22 research outputs found

    Optimization of Parameters and InitialValues in a Marine NPZD-Type Ecosystem Model

    Get PDF
    Parameters and initial values of a one-dimensional marine ecosystemmodel are optimized using a gradient-based optimization algorithm takinginto account parameter bounds. Sensitivities of the optimized parametersw.r.t. errors in observations and initial values are studied numerically andfound to yield parameter ranges narrow relative to the a priori parameteruncertainty reflected in upper and lower bounds on the permitted pa-rameter range. This means, that optimal parameters can be determinedaccurately. We find, that optimizing for the initial values along with theparameters can greatly improve the model’s fit to the observation

    Connecting Vehicles to the Internet - Strategic Data Transmission for Mobile Nodes using Heterogeneous Wireless Networks

    Get PDF
    With the advent of autonomous driving, the driving experience for users of connected vehicles changes, as they may enjoy their travel time with entertainment, or work productively. In our modern society, both require a stable Internet access. However, future mobile networks are not expected to be able to satisfy application Quality of Service (QoS) requirements as needed, e.g. during rush hours. To address this problem, this dissertation investigates data transmission strategies that exploit the potential of using a heterogeneous wireless network environment. To this end, we combine two so far distinct concepts, firstly, network selection and, secondly, transmission time selection, creating a joint time-network selection strategy. It allows a vehicle to plan delay-tolerant data transmissions ahead, favoring transmission opportunities with the best prospective flow-network matches. In this context, our first contribution is a novel rating model for perceived transmission quality, which assesses transmission opportunities with respect to application QoS requirement violations, traded off by monetary cost. To enable unified assessment of all data transmissions, it generalizes existing specialized rating models from network selection and transmission time selection and extends them with a novel throughput requirement model. Based on that, we develop a novel joint time-network selection strategy, Joint Transmission Planning (JTP), as our second contribution, planning optimized data transmissions within a defined time horizon. We compare its transmission quality to that of three predominant state-of-the-art transmission strategies, revealing that JTP outperforms the others significantly by up to 26%. Due to extensive scenario variation, we discover broad stability of JTP reaching 87-91% of the optimum. As JTP is a planning approach relying on prediction data, the transmission quality is strongly impaired when executing its plans under environmental changes. To mitigate this impact, we develop a transmission plan adaptation as our third contribution, modifying the planned current transmission online in order to comply with the changes. Even under strong changes of the vehicle movement and the network environment, it sustains 57%, respectively 36%, of the performance gain from planning. Finally, we present our protocol Mobility management for Vehicular Networking (MoVeNet), pooling available network resources of the environment to enable flexible packet dispatching without breaking connections. Its distributed architecture provides broad scalability and robustness against node failures. It complements control mechanisms that allow a demand-based and connection-specific trade-off between overhead and latency. Less than 9 ms additional round trip time in our tests, instant handover and 0 to 4 bytes per-packet overhead prove its efficiency. Employing the presented strategies and mechanisms jointly, users of connected vehicles and other mobile devices can significantly profit from the demonstrated improvements in application QoS satisfaction and reduced monetary cost

    Reducing the model-data misfit in a marine ecosystem model using periodic parameters and linear quadratic optimal control

    Get PDF
    This paper presents the application of the Linear Quadratic Optimal Control (LQOC) method to a parameter optimization problem for a one-dimensional marine ecosystem model of NPZD (N for dissolved inorganic nitrogen, P for phytoplankton, Z for zooplankton and D for detritus) type. This ecosystem model, developed by Oschlies and Garcon, simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. The LQOC method is used to introduce annually periodic model parameters in a linearized version of the model. We show that the obtained version of the model gives a significant reduction of the model-data misfit, compared to the one obtained for the original model with optimized constant parameters. The found inner-annual variability of the optimized parameters provides hints for improvement of the original model. We use the obtained optimal periodic parameters also in validation and prediction experiments with the original non-linear version of the model. In both cases, the results are significantly better than those obtained with optimized constant parameters

    Parameter Optimization and Validation of a Marine Biogeochemical Model using a Hybrid Algorithm

    Get PDF
    Sensitivity computations, parameter identification and optimization for an 1-D marine biogeochemical model of NPZDNPZD type are presented. For the optimization a hybrid algorithm combining quantum-evolutionary and local gradient-based search methods is used. It turns out to be an efficient and flexible tool for optimization and can be easily adopted for other simulation models. For the model under investigation attainable data could be exactly identified. For realistic measure ment data we argue that a certain parameter set leading to a non-optimal fit cannot be improved. Moreover we show that data uncertainty leads to a significant parameter spread. Thus we conclude that the NPZDNPZD model needs to be modified or extended, maybe including a modification of external forcings and/or initial conditions

    Effects of parameter indeterminacy in pelagic biogeochemical modules of Earth System Models on projections into a warming future: The scale of the problem

    Get PDF
    Numerical Earth System Models are generic tools used to extrapolate present climate conditions into a warming future and to explore geoengineering options. Most of the current-generation models feature a simple pelagic biogeochemical model component that is embedded into a three-dimensional ocean general circulation model. The dynamics of these biogeochemical model components is essentially controlled by so-called model parameters most of which are poorly known. Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability. Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they propose strikingly differing projections into a warming climate

    Connecting Vehicles to the Internet - Strategic Data Transmission for Mobile Nodes using Heterogeneous Wireless Networks

    No full text
    With the advent of autonomous driving, the driving experience for users of connected vehicles changes, as they may enjoy their travel time with entertainment, or work productively. In our modern society, both require a stable Internet access. However, future mobile networks are not expected to be able to satisfy application Quality of Service (QoS) requirements as needed, e.g. during rush hours. To address this problem, this dissertation investigates data transmission strategies that exploit the potential of using a heterogeneous wireless network environment. To this end, we combine two so far distinct concepts, firstly, network selection and, secondly, transmission time selection, creating a joint time-network selection strategy. It allows a vehicle to plan delay-tolerant data transmissions ahead, favoring transmission opportunities with the best prospective flow-network matches. In this context, our first contribution is a novel rating model for perceived transmission quality, which assesses transmission opportunities with respect to application QoS requirement violations, traded off by monetary cost. To enable unified assessment of all data transmissions, it generalizes existing specialized rating models from network selection and transmission time selection and extends them with a novel throughput requirement model. Based on that, we develop a novel joint time-network selection strategy, Joint Transmission Planning (JTP), as our second contribution, planning optimized data transmissions within a defined time horizon. We compare its transmission quality to that of three predominant state-of-the-art transmission strategies, revealing that JTP outperforms the others significantly by up to 26%. Due to extensive scenario variation, we discover broad stability of JTP reaching 87-91% of the optimum. As JTP is a planning approach relying on prediction data, the transmission quality is strongly impaired when executing its plans under environmental changes. To mitigate this impact, we develop a transmission plan adaptation as our third contribution, modifying the planned current transmission online in order to comply with the changes. Even under strong changes of the vehicle movement and the network environment, it sustains 57%, respectively 36%, of the performance gain from planning. Finally, we present our protocol Mobility management for Vehicular Networking (MoVeNet), pooling available network resources of the environment to enable flexible packet dispatching without breaking connections. Its distributed architecture provides broad scalability and robustness against node failures. It complements control mechanisms that allow a demand-based and connection-specific trade-off between overhead and latency. Less than 9 ms additional round trip time in our tests, instant handover and 0 to 4 bytes per-packet overhead prove its efficiency. Employing the presented strategies and mechanisms jointly, users of connected vehicles and other mobile devices can significantly profit from the demonstrated improvements in application QoS satisfaction and reduced monetary cost

    Sicheres Service Management für ITS-Dienste

    No full text
    corecore