; Smith et al., 2001), followed by a
compressive nonlinearity. These may represent outer retinal
mechanisms. There follows a high-pass filter. The high-pass filter
is implemented here as having a power-law slope (with power q)
of its transfer function [see Snippe et al. (2000) for a discussion of
this type of filter]. The model required a fast and a slow contrast
gain control. The fast one (the inner loop) is a divisive feedback
of positive peaks in the response, essentially making peaks
sharper and reduced in area. The nonlinearity (NL�) is expan-
sive, which means that large peaks are affected more strongly than
small peaks. We found that adding a similar control on negative-
going signals did not change Rcoh, and therefore we omitted it. In
principle, this element resembles the contrast gain control mech-
anism described for cat ganglion cells (Victor, 1987). The slow
contrast gain control (the outer loop) controls, through a nonlin-
earity and a low-pass filter, the slope (q) of the high-pass filter.
The input module of this loop, (. . .)c�

2 , uses only signals related to

Figure 5. Coherence between cell re-
sponse and model response. Coherence
and coherence rate are calculated be-
tween the neuronal response and the out-
put of a nonlinear model; s, smod , r, and r�
are functions of frequency.

Figure 6. Expected coherence for an on-center MC cell and the coher-
ence calculated for three different models. Model m3 is depicted in Figure
7A; parameters for this cell were 	1 � 6.6 msec, 	2 � 49 msec, k1 � 1.3 �
10 � 2 td �1/2, c1 � 8.7 � 10 � 3, 	� � 8.7 msec, q0 � 0.51, q1 � 10.4, c2 �
2.7 � 10 � 4, 	3 � 83 msec, and k2 � 1.4. The inset shows the impulse
response of the Wiener filter following the nonlinear part of the model
(as in Fig. 5); the horizontal bar shows the zero level and a time scale of
50 msec.
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increases in the luminance of the stimulus, i.e., positive signals for
on-center MC cells, and only negative signals for off-center MC
cells. Note that the gain control at the front end of the model
retains some dependence on luminance in its output [it falls short

of Weber’s law (Smith et al., 2001)]. This also applies to the other
modules leading to the input of the outer control loop. Therefore,
this loop may relate to inner retinal gain controls that modify the
time course of MC cell responses as a function of luminance (Lee

Figure 7. Models for retinal ganglion cells. A, Model for the MC cells. Ii is the retinal illuminance; LP1 is a low-pass filter consisting of a cascade of
three first-order filters, each with time constant 	1 ; LP2 is a first-order low-pass filter with time constant 	2 ; NL1 is a nonlinearity of the form output �
(2/�)atan(k1 � input); LPq is a low-pass filter of a form that makes the entire feedforward loop behave as a high-pass filter with a frequency-domain slope
q (Snippe et al., 2000), where q is given by the output of LP3; LP� has time constant 	� ; NL� is output � (1 � rec�(input)/c1 )2, with rec� an operator
that half-wave rectifies, retaining only the positive values of its input; (. . .)c�

2 squares its half-wave rectified input, retaining positive signals for on-center
MC cells and negative signals for off-center MC cells, in both cases related to positive luminance changes; NLc is output � q0 � q1 � input/(c2 � input);
LP3 has a time constant 	3 ; NL2 is output � (2/�)atan(k2 � input). B, Model for �L-M and �M�L PC cells; models for -L�M and �M-L cells are given
by interchanging the IL and IM at the input. IL and IM are the effective L- and M-cone illuminances, for the CTSIs equal to l and m (see Materials and
Methods); LP1, LP2, NL1, and NL2 are as defined at A; LPq is similar to LPq at A, with q not variable. C, Model for the �S-ML cell. Is is the S-cone
illuminance, for the CTSIs equal to s; LP1, LP2, and NL1 as defined at A; LPq1 and LPq2 are similar to the LPq at A, with q1 and q2 not variable; LP3
has time constant 	3 ; NL2 is output � g1� atan( g2 � input); NL3 is output � (2/�)atan(k2 � input).
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et al., 1994). Finally, the model contains a compressive nonlin-
earity and a rectification. We found that none of the modules in
Figure 7A can be omitted; all contribute significantly to Rcoh.

We expanded the MC model to contain separate luminance
gain controls for the L- and M-pathways, which were then added
with a weighting wL for the L-signal and (1-wL) for the M-signal.
This revealed that the weighting wL varied substantially from cell
to cell (ranging from 0 to 1; mean � SD was 0.67 � 0.28), as
reported elsewhere (Valberg et al., 1992). However, this in-
creased Rcoh only marginally (by �1.5%). This shows that it is
justified to treat MC cells as luminance-driven cells, at least for
naturalistic stimuli, and that information processing by MC cells
appears mostly independent of whether they derive their main
input from L- or M-cones.

We tried several other models or functional modules published
in the literature (Victor, 1987; Wilson, 1997), but none performed
as well as the model in Figure 7A. However, our purpose was not
to compare candidate models but to derive a relatively simple
model that captures the responses of ganglion cells to our stimuli,
such that we can use these models for analysis of visual coding by
these neurons. It should thus be considered as a descriptive
approach, which does not claim to precisely represent the under-
lying physiology. However, the luminance and contrast gain con-
trol modules closely resemble suggestions in the literature.

The model for the PC cells (Fig. 7B) contains initial separate

gain controls and compressive nonlinearities for the L- and
M-cone pathways. These may again correspond to outer retinal
mechanisms. It was then necessary to provide a low-pass-filtered
luminance signal subtracting from the L- and M-cone pathways
(consistent with producing a power-law high-pass filter). After
subtraction of cone signals (i.e., the cone opponent stage), a
compressive nonlinearity, an offset, and a rectification complete
the model. Note that no further gain controls are necessary for
this cell type, which is consistent with other data from the
literature (Benardete et al., 1992; Yeh et al., 1995).

The model for the S-cone excitatory cell proved to be the least
successful of those developed here. One of the problems is a slow
adaptation phenomenon, in which after prolonged absence of
short-wavelength components in the stimulus the cell does not
immediately respond when they reappear, but only after a vari-
able delay. We modeled this as a variable threshold (Fig. 7C),
with a slow filter LP3. The top pathway in Figure 7C is a �S-cone
pathway. The bottom pathway is a long-wavelength opponent
pathway (L�M).

Expected and model coherence rates of retinal ganglion cells
Expected coherence rates and model coherence rates were eval-
uated for several models and all ganglion cells for which there was
sufficient data; fits were made separately for each individual cell.
The results are shown in Table 1 for both CTSIs used. The results

Table 1. Coherence rates of individual cells

Cell type (number of cells) Rexp (bits/sec) Rcoh (bits/sec)
Average
Rcoh/Rexp

Laboratory environment
MC on-center (5) 51 � 17 m1 8 � 2 0.17 � 0.04

m2 24 � 8 0.48 � 0.10
m3 33 � 12 0.65 � 0.13

MC off-center (4) 50 � 20 m1 7 � 2 0.14 � 0.04
m2 23 � 6 0.47 � 0.12
m3 32 � 8 0.68 � 0.17

�L�M on-center (5) 13 � 3 m1 4 � 2 0.33 � 0.17
m2 9 � 3 0.66 � 0.21
m3 12 � 4 0.96 � 0.21

�L�M off-center (2) 5 � 1 5 � 1 0.91
�M�L on-center (5) 14 � 5 10 � 5 0.74 � 0.14
�M�L off-center (1) 9 8 0.91
�S�ML (4) 27 � 10 14 � 3 0.53 � 0.10

Flower show
MC on-center (3) 108 � 6 m1 21 � 2 0.19 � 0.01

m2 49 � 2 0.45 � 0.01
m3 71 � 3 0.66 � 0.04

MC off-center (1) 74 m1 17 � 1 0.23 � 0.01
m2 37 � 4 0.51 � 0.05
m3 48 � 1 0.65 � 0.02

�L�M on-center (3) 46 � 7 m1 24 � 4 0.53 � 0.06
m2 27 � 4 0.59 � 0.06
m3 39 � 5 0.85 � 0.06

�L�M off-center (2) 23 � 4 21 � 2 0.90 � 0.05
�M�L on-center (1) 45 37 � 2 0.81 � 0.03
�M�L off-center (2) 25 � 1 17 � 3 0.68 � 0.13
�S�ML (3) 55 � 26 24 � 6 0.47 � 0.10

For the MC cells, m1 is a linear model; m2 is a model containing a low-pass filter (LP1 in Fig. 7A), a fixed high-pass filter (fixed q in Fig. 7A), a compressive nonlinearity (NL2
in Fig. 7A), and a rectification; m3 is the full model of Figure 7A. For the on-center �L�M cell, m1 is a linear model; m2 is a model containing a weighted subtraction of
l and m; and m3 is the full model of Figure 7B. For the other M, L-cells, the model is given in Figure 7B; for the �S�ML cell the model is given in Figure 7C. Numbers
show mean and SD. Fits were made separately for each cell.
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show that, as remarked above, Rexp is larger for MC cells than for
PC cells, with �S-ML cells lying in between. The flower show
stimulus gives higher coherence rates than the laboratory envi-
ronment (see Discussion). As shown in Table 1 for MC on-center,
MC off-center, and �L-M on-center cells (similar results were
obtained for the other cell types), purely linear models (m1) that
add cone signals do not work well. Model m2 for the �L-M cell
is a linear opponent model; it performs better than m1, but not as
well as the full model (m3) of Figure 7B. The best models we
found capture 60–70% of the expected coherence rate of MC
cells, 80–90% for PC cells, and �50% for �S-ML cells.

Coherence and models of generic cells
Responses of an individual neuron to the same stimulus are
variable (Figs. 2, 3). The responses of different neurons of the
same class show further variability. Figure 8 shows responses of
five different on-center MC cells to the same stimulus. There are
differences that exceed the variability of the responses of an
individual neuron. Thus, for a uniform field, the information
delivered to the cortex by the array of on-center MC cells, for
instance, is slightly different for each cell of the array, even for
cells of similar eccentricity (as was the case here).

There are two possibilities as to how the cortex might deal with
this variability. Either it knows (or learns) the temporal charac-
teristics of each individual neuron and uses all information in the
signal of each cell, or it considers the variability between neurons
as a source of (structural) noise that should be neglected. Then,
it should base its analysis on the characteristics that all neurons of
a particular class have in common. Although the first possibility
was implicit in the above attempt to develop a model that opti-
mally described individual neurons, we now analyze the second
possibility. It leads to the concept of a generic neuron, which
represents its class of neurons, and produces a response around
which the responses of individual neurons are distributed. We
will study these generic neurons in the simplest way possible by
treating the responses coming from different neurons (of one

class) as if they were generated by a single generic neuron. We can
then use the same methods and calculate the expected coherence
rate, now of the generic neuron, and evaluate the coherence rate
of the various models describing the generic cell.

Figure 9 shows the expected coherence of a group of responses
obtained from different on-center MC cells. The coherence be-
tween measurements and model response [(Fig. 7A, light trace)
with m3 the same model as used for the on-center MC cell above]
is close to the expected coherence. The coherence rates in this
example are Rexp � 21 bits/sec and Rcoh � 20 bits/sec. The
remaining discrepancy is at frequencies in the range 0–10 Hz, but
it is small. The inset again shows the Wiener filter following the
nonlinear model.

We performed an analysis of generic neurons for all cell classes;
the results are given in Table 2. Table 2 shows that again Rexp

is larger for MC cells than for PC cells, and there are again higher
coherence rates for the flower show than for the laboratory envi-
ronment. Because of the additional intercell variability, all rates
are lower than the result for individual neurons in Table 1.
Models typically capture �90% of the expected coherence rates.

In the above analysis we pooled all recorded neurons from a
particular class, regardless of whether they were measured in the
same animal, although in principle, intercell variability may be
smaller within an animal than between animals. We therefore
compared interanimal and intra-animal variability in coherence
rates. Interanimal variability was slightly larger than the intra-
animal variability, but the difference was small compared with the
overall reduction in coherence rate in generic cells.

Behavior of compound cells
In an abstract sense, the retina can be considered as a device that
transforms the stimulus into different representations. We wished
to analyze what these representations encode. To simplify nota-
tion, we use the following abbreviations: Mon for the on-center
MC cell, Moff for the off-center MC cell, Ron for the �L-M
on-center PC cell, Roff for the �L�M off-center PC cell, Gon for
the �M-L on-center PC cell, Goff for the �M�L off-center PC
cell, and Bon for the �S-ML cell. For the generic models devel-
oped in the previous section the notation is, e.g., M̂on, where the
circumflex indicates that we are dealing with the output of a
generic model.

As a first analysis step, we combine on- and off-cells into

Figure 8. Examples of responses of different on-center MC cells. The five
top traces show the local spike rate of five different cells, in response to the
same section of the stimulus from the laboratory environment as in Figure
2. Bottom traces show average and model prediction. The dashes above
zero (0) show the zero level of the latter two. Model parameters were 	1 �
8.0 msec, 	2 � 85 msec, k1 � 8.6 � 10 � 3 td �1/2, c1 � 1.3 � 10 � 2, 	� � 8.8
msec, q0 � 0.52, q1 � 12.5, c2 � 3.5 � 10 � 4, 	3 � 283 msec, and k2 � 1.1.

Figure 9. Expected coherence and predicted coherence for the generic
on-center MC cell (obtained from the same 5 cells as in Fig. 8). Param-
eters are as in Figure 8. The inset shows the impulse response of the
Wiener filter, as in Figure 6.
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compound cells by subtracting measured responses (i.e., spike
trains) of on- and off-center cells belonging to a corresponding
class. For example, the Mo compound cell is defined as Mo �
Mon � Moff. Similarly, we define Ro � Ron � Roff and Go �
Gon � Goff. Because measurements on the �S�LM cell are
lacking, for the short-wavelength pathway we used Bon. We can
define the analogs for the generic models. Thus M̂o � M̂on � M̂off,
and so on.

By combining measurements from the available Mon and Moff

cells, a large number of responses of Mo are constructed. The
coherence rate between each of the Mo responses and the generic
model response M̂o is subsequently calculated and averaged over
all Mo responses. The result is shown in the top left entry of Table
3. It is a measure of how much an Mo response tells about the
response of model M̂o, and therefore also a measure of how much
it tells about the stimulus. Similarly, the second entry in the top
row of Table 3 shows the coherence rate between measured Mo

responses and the R̂o model. It shows that the Mo responses are
less coherent with the R̂o model than with the M̂o model, but the
difference is not large. A similar conclusion follows from the
coherence rates between measured Ro responses and the M̂o

model or the R̂o model (second row in the Table). The corre-
spondence between various compound cells can be quantified by
defining the cross-coherence coefficient, rcc. For example, for Mo

and Ro it is defined as:

rcc � �Rcoh�Mo, R̂o	Rcoh�Ro, M̂o	

Rcoh�Mo, M̂o	Rcoh�Ro, R̂o	
�1/2

, (11)

with Mo, M̂o, Ro, and R̂o defined as above. It essentially gives the
ratio of two coherence rates, one of measurements with the
generic model of another compound cell and one with their own
generic model. If the coherence rate of the measurements with
the other model is zero, rcc is zero as well, whereas rcc � 1 if the
coherence rates of the measurements with the other and their
own model are equal. Thus rcc is expected to vary between 0 and
1 depending on how much the two sets of measurements/generic
models have in common.

The coherence rates for all compound cells, and the corre-
sponding rcc values, show that there is appreciable overlap be-
tween information carried in the magnocellular channel (Mo) and
the two M-, L-cone opponent channels (Ro and Go), but much
less with the S-cone cells (Bon). It also shows that the Ro and Go

compound cells overlap. It is likely that the overlap between Mo,
Ro, and Go is caused by the fact that all of these compound cells
respond to changes in luminance. We now ask if it is possible, for
Ro and Go, to separate the response component (and coherence
rate) related to luminance from that related to chromaticity. A
simple scheme is to combine Ro and Go in two different ways:
Pa � Ro � Go and Pc � Ro � Go. Here, in theory, Pa should
respond only to achromatic and not to chromatic aspects of the
stimulus, whereas Pc should respond, again in theory, only to
chromatic and not to achromatic aspects of the stimulus. This
scheme resembles a time-domain version of the demultiplexing
scheme for cortical processing of the PC pathway (Lennie and
D’Zmura, 1988). Note that we are not proposing here that Pa and

Table 2. Coherence rates of generic cells

Cell type (number of cells) Rexp (bits/sec) Rcoh (bits/sec)
Average
Rcoh/Rexp

Laboratory environment
MC on-center (5) 21.3 � 1.4 m1 6.4 � 0.3 0.30 � 0.03

m2 15.6 � 1.1 0.73 � 0.06
m3 19.7 � 1.3 0.93 � 0.07

MC off-center (4) 16.3 � 0.9 m1 4.9 � 0.2 0.30 � 0.02
m2 13.8 � 0.7 0.85 � 0.06
m3 17.2 � 1.2 1.05 � 0.07

�L�M on-center (5) 4.5 � 0.6 m1 1.8 � 0.4 0.40 � 0.07
m2 3.3 � 0.8 0.73 � 0.19
m3 4.9 � 0.9 1.09 � 0.22

�L�M off-center (2) 3.9 3.6 0.92
�M�L on-center (5) 7.0 � 0.5 7.2 � 1.6 1.04 � 0.23
�M�L off-center (1)
�S�ML (4) 10.3 � 3.1 7.3 � 1.6 0.73 � 0.18

Flower show
MC on-center (3) 63 � 4 m1 19 � 1 0.30 � 0.02

m2 41 � 1 0.65 � 0.05
m3 55 � 2 0.89 � 0.07

MC off-center (1)
�L�M on-center (3) 40 � 1 m1 22 � 1 0.56 � 0.02

m2 25 � 1 0.63 � 0.02
m3 35 � 1 0.88 � 0.03

�L�M off-center (2) 20 � 1 18 � 1 0.92 � 0.05
�M�L on-center (1)
�M�L off-center (2) 18 � 1 16 � 1 0.88 � 0.07
�S�ML (3) 19 � 2 17 � 1 0.91 � 0.13

Coherence rates show averages and SD for calculations for each of six repeats of the stimulus to each cell. Models are as described in the legend of Table 1. Fits were made
simultaneously to all cells from a particular class but separately for the two different stimuli.
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Pc are actually constructed centrally; we use Pa and Pc only as a
convenient way to separate and study the luminance and chroma-
ticity related information in the set of PC cells.

The bottom part of Table 3 shows the result of this transfor-
mation. It shows that although Pa and Mo are still strongly related,
Pc and Bon are now only loosely related to both Mo and Pa, and
also to each other. From the coherence rates of Pa with P̂a and Pc

with P̂c, it can be seen that, for this particular stimulus (the flower
show), the parvocellular channel has a coherence rate for lumi-
nance that is approximately five times larger than that for chro-
maticity. The four neurons constituting the Pc channel together
have a coherence rate that is only approximately one-half the
coherence rate of the single-cell Bon channel.

The coherence rates of Mo, Pa, Pc, and Bon in Table 3 are
integrations over frequency of (transforms of) the respective
coherence functions (Eq. 8). It is instructive to look at the
coherence functions themselves, to see how they vary with fre-
quency. Figure 10 shows that the chromatic channels Pc and Bon

are confined to relatively low temporal frequencies, with Bon

mostly above Pc. Mo continues to somewhat higher frequencies
than Pa, and the two cells constituting Mo have, over much of the
frequency domain, a coherence higher than that of the four cells
constituting Pa. Only at very low frequencies does Pa have a
higher coherence (i.e., a higher SNR) than Mo. Much of this is
consistent with the power spectra of the average of all cell
recordings for Mo (denoted by M� o), Pa, Pc, and Bon (Fig. 11). For
example, for frequencies smaller than a few Hz, P� a has consider-
ably more power than M� o.

Information rates
For independent Gaussian signals and noise the coherence rate is
identical, from Shannon’s equation, to information rate (Haag
and Borst, 1998; van Hateren and Snippe, 2001). In our case

neither signals nor noise is Gaussian, and it remains unclear how
different the coherence rates are from the true information rates.
We therefore compared the coherence rates with an independent
estimate of information rate that does not depend on assuming
independent Gaussian signals and noise. One such estimate,
neglecting possible information in complex spike patterns (Bren-
ner et al., 2000; Reinagel and Reid, 2000), is:

Rinf �
1
T�

0

T

dt 
�t	log2�
�t	/
� 	, (12)

(Brenner et al., 2000), where 
(t) is the spike rate as a function of
time, 
� is the average spike rate, and T is the duration of the
response to be analyzed. Because in our case the number of
repeats is small (6 for individual cells, up to 30 for generic cells),
it is crucial to decide on the time resolution (bin size) of the spike
rate estimate. If the bin size is too small, 
(t) is very noisy, which
will lead to overestimating Rinf. If it is too large, real structure in

(t) is lost, which will lead to underestimating Rinf. To avoid
arbitrariness in the choice of time resolution, we followed the
following procedure. First we collected a poststimulus time his-
togram with small bin sizes (here 1 msec, but the exact value is
not crucial for the results). Subsequently, this histogram was
filtered with the optimal Wiener filter to obtain an estimate of the
spike rate, 
(t) (see Materials and Methods; Eq. 10). The Wiener
filter strongly reduces noisy high-frequency components in the
raw histogram, which would otherwise upwardly bias the estimate
of Rinf with Equation 12. An adverse effect of the Wiener filter is
that it may also reduce signal components of the neurons, and
thus downwardly bias the estimate of Rinf. The latter effect is in
fact limited. We investigated this by varying the number of
repeats, m, used for the estimate of Rinf, and computing the

Table 3. Coherence rates and cross-coherence coefficients of compound cells

Rcoh and rcc for {Mo , Ro , Go , Bon}

Rcoh M̂o R̂o Ĝo B̂on

Mo 69 � 4 48 � 3 36 � 1 7.9 � 0.4
Ro 29 � 5 39 � 5 22 � 4 4.6 � 0.9
Go 25 � 2 20 � 1 33 � 4 7.0 � 0.5
Bon 5.3 � 2.7 4.5 � 2.5 5.1 � 2.7 18 � 5

rcc M̂o R̂o Ĝo B̂on

Mo 1 0.72 � 0.12 0.63 � 0.07 0.18 � 0.07
Ro 0.72 � 0.12 1 0.60 � 0.10 0.17 � 0.08
Go 0.63 � 0.07 0.60 � 0.10 1 0.24 � 0.11
Bon 0.18 � 0.07 0.17 � 0.08 0.24 � 0.11 1

Rcoh and rcc for {Mo , Pa , Pc , Bon}

Rcoh M̂o P̂a P̂c B̂on

Mo 69 � 4 49 � 2 9.5 � 1.4 7.9 � 0.4
Pa 41 � 2 51 � 3 6.6 � 0.8 5.6 � 0.7
Pc 1.5 � 1.2 1.9 � 1.1 10.5 � 1.8 0.9 � 0.3
Bon 5.3 � 2.7 5.1 � 2.9 1.4 � 0.7 18 � 5

rcc M̂o P̂a P̂c B̂on

Mo 1 0.77 � 0.05 0.14 � 0.08 0.18 � 0.07
Pa 0.77 � 0.05 1 0.15 � 0.07 0.20 � 0.09
Pc 0.14 � 0.08 0.15 � 0.07 1 0.08 � 0.04
Bon 0.18 � 0.07 0.20 � 0.09 0.08 � 0.04 1

Compound cells are defined as Mo � Mon � Moff, Ro � Ron � Roff, Go � Gon � Goff, Pa � Ro � Go, Pc � Ro � Go.
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frequency, fc, where the amplitude of the Wiener filter drops to
50% of its maximum. The estimate of Rinf depends only mildly on
the number of repeats, being 10–15% larger at m � 6 than at m �
2. The bandwidth of the Wiener filter is such that it encompasses
much of the signal bandwidths of the cells; for all cells measured,

the coherence rate obtained by integrating up to fc ( f0 � fc in Eq.
4) is close to 90% of the total coherence rate. The Wiener filter
is therefore unlikely to strongly bias Rinf. Another source of bias
in the estimated information rates, neglecting information in
complex spike patterns, is limited in another mammalian species,
cat (Reinagel and Reid, 2000). We conclude that the information
rates we present here are most likely accurate at least within a
factor of 2.

Table 4 gives the results of this analysis, for both types of
CTSIs, and for both individual and generic neurons. It also
summarizes the average spike rates that we measured in the
various classes of ganglion cells with these stimuli and the average
bits per spike. Finally, it compares the information rates obtained
from Equation 12 with the coherence rates as presented in Tables
1 and 2.

As can be seen in Table 4, information in terms of bits per spike
is typically between 0.5 and 1, which is similar to values reported
for other spiking neurons (Borst and Theunissen, 1999). Values
in MC cells tend to be slightly higher than those in PC cells.

The last column of the table shows the ratio of the information
rate and coherence rate. Although this ratio is typically 60–70%
for individual neurons, it distributes around 100% for generic
neurons. One reason for the lower values for individual neurons
is the smaller number of repeats (6) available, which will tend to
underestimate Rinf somewhat more than for the generic neurons
(12–30 repeats). A second reason may be that the coherence rate
systematically overestimates the true information rate because the
assumptions of Shannon’s equation are not fully met; signals and
noise are not Gaussian. Furthermore, it is assumed for Shannon’s
equation that all temporal frequencies in the response are inde-
pendent from one another. This may not be the case here:
nonlinearities can produce correlations between different fre-
quencies (in particular, harmonics of each other). These correla-
tions will lead to overestimation of the information rate. This
effect may be greater for individual neurons than for generic
neurons, because the coherence functions of the former extend
over a larger range of frequencies, and individual cells appear to
display more marked, cell-specific nonlinearities than is apparent
from generic responses.

Nevertheless, Table 4 shows that the coherence rates are of the
same order of magnitude as the information rates, both for
individual and for generic neurons.

DISCUSSION
The primate retina provides the sole input to central visual
mechanisms, through a well defined set of receptors and cell
arrays. We have investigated how information is distributed
among these arrays when natural temporal stimuli are presented
to the retina. Chromatic information in the PC channel is con-
fined to low temporal frequencies (Fig. 10). Even for the partic-
ularly colorful stimuli used here, this channel carries approxi-
mately five times less information in the chromatic than in the
achromatic domain (Table 3). Information in the S-cone-driven
ganglion cells is also confined to low temporal frequencies. Infor-
mation in the MC pathway extends to higher frequencies than the
achromatic component of the PC channel signal, but the MC
pathway transmits less signal power than in the PC channel for
frequencies below 2–3 Hz (Fig. 11).

PC cells show much greater cone contrast sensitivity to chro-
matic than to luminance modulation (Lee et al., 1993). The
dominant weighting of achromatic stimulus components in deter-
mining their response to natural environments is attributable to

Figure 10. Coherence between compound cell responses and compound
cell models. Compound cells are defined as a magnocellular Mo � Mon �
Moff , an achromatic parvocellular Pa � Ro � Go , with Ro � Ron � Roff and
Go � Gon � Goff , a chromatic parvocellular Pc � Ro � Go , and the
S-cone-driven Bon. The coherence functions are the average of the coher-
ence calculated for all recorded responses from all cells. Parameters were as
follows: on-center MC cell (Mon ): 	1 � 6.0 msec, 	2 � 47 msec, k1 �
1.8 � 10 � 2 td �1/2, c1 � 2.0 � 10 � 2, 	� � 2.0 msec, q0 � 0.19, q1 � 20, c2 �
5.4 � 10 � 4, 	3 � 104 msec, k2 � 0.62; off-center MC cell (Moff ): 	1 � 5.5
msec, 	2 � 40 msec, k1 � 3.1 � 10 � 3 td �1/2, c1 � 1.1 � 10 � 3, 	� � 12 msec,
q0 � 0.06, q1 � 2.1, c2 � 2.0 � 10 � 5, 	3 � 171 msec, k2 � 0.15; �L-M
on-center (Ron ): 	1 � 4.3 msec, 	2 � 221 msec, k1 � 2.3 � 10 � 2 td �1/2, q �
0.71, � � 0.08, k2 � 0.61, o1 � �1.0 � 10 � 3; -L�M off-center (Roff ): 	1 �
6.7 msec, 	2 � 79 msec, k1 � 8.5 � 10 � 2 td �1/2, q � 0.32, � � 0.49, k2 � 6.1,
o1 � 0.22; �M-L on-center (Gon ): 	1 � 5.7 msec, 	2 � 129 msec, k1 �
6.2 � 10 � 2 td �1/2, q � 0.04, � � 0.67, k2 � 2.3, o1 � �4.4 � 10 � 3; -M�L
off-center (Goff ): 	1 � 5.1 msec, 	2 � 26 msec, k1 � 2.0 � 10 � 2 td �1/2, q �
0.08, � � 2.6, k2 � 2.2, o1 � 6.5 � 10 � 3; �S-ML cell (Bon ): 	1 � 8.0 msec,
	2 � 60 msec, k1 � 3.4 � 10 � 2 td �1/2, q1 � 0.5, q2 � 0.5, � � 0.5, � � 0.5,
	3 � 200 msec, g1 � 0.61, g2 � 134, o1 � �1.06, o2 � �0.37, � � 0.36, and
k2 � 0.38.

Figure 11. Power spectra of compound cell responses. The spike trains of
all recorded responses of all cells belonging to a particular class were
averaged and combined to form the compound cells defined as in Figure
10. Without low-pass filtering, the power spectra of these averages were
calculated. Higher frequencies in the spectra are smoothed (averaged with
a group of neighboring frequencies, with the group size proportional to
frequency).
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the high achromatic contrast in a natural scene, whereas the
chromatic contrast associated with the L-M signal is much
smaller (Fig. 1F) (Ruderman et al., 1998).

The present study analyzes the representation of the informa-
tion present in the retinal output, but this provides no evidence as
to how far this information is used at higher stages of visual
processing. Nevertheless, several results of the analysis can be
related to earlier studies (Lee et al., 1990). That study showed
that responsivity of MC cells to luminance modulation matches
human detection performance well for frequencies up to 20 Hz.
At higher frequencies, the responsivity of individual MC cells
exceeds the sensitivity of human observers. A similar difference in
frequency range is seen here when comparing the expected co-
herence function of an individual MC cell (Fig. 6) with that of the
generic MC cell (Fig. 9). This may offer a functional explanation
for the difference between psychophysical and physiological per-
formance; although individual MC cells have a good SNR over a
broad frequency range, the set of MC cells participating in the
psychophysical response gives incoherent responses at high fre-
quencies. Rather than extracting information from the variable
behavior of individual cells at high frequencies (which might be
computationally expensive), these frequencies may be ignored for

the psychophysical decision (e.g., by filtering them out through a
cortical low-pass filter) (Lee et al., 1990).

The chromatic component of the generic PC cell response has
a coherence function limited to low frequencies. Psychophysical
detection of chromatic modulation is restricted to a similar fre-
quency range, despite the fact that individual PC cells respond to
higher frequencies. This again requires postulation of central
low-pass filtering of chromatic channels (Lee et al., 1990). The
restricted frequency range of the generic PC cell chromatic co-
herence function is most likely attributable to the properties of
the CTSI. As Figure 1F shows, the chromatic contrast of the
L-M signal is low compared with achromatic contrast and de-
clines further with frequency. Additive noise in the retina may
then lead to low SNRs already for quite low frequencies. Thus the
restricted frequency range in psychophysical performance could
be an adaptation of central filters to match the frequency range
from which the L-M system can obtain useful information on the
visual environment. Low-pass filtering of PC cell signals is un-
likely to be modality specific, so that the PC cell achromatic
coherence above 10 Hz (Fig. 10) may not be used centrally.
Relevant cortical measurements are unavailable.

We developed models for the various retinal ganglion cell

Table 4. Information rates

Cell type (number of cells) Rinf (bits/sec) Spike rate (spikes/sec) Bits/spike Rexp (bits/sec) Rinf/Rexp

Individual cells–laboratory
environment

MC on-center (5) 29 � 5 34 � 6 0.9 � 0.3 51 � 17 0.57
MC off-center (4) 29 � 14 36 � 14 0.8 � 0.2 50 � 20 0.59
�L�M on-center (5) 8.3 � 2.1 27 � 20 0.6 � 0.6 13 � 3 0.64
�L�M off-center (2) 3.2 � 2.0 26 � 3 0.1 � 0.1 5 � 1 0.65
�M�L on-center (5) 9.8 � 5.2 24 � 19 0.7 � 0.6 14 � 5 0.70
�M�L off-center (1) 10 19 0.5 9 1.11
�S�ML (4) 18 � 10 32 � 4 0.6 � 0.3 27 � 10 0.67

Individual cells–flower show
MC on-center (3) 72 � 21 43 � 16 1.8 � 0.3 108 � 6 0.67
MC off-center (1) 45 54 0.8 74 0.61
�L�M on-center (3) 30 � 6 33 � 8 0.9 � 0.1 46 � 7 0.66
�L�M off-center (2) 16 � 3 40 � 15 0.5 � 0.3 23 � 4 0.71
�M�L on-center (1) 30 32 0.9 45 0.66
�M�L off-center (2) 21 � 1 32 � 4 0.7 � 0.1 25 � 1 0.83
�S�ML (3) 28 � 10 23 � 13 1.5 � 1.0 55 � 26 0.51

Generic cells–laboratory
environment

MC on-center (5) 21 34 0.6 21 � 1 1.00
MC off-center (4) 19 36 0.5 16 � 1 1.17
�L�M on-center (5) 4.4 27 0.2 4.5 � 0.6 0.98
�L�M off-center (2) 2.7 26 0.1 3.9 0.70
�M�L on-center (5) 8.4 24 0.4 7.0 � 0.5 1.20
�M�L off-center (1)
�S�ML (4) 12.9 32 0.4 10 � 3 1.25

Generic cells—flower show
MC on-center (3) 67 43 1.6 63 � 4 1.07
MC off-center (1)
�L�M on-center (3) 30 33 0.9 40 � 1 0.74
�L�M off-center (2) 16 40 0.4 20 � 1 0.79
�M�L on-center (1)
�M�L off-center (2) 19 32 0.6 18 � 1 1.10
�S�ML (3) 21 23 0.9 19 � 2 1.13

Rinf shows the information rate obtained with Equation 12; bits/spike shows the information per spike, and Rexp is the coherence rate as also given in Tables 1 and 2.
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classes. Linear models did not work well, mainly because the
intensity range is too large. The models built incorporated mod-
ules and results from the literature. The front-end adaptation
module falls short of Weber’s law, as is the case in primate outer
retina (Smith et al., 2001), and the later modules for the MC cell
implement bandpass filtering and contrast gain control (Benar-
dete et al., 1992). The model for S-cone-driven ganglion cells is
less successful than the other models because of slow nonlineari-
ties that were difficult to model. The S-cone pathway can show
slow adaptational effects. After a change in mean illuminance
from long to short wavelengths, psychophysical sensitivity to
S-cone tests recovers slowly. This has been attributed to second-
site saturation (Pugh and Mollon, 1979), but physiologically this
should be associated with high neuronal firing rates caused by
saturation of the S-cone system. We found that the opposite was
the case: firing rates remained depressed for a period after mean
chromaticity moved to shorter wavelengths. This contradiction
remains unresolved.

The models were optimized to describe responses to CTSIs,
but we tested how well they generalized to other types of stimuli.
The models were moderately successful in predicting modulation
transfer functions (MTFs) to sinusoidal flicker. The predicted
MC cell MTF is strongly bandpass, and the PC cell MTF is
bandpass for luminance modulation and low-pass for chromatic
modulation, as expected (Lee et al., 1990). Nevertheless, there are
also deviations. In particular, for off-center MC cells the param-
eter settings from the fits to CTSIs caused absence of response
modulation at low-stimulus contrast. These threshold effects
could be mostly corrected by slightly adjusting the parameter
settings. However, such behavior is sometimes observed in off-
center MC cells at moderate to high photopic levels (B. B. Lee,
unpublished observations). Also, we tested whether the models
predict the difference in contrast gain between MC and PC cells
by predicting responses to the CTSI after contrast compression.
Higher contrast gains were found for the MC model compared
with the PC model. Nevertheless, the models should not yet be
considered as fully adequate models for the retinal response to
arbitrary stimuli.

The two naturalistic stimuli used in this article were recorded
in quite different environments. Although the absolute coherence
rates obtained for the flower show were considerably higher than
those for the laboratory environment, it is important to empha-
size that qualitative and most quantitative features of the results
are consistent between the two stimulus regimes. The higher
coherence rates for the flower show stimulus as compared with
that of the laboratory environment are caused by differences in
the stimuli. Apart from the more colorful environment provided
by the flower show, the luminance contrast was larger over much
of the frequency range compared with that of the laboratory
environment. This is indicated by the normalized power spectra
shown in Figure 1C, where the flower show has more relative
power than the laboratory environment at frequencies exceeding
a few Hertz. Although real differences between the environments
may cause this, it may be related to the fact that the flower show
stimulus was displayed six times faster than recorded, thus boost-
ing the power in higher frequencies. Control experiments in
which we increased the playback speed of the CTSI from the
laboratory environment by a factor of 6 increased the level of the
coherence functions, more closely matching those of the flower
show.

The actual coherence or information rates one should expect
from retinal ganglion cells while walking through a natural envi-

ronment can ultimately be determined only when one can record
eye movements, with an accuracy of a few arc minutes or less, and
simultaneously record, with similar precision and high frame
rates, the visual environment viewed. Nevertheless, we believe
that the results we obtained with the two CTSIs give a realistic
range of values to be expected and a reliable qualitative estimate.
Preliminary results of experiments with the full spatiotemporal
stimulus based on the flower show video indicate that the ex-
pected coherence rates are not very different from those obtained
here with the spatially homogeneous time series constructed from
the same video sequence.

The framework of analysis presented in this article, coherence
analysis combined with modeling, has several benefits. It provides
a coherent and extended set of tools for analyzing and quantify-
ing the performance of neural systems. Its main quantity, the
coherence rate, is closely related to the information rate, which
may be considered as the natural currency when trying to under-
stand information processing systems. One advantage of the
present approach is that it closely ties stimuli to measured re-
sponses and thus forms a convenient framework for developing
and evaluating models. The methods are relatively simple, al-
though a range of simplifying assumptions were made. The most
important of these are the assumption that noise at the final stage
in the model is dominant and additive and the assumption that
only local spike rate matters, i.e., higher-order structure in spike
patterns is not taken into account. Nevertheless, simplicity makes
the method attractive as a first order approach even when these
assumptions are only partially met.
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