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ABSTRACT

With the advent of autonomous driving, the driving experience for users of con-
nected vehicles changes, as they may enjoy their travel time with entertainment,
or work productively. In our modern society, both require a stable Internet access.
However, future mobile networks are not expected to be able to satisfy application
Quality of Service (QoS) requirements as needed, e.g. during rush hours. To ad-
dress this problem, this dissertation investigates data transmission strategies that
exploit the potential of using a heterogeneous wireless network environment. To
this end, we combine two so far distinct concepts, firstly, network selection and,
secondly, transmission time selection, creating a joint time-network selection strat-
egy. It allows a vehicle to plan delay-tolerant data transmissions ahead, favoring
transmission opportunities with the best prospective flow-network matches.

In this context, our first contribution is a novel rating model for perceived trans-
mission quality, which assesses transmission opportunities with respect to appli-
cation QoS requirement violations, traded off by monetary cost. To enable unified
assessment of all data transmissions, it generalizes existing specialized rating mod-
els from network selection and transmission time selection and extends them with
a novel throughput requirement model.

Based on that, we develop a novel joint time-network selection strategy, Joint
Transmission Planning (JTP), as our second contribution, planning optimized data
transmissions within a defined time horizon. We compare its transmission quality
to that of three predominant state-of-the-art transmission strategies, revealing that
JTP outperforms the others significantly by up to 26%. Due to extensive scenario
variation, we discover broad stability of JTP reaching 87-91% of the optimum.

As JTP is a planning approach relying on prediction data, the transmission qual-
ity is strongly impaired when executing its plans under environmental changes.
To mitigate this impact, we develop a transmission plan adaptation as our third
contribution, modifying the planned current transmission online in order to com-
ply with the changes. Even under strong changes of the vehicle movement and the
network environment, it sustains 57%, respectively 36%, of the performance gain
from planning.

Finally, we present our protocol Mobility management for Vehicular Networking
(MOVENET), pooling available network resources of the environment to enable flex-
ible packet dispatching without breaking connections. Its distributed architecture
provides broad scalability and robustness against node failures. It complements
control mechanisms that allow a demand-based and connection-specific trade-off
between overhead and latency. Less than 9 ms additional round trip time in our
tests, instant handover and o to 4 bytes per-packet overhead prove its efficiency.

Employing the presented strategies and mechanisms jointly, users of connected
vehicles and other mobile devices can significantly profit from the demonstrated
improvements in application QoS satisfaction and reduced monetary cost.
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KURZFASSUNG

Autonomes Fahren befreit Fahrzeugnutzer in Zukunft von ihrer Fahraufgabe, so-
dass sie ihre Reisezeit entspannt bei Entertainment genieflen oder produktiv nut-
zen konnen. In unserer modernen Gesellschaft erfordert beides eine stabile Inter-
netverbindung. Die vorliegende Dissertationsschrift addressiert diese Herausfor-
derung durch innovative Dateniibertragungsstrategien mit kombinierter Nutzung
heterogener Netzwerke. Dazu werden zwei in der aktuellen Forschung verfolgte
Konzepte, die Netzwerk-Auswahl und die Auswahl des Ubertragungszeitpunktes,
zu einer gemeinsamen Zeit-Netzwerk-Auswahl Strategie kombiniert. Damit wer-
den fiir jede Ubertragung die am besten geeigneten Netzwerke in einem zeitlichen
Planungshorizont gewdhlt.

In diesem Kontext ist der erste Kernbeitrag eine Funktion zur Bewertung von
der wahrgenommenen Qualitit von Ubertragungsmoglichkeiten, die erwartete Ver-
letzungen applikationsspezifischer Anforderungen an die Kommunikation gegen-
{iber entstehenden Ubertragungskosten abwiégt. Diese Bewertungsfunktion verall-
gemeintert spezialisierte Modelle aus den Bereichen der Netzwerk-Auswahl und
der Auswahl des Ubertragungszeitpunktes und erweitert sie um ein Datendurch-
satzmodell, welches eine einheitliche Bewertung von Datenfliissen ermoglicht.

Darauf basierend stellt eine Strategie zur Zeit-Netzwerk-Auswahl, genannt Joint
Transmission Planning (JTP), den zweiten Kernbeitrag dar, welche Datentibertra-
gungen optimiert fiir einen gewissen Zeithorizont plant. Ein Vergleich mit fiih-
renden Stragegien aus verwandten Arbeiten zeigt fiir JTP signifikante Leistungs-
gewinne von bis zu 26%. Bei Szenariovariationen erreicht JTP als einziger Ansatz
konstant hohe Leistungen von 87-91% im Vergleich zum Optimalwert.

Da JTP ein Planungsverfahren ist und auf Vorhersagen operiert, nimmt die Uber-
tragungsqualitét fiir eine Planausfiihrung bei verdndertem Umfeld drastisch ab.
Der dritte Kernbeitrag addressiert dieses Problem mit einem Verfahren zur Adap-
tion der aktuellen Ubertragung wihrend der Planausfiihrung. Selbst bei starken
Anderungen gegeniiber der Bewegungs- und Netzwerkvorhersage bewahrt das
Adaptionsverfahren 57% bzw. 36% des Leistungsgewinns durch JTP.

Der vierte Kernbeitrag umfasst ein neues Mobilitdts-Management-Konzept, ge-
nannt MoVENET, welches verfiigbare Netzwerkressourcen zur flexiblen Nutzung
bereitstellt, ohne aktive Verbindungen zu unterbrechen. Seine verteile Architektur
schafft eine hohe Skalierbarkeit und Robustheit gegentiber Ausfillen von Knoten.
Sich ergdnzende Mechanismen bieten fiir Verbindungen nach Bedarf eine hohe
Ubertragungseffizienz oder eine niedrige Latenz. Verzogerungen im Routing von
weniger als 9 ms in Tests, augenblickliche Netzwerkwechsel und nur o bis 4 Bytes
Overhead pro Paket zeigen, dass MOVENET einen effizienten Losungsansatz zur
Ausfithrung von Ubertragungsplanen darstellt.

Somit kann die wahrgenommene Qualitdt der Internetverbindung von Fahrzeu-
gen sowie anderen mobilen Knoten durch stratigische Dateniibertragung in hete-
rogenen Netzen signifikant verbessert werden.
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INTRODUCTION

In terms of overall data volumes, connected cars
don’t present much of a problem. But network resource
management is not based on total traffic volume.

— Matt Hatton, 2015

With the current advent of connected vehicles, new in-vehicle services and appli-
cations get into focus, which benefit from external data sources. Hence, the wireless
Internet connection gains importance for the automotive industry [58, 140, 148]. In
the following Section 1.1, we present current technology trends that will change
our experience of mobility, motivating our research on automotive Internet con-
nectivity. This change raises new questions in the topic of Internet connectivity
management, which we present together with the goal of this dissertation in Sec-
tion 1.2. Finally, we highlight our contributions in Section 1.3 and close with the
structure of this thesis in Section 1.4.

1.1 MOTIVATION

Connected vehicle data services support driver assistance systems, which rapidly
converge from driving task automation towards autonomous driving. Finally, au-
tonomous driving leads to a complete change in driver experience. The driver is
no longer an essential part of the vehicle control loop and can focus on other tasks.
This change offers new opportunities, using the vehicle as mobile office, exploiting
the travel time to complete work tasks, or as mobile living room, relaxing with enter-
tainment [92]. In our modern society, both require a stable Internet connection.

Highly automated driving is still in the early stage of development. Therefore,
the driver still has to pay full attention to the driving task. This fact limits the
type of existing connected vehicle services: they focus on functions that either sup-
port the driver with additional information for his driving task or that require
his attention only occasionally during a trip. This covers, e.g., providing online
traffic information or streaming music. Other services provide vehicle data to the
user’s smartphone or let him remotely control non-driving related functions, like
setting up a route to the navigation system, starting the heater or locking the car
[75, 211, 47, 24]. More advanced services provide the user with crowd-sourced lo-
cation information or controller firmware updates [205]. As these services have
rather low requirements to the Internet connection, consequences on the perceived
system performance through, e.g., a high connection latency of a few seconds or a
temporary connection loss, are negligible. Furthermore, bandwidth requirements
for this information or control request services are very low. Hence, the connectiv-
ity can easily be achieved using a conventional mobile network connection.
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However, this fact changes as soon as the driver is out of the vehicle control
loop and can spend the majority of his travel time productively or relaxing. This is
already the case for passengers in a bus or train [75, 52]. Hence, WiFi for their
personal devices is often already provided. However, permanent access to on-
line resources during work requires a responsive Internet connection. Multimedia
streams in steadily improving quality call for high data rates. Furthermore, voice
and video telephony converge towards all IP transmission [222] and impose tough
requirements on latency, jitter and network continuity [199, 201]. Especially dur-
ing rush hours, satisfying the future communication demand from connected cars
is considered as a critical challenge for network operators [139]. Conclusively, dif-
ferent kinds of connected car applications selectively impose tough requirements
to the wireless access. A single mobile network, even with expected future re-
sources, is not able to satisfy these requirements pervasively during a trip [139].
How can we solve this conflict, providing passengers the future travel experience
they desire? To address this question, we present the goals of this dissertation in
the following section and clarify the dedicated research questions arising from this
scenario.

1.2 GOAL AND RESEARCH QUESTIONS

The goal of this thesis is the optimization of the user’s perceived transmission qual-
ity in connected vehicles through intelligent network management to satisfy the
requirements of each active communication. However, instead of upgrading the
bare transmission technologies, we develop client-based strategies that use avail-
able network resources of multiple operators smartly. Hence, we investigate and
design strategies to mitigate the effects of network resource shortages by distribut-
ing data transmission reasonably over multiple networks and time slots, introduc-
ing an explicit time-network selection. With this goal and based on insights obtained
in our analysis of related work, we formulate three research questions in the fol-
lowing and detail the corresponding research gaps.

1. How can the perceived quality of all data transmissions of a client be rated?

The perceived transmission quality refers to a subset of Quality of Experience
and covers only transmission-related parameters, excluding factors from the de-
vice and context [173]. Rating functions assess the quality and reflect optimiza-
tion objectives. Hence, inappropriate or incomplete rating functions applied for
mechanism design may render solutions ineffective. Existing models for mo-
bile data transmission quality rating lack general applicability, each focusing on
special data traffic types, i.e. video transmissions, and are unable to assess the
quality for other types of data transmissions [13, 132]. Even if the majority of
data traffic is covered, most transmission rating approaches do not consider a
satisfactory rating [5], defined as one for which a surplus of network character-
istics makes no difference as long as application QoS requirements are satisfied.
Hence, they do not target the perceived Internet access quality, but an absolute
one. Moreover, to the best of our knowledge, there exists no approach that suf-
ficiently covers both dimensions for data transmission distribution: time and
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networks. This renders existing transmission rating models ineffective for gen-
eral application. Hence, there is a gap for a general satisfactory transmission
performance rating model for data distribution over networks and time.

. How can data be transmitted strategically in order to improve the perceived
transmission quality?

Approaches in related work address strategic data transmission in two distinct
ways, distributing transmissions (1) over networks or (2) over time. Moreover,
these approaches usually pursue distinct goals. On the one hand, network selec-
tion strategies focus on the current situation of the mobile node. Their goal is
to select the best-possible network for current data transmissions [212, 16], also
dealing with incomplete information about the environment [217].

On the other hand, there exist delayed-offloading strategies, distributing data
transmission over time. They pursue the goal to move as much data traffic as
possible from cellular to WiFi networks [145, 131]. Therefore, they focus on
delay-tolerant data and seek to transmit it at a point in time, when WiFi is
available. However, they ignore the flow-network matching, which, in sharp
contrast, is the primary focus of network selection.

Even though the authors of these approaches never state it, they implicitly fol-
low a common goal: Avoiding the impact of network overload during resource
bottlenecks through the reasonable distribution of data transmissions over a cer-
tain dimension. Related works show that transmission distribution in each di-
mension, network and time, yields significant performance benefits. From these
findings, we identify a research gap for combined data transmission strategies,
investigating the performance of joint time-network selection.

. How can cross-operator wireless network resources be accessed flexibly and
efficiently for transmission strategy execution?

Flexible routing of data is fundamental for strategic data transmission. It is ad-
dressed by multi-homing and mobility management protocols, which decouple
packet routing via networks from connection identification in the transport layer,
hiding route changes to avoid transmission interruptions. Even though there ex-
ists a huge variety of those protocols, there is no efficient approach satistying
the requirements of the connected vehicle scenario.

For strategic data transmission, each non-covered transmission acts as a distur-
bance to the strategy, diminishing its benefits. Thus, all data should be covered,
which disqualifies transport layer approaches. Furthermore, many approaches
focus on intra-operator mobility management only, implementing functions at
internal network entities of the operator. Since operators do not allow external
control of their own hardware, e.g. access points or software defined network
routers, these approaches are infeasible for implementing cross-operator trans-
mission strategies. Without relying on the network operators, many remaining
approaches establish management contexts with their communication partners,
which have to implement the specific protocol, i.e. requiring changes in the op-
erating systems. This limits possible communication to communication partners
that implement the protocol. Remaining protocols, like Mobile IPv6, are proven

3
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to be inefficient and lack robustness. Accordingly, we identify the research gap
of a cross-operator mobility management protocol that satisfies requirements
of the connected vehicle scenario and enables strategic data transmission via
heterogeneous wireless networks.

1.3 CONTRIBUTIONS

This dissertation treats data transmission optimization strategies for the vehicu-
lar Internet access. The main contribution of this work is the generalization and
combination of the two distinct concepts of transmission time selection and net-
work selection into a joint time-network selection. We show that combining the
two concepts offers a significantly higher optimization potential for data transmis-
sion than separate optimization. Moreover, we present our algorithms for strategic
transmission planning and reaction to environmental changes. To execute these
transmission plans, we additionally develop a mobility management architecture,
which constructs the bridge from theory towards practical systems. The following
four contributions define the keystones of this dissertation in order to reach our
major goal: improving the perceived transmission quality of vehicle occupants.

1. Our first contribution is the generalization of existing transmission rating mod-
els in order to enable unified assessment of data transmissions, addressing the
perceived transmission quality according to our first research question. Our
novel transmission rating model combines two main objectives: Firstly, applica-
tion QoS requirement satisfaction and, secondly, monetary cost to trade-off eco-
nomic aspects. To this end, our model integrates components of models from
network selection and from models of transmission time selection. Moreover,
we extend it with a novel throughput requirement model, which generalizes
employed models from both areas for unified assessment of all data transmis-
sions. Thus, it generalizes existing rating models in order to treat transmissions
in a unified way and assesses the user’s perceived transmission quality.

2. As our second contribution, we design the explicit time-network selection strat-
egy Joint Transmission Planning (JTP). The approach creates transmission plans,
in which for each transmission the best-matching transmission opportunity
within a certain planning time horizon is selected, while trading off monetary
cost, addressing our second research question. JTP significantly outperforms
the transmissions of leading state-of-the-art strategies by 7-26%, reaching even
under parameter variation robustly 87-91% of the scenario’s optimization po-
tential.

3. The third contribution is our transmission plan adaptation algorithm, which ad-
dresses transmission robustness against environmental changes. JTP assumes
perfect knowledge about future available data flows and networks. We show
that simple execution of JTP’s transmission plans lacks resilience against predic-
tion errors that occur due to incomplete information or environmental changes.
To react dynamically on observed environmental changes, we design an adap-
tation algorithm that modifies the current time slot of an existing transmission
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plan. It consists of three heuristics that preserve beneficial temporal transmis-
sion patterns and network selection from the plan and, at the same time, enable
a dynamic reaction to environmental changes. The result sustains a significant
share of the performance gain achieved from JTP for moderate prediction er-
rors, in particular of the movement (61%), of the networks (66%) and of the data
flows (56%). For large prediction errors, its performance converges towards the
performance of the underlying opportunistic transmission approach, providing
a robust lower bound.

4. As our final contribution, we push transmission planning towards real systems.
Thus, we present a network architecture and protocol that we call MOVENET:
Mobility Management for Vehicular Networking, addressing the third research
question. MOVENET pools currently available network resources in order to dis-
tribute data transmissions over the available wireless cross-operator networks.
Its distributed architecture ensures system robustness against node failures and
a low additional round trip time of less than 9 ms in our tests. Complemen-
tary control mechanisms provide a connection-specific trade-off between low
latency or high efficiency. Furthermore, a novel IP mapping approach reduces
per-packet overhead to only o to 4 bytes though address multiplexing, while a
new retransmission trigger optimizes TCP performance by up to 64% addition-
ally transmitted packets in our tests in environments with sparse network avail-
ability. We propose a concept to integrate the long-term transmission planning
as well as the adaptation algorithm into the MOVENET architecture to provide a
full system design that facilitates strategic data transmission for mobile nodes
using heterogeneous wireless networks.

The proposed design improves the perceived transmission quality for mobile
nodes through the strategic exploitation of network resources, addressing expected
future resource bottlenecks of mobile networks without their modification.

1.4 THESIS STRUCTURE

In the next two chapters, we provide selected fundamentals to simplify under-
standing of the scenario characteristics and the developed time-network selection
and discuss relevant related work, detailing the scientific research gaps. In Chapter
4, we present our novel transmission rating model and the design of our heuris-
tic approach Joint Transmission Planning (JTP) for explicit time-network selection.
We evaluate its performance and compare it to existing concepts. To investigate
the robustness of JTP against prediction errors, i.e. environmental changes, we
create and apply prediction error models for the vehicle scenario in Chapter 5.
Subsequently, we present the design of our adaptation approach, which ensures
resilience against identified kinds of prediction errors. Finally, in Chapter 6, we
present our designed protocol and architecture MoOVENET: Mobility Management
for Vehicular Networking. It follows a distributed design and drives strategic trans-
mission planning towards real systems. Thus, it composes all aspects of the pre-
sented approach in a single system design, targeting improvement of the vehicle
user’s perceived transmission quality.
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FUNDAMENTALS

This dissertation focuses on the optimization of the vehicle Internet connection
using heterogeneous wireless networks. To give a background about the environ-
ment under optimization, we present an overview about current and approaching
technologies, systems and services of connected vehicles as well as network tech-
nologies. In the last section of this chapter, we provide selected basics on optimiza-
tion to simplify understanding of Chapter 4 on transmission planning and Chapter
5 on transmission plan adaptation.

2.1 CONNECTED VEHICLES

Vehicles services profit from external information beyond in-vehicle sensing capa-
bilities. An early adopter of this idea is the FM Radio Data System (RDS) based
Traffic Message Channel (TMC) [61], initially designed in 1986 and deployment in
Germany in 2005. It employs a 60 bits/s broadcast channel via radio stations to
distribute up-to-date traffic information, used to enhance vehicle navigation. With
the rise of bidirectional mobile communication, the vision of connected vehicles
emerged early, for example, with the project SOCRATES (1991) [37] demonstrating
basic information services using cellular radio. Faster data transmissions with 2G
and 3G networks increased the speed of development and projects as CVIS (2007)
[120], introducing Traffic Telematic services to support the driver with personal-
ized up-to-date information.

Past and ongoing research projects on connected vehicles, e.g. SImTD (2009)
[193], DriveC2X (2011) [54], CONVERGE [45] (2013) and IMAGInE (2016), focus
mainly on safety, e.g. hazard warnings as electronic brake light, and road effi-
ciency services [180, 36], e.g. green wave assistance or crowd-sourced map data
[31]. They focus on the ad-hoc technology 802.11p [96] or hybrid communication
together with cellular networks. In contrast, the development in series pushed sys-
tems towards implementing services as unique selling points, integrated into the
infotainment system [75, 211, 47, 24, 205]. Typical examples are dynamic naviga-
tion incorporating up-to-date information, music streaming or firmware updates.
These services either support the driver, simplify vehicle maintenance or improve
the comfort and convenience. Unlike the services of systems in the presented re-
search projects, they do not rely on other vehicles and show effects on demand,
i.e. can be triggered actively from the user. Since most of these services are not
time-critical and focus on providing limited information, the requirements for the
Internet connection for today’s systems are quite low and can usually be satisfied
by existing mobile networks.

Considering, in particular, future highly automated driving functions, we expect
an essential extension of the deployed service types by always active information
update processes, enriching the sensed environment with external data [102, 104]

While connected
vehicle research
projects focused
mainly on the safety
and traffic efficiency,
series development
pushed personalized
connectivity services
as unique selling
points into vehicles.
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Internet access in
the connected vehicle
scenario contrasts
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in order to improve automated driving reliability and efficiency. As the vehicle
occupants do not have to focus on the driving task anymore and can spend their
time as desired [140], this service extension will be accompanied by a substan-
tial increase of common Internet service usage [58], raising the motivation of this
dissertation.

2.2 NETWORK ENVIRONMENT

In this section, we present different wireless Internet access technologies that con-
nected vehicles may use and highlight their different characteristics to clarify the
advantages and disadvantages of their use in heterogeneous Internet access.

2.2.1 Mobile Cellular Networks

Broad coverage and varying QoS characterizes mobile cellular networks, depend-
ing on available technology at the current location and network load [166]. In par-
ticular, varying QoS characteristics originate from their grown structure. Mobile
network operators built up those networks over the past three decades, improv-
ing them gradually with new technologies to provide mainly higher data rates.
While today 2G networks are nearly ubiquitous with a throughput of only a few
hundred kbits/s for data transmissions and high latency of 300-1000ms [70], the
targets for 3G, 4G and 5G are usually providing 10 times higher throughput and
half the latency compared to the predecessor technology. Accordingly, for current
LTE networks targeting 4G, the throughput reaches in practical systems usually
about 50-600 Mbits/s [20] while latency is about 30-7oms [106]. As the goal of
mobile network operators is the maximization of refunds from their investments,
they tend to improve network quality preferably in areas with a high population
density. This way, most users can profit from those investments at the same time.
Since this strategy is favorable for both, network operators and the customers, the
strategy is reasonable. However, there is a backside of the medal for the connected
vehicle scenario. Street networks interconnect areas with high population densities.
Therefore, they lead mainly through areas of low population density. Focusing on
the motivational scenario, future occupants of highly automated vehicles will es-
pecially demand Internet access for mobile office or entertainment during their
time on motorways because those sections provide the most comfortable travel
characteristics with low acceleration.

According to this, demand for Internet access in the connected vehicle scenario
contrasts with today’s mobile network coverage. Limited high data speed network
resources are provided in many regions using the LTE 8ooMHz band, delivering
throughput of 50MBits/s shared from all clients for a covered area with a range up
to 10km. Furthermore, the monetary cost for transmission has to be considered as
an important factor for network users, since the data amount of high speed data
traffic is usually contractually limited.
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2.2.2  Dedicated Short Range Communication

In contrast to mobile networks, Dedicated Short Range Communication (DSRC)
[96] is a WiFi-based vehicular ad-hoc technology with the goal to exchange infor-
mation between vehicles as well as with the infrastructure. DSRC is allocated in the
5.9 GHz spectrum, covering seven dedicated channels in Europe, each with 10MHz
bandwidth for 6-12 Mbits/s data rates each. Furthermore, the standard proposes
to use the close-by unlicensed WiFi spectrum in the 5.8GHz range. According to
the European ETSI ITS-G5 standard [68], the dedicated channels are regulated in
their use as summarized in the following listing.

o ITS road safety (G5A): one channel for control and basic safety, two channels
for further safety services

o ITS non-safety applications (G5B): two channels, in particular for road traffic
efficiency enhancement

e Future ITS applications (G5D): reserved for future use

This WiFi-based technology is optimized for high robustness, low latency of less
than 30ms and longer ranges to the expense of lower data rates. It transmits mes-
sages usually in broadcast mode. Furthermore, Road Side Units (RSU) serve for
exchanging information with service providers and may especially be located at
road junctions and highly frequented areas. Different standards propose protocols
for IP packet transmission via 802.11p networks. The European version is known
as GN6 standard [67], transporting IPv6 packets via the GeoNetworking protocol
[66] with the option to use multi-hop communications. In contrast, a competing
architecture Communication Access for Land Mobiles (CALM) [101] for 802.11p
provides a low-overhead transport protocol implementing single hop communica-
tion, designed to support unicast IP transfer. Hence, we can assume that 802.11p
may be used to transport IP packets in the future.

The planned deployment pattern of RSUs contrasts from this of mobile networks.
Instead of improving quality in areas of high population density, RSU networks
are especially built up to support vehicular traffic safety and efficiency and will
therefore be placed in areas of high traffic density, including motorways.

We can conclude that DSRC and mobile networks will complement each other
in spatial coverage as well as communication characteristics, providing Internet
access with lower latencies but lower throughput for potentially lower monetary
cost.

2.2.3 Consumer WiFi

Consumer WiFi is designed for considerable high data rates within an unmanaged
channel. Different standards share two spectra in the 2.4 GHz and 5.8 GHz region.
Robustness and range are subordinate design goals. Transmission is unicast-based
between the station and a mobile client, which allows the two entities to negotiate
on data rates for higher robustness to optimize for transmission speeds in different
situations.

A seasoned standard is 802.11g, which can reach gross data rates of up to 54
MBit/s in the 2.4GHz frequency region and is already widely replaced by the faster
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802.11n [95], which can couple two channels and reach theoretical data rates of up
to 150 MBit/s. Even though it is usually not implemented in most devices, MIMO
techniques can even quadruple this speed. New devices integrate transceivers of
the 802.11ac standard [97], using the 5.8 GHz band. It is can couple up to 8 channels
to reach a data rate of up to 867 Mbit/s. Usually, devices implement 3x3 MIMO,
arriving at a gross speed of up to 1300 Mbit/s. Furthermore, beam-forming is a
major subject of the 802.11ac specification, providing high data rates even at higher
ranges, which is favorable for the connected vehicle scenario.

An upcoming WiFi standard is 802.11ah [98], which — in contrast to the previ-
ously named — uses a goo MHz spectrum. It is designed for the Internet of Things
and therefore focuses on supporting high device numbers and low energy con-
sumption. A similar approach is followed from the LoRa-Alliance [136]. They spec-
ified a WiFi technology in a similar band with similar goals. They might be used
to transmit small amounts of delay-tolerant data via wide ranges.

2.2.4 Short-Range Network Connectivity Duration

In Table 1, we present typical connectivity durations in seconds for passing short-
range networks, e.g. WiFi and DSRC, with a given speed [184], derived from pass-
ing the diameter of a circular covered area. Selected ranges are based on short-
range network measurements of Gozalvez [81]. Considering a default highway
scenario with a vehicle speed of 130 km/h and an access point (roadside station)
range of 400 meters, we receive a theoretical duration of 17.09 seconds for a con-
nection of a passing vehicle.

Table 1: Connection duration in seconds of a vehicle passing a short-range access point

APrange 50m 100m 200m 4oom 8oom 1500 m

sokm/h 556 11.11 2222 44.44 8889 166.67
80km/h 342 694 1389 2778 5556 104.17
100 km/h 278 556 11.11 2222 4444 < 83.33
130 km/h 214 427 855 17.09 34.19  64.10
180 km/h 155  3.09 6.17  12.35 24.69  46.30

2.3 CONNECTIVITY PREDICTION

Connectivity planning methods, as investigated in this dissertation, require a pre-
diction of future available network resources, relying on node mobility. Hence,
both have to be predicted. For mobility prediction of vehicles, we assume routes to
be planned and known, especially in the scenario of future autonomous vehicles.
In the case of an unknown destination, algorithms can estimate a most-probable-
path [33, 34]. Assuming that vehicles tend to follow main roads and head towards
a persistent direction, or re-use same routes over time, these algorithms estimate
correctly in most cases. Using crowd-sensed probe vehicle data, traffic light timing
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and other methods [195, 46, 179, 110, 155], the vehicle’s velocity along the route
can be estimated as well.

To this end, employing the time-location estimation, vehicles can derive their
prospective network availability and characteristics using connectivity maps [166,
154, 107, 103], covering a mapping to each location of network availability, technol-
ogy and performance indicators. Connectivity map creation might be improved
using advanced network monitoring mechanisms [202, 177, 178]. Since these maps
cover average long-term information, it is reasonable to enhance them with short-
term prediction. Proven techniques are summarized from Bui et al. [27] and include
geographic and temporal pattern recognition of network load from probing data
or network provider data [186], parameter gradient analysis [153] and more. The
techniques consume information from various sources, and their combination may
strongly improve prediction. The prediction provides a base for the algorithms in-
vestigated in this dissertation but is out of its scope because, as presented, there
already exists a variety of advanced methods that probably provide sufficient qual-
ity, especially when applied in a combined manner. In Chapter 5 we even evaluate
the impact of prediction errors on our algorithms and derive indicators for insuffi-
cient prediction quality.

2.4 CONSTRAINED OPTIMIZATION

Transmission planning approaches developed in this dissertation represent strate-
gies, which optimize the developed transmission rating functions including con-
straints. Therefore, we give a brief overview about constrained optimization in this
Section. Optimization techniques target to minimize a cost function or maximize
a utility function, which assesses the quality of a result. Constrained Optimization
Problems (CSP) additionally employ constraints that declare certain regions of the
solution space as infeasible.

An exhaustive assessment of all solutions always leads to the optimal result
but requires much time. Hence, methods like Branch&Cut [147] employ induction
techniques to detect regions, which cannot contain results better than an already
known solution. It is the art of optimization to find clever methods, which dis-
cover favorable regions fast and find their desired extrema. In our algorithms, we
especially employ search-based methods. Two extreme approaches are depth-first
search [204], exploring a single path and selecting in each step always the oppor-
tunity which appears to be the best, and breadth-first search [28], exploring all
paths at the same time, representing an exhaustive approach. Depth-first search
converges fast to a probably good solution without checking for other options. In
contrast, breadth-first search explores each option, mimicking exhaustive assess-
ment, which always leads to the best solution but requires much more time. It is
the art of optimization heuristics to find a way in between, exploring the proba-
bly best paths by selecting an appropriate search order. Accordingly, optimization
techniques cover always a trade-off between solution quality and execution time,
i.e. whether to explore first in width or first in depth.

A popular heuristic is A* [89], which employs a quality estimation from the cur-
rent explored state to the final solution. It adjusts the search order, deciding which
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path to continue exploring, taking the already explored part and the heuristic esti-
mation for the remaining part into account. However, for many optimization prob-
lems, the quality of the solution space regions cannot be estimated properly. Hence,
common approaches like tabu search, simulated annealing, genetic or evolutionary
algorithms [42] use controlled randomization to explore the solution space, statis-
tically finding regions with better extrema. A higher randomization or systematic
exploration extends the search breadth and increases the probability to find a re-
gion with a better solution while a lower randomization leads to faster conver-
gence, mimicking depth-first search in following only close-by paths with a higher
probability to reach a local minimum. In particular, for constrained methods, it is
beneficial to assert the feasibility and to expect the quality of alternative paths to
select from. This method is called forward-checking and avoids the costly necessity
to revert a search step in case of constraint violation, implementing an essential
speed-up technique for search algorithms. Conclusively, the design of optimiza-
tion approaches require, firstly, an analysis of the solution space characteristics to
select the appropriate algorithm, secondly, the development of problem-specific
heuristics to improve the search order and, thirdly, a trade-off decision between
convergence speed and solution quality to decide for the exploration method and
breadth.



RELATED WORK

Selecting the right network improves the perceived performance of the user, based
on Quality of Service (QoS) satisfaction. In the following, we present the state-of-
the-art of two aspects in this field. Firstly, we discuss the classical network selection
and identify the strengths and shortcomings of existing approaches. Secondly, we
present the still young research area of transmission time selection, which aims
at transmitting data at a point in time when surrounding network resources are
adequate. Even though both aspects have a similar goal, the work is firmly bisected.
However, both try to improve the Internet connectivity of the client, exploiting data
traffic distribution in one of the two dimensions: networks or time. Finally, we
analyze existing mobility management approaches, which allows a client to move
data connections seamlessly from one network to another. Hence, the presence of
mobility management is a prerequisite for efficiently applying network selection.

3.1 NETWORK SELECTION

In many practical systems, network selection is realized using simple handover
strategies [2] without a sophisticated network selection considering the user’s
needs. An overview of such simple applied mechanisms is presented by Park et
al. [162], presenting simple mechanisms based on signal strength, distance, move-
ment extrapolation and historical mobility patterns. However, modern network
selection mechanisms go far beyond this, reflecting strategies how to satisfy the
needs of the clients. The superiority of these methods is shown by Wang et al.
[212]. Hence, modern network selection targets improving the access quality by
distributing data traffic selectively over multiple networks, taking the current net-
work environment and application requirements into account. We identify four
important design criteria in which existing network selection approaches differ:

C1. Controller location: Network-controlled, network-assisted, and user-controlled
network selection.

C2. Rating function design.

C3. Single-homed or multi-homed approaches.

C4. Information sources about the network environment.

To identify research gaps, we discuss approaches in the following, which cover the
most advanced key concepts in this area of network selection research and analyze
their strengths and weaknesses according to these four criteria. We illustrate the
criteria describing the network selection approach landscape in Figure 1. It shows
a network environment of two network operators, one providing cellular network
Internet access through cells A and B, and the second providing WiFi Internet
access through the hotspots C and D. Two vehicles driving along a road use their
resources, from which the right vehicle is single-homed and the left vehicle is

13



14

Network-controlled
network selection
approaches target
optimization from

the network
operator’s point of
view. They neglect
multi-homing and
specific needs of
their clients.

RELATED WORK

Network Operator 1

External Network
Information
Services

Network
Vstatistics

Client-controlled

Select NO1 or NO2? ~~ Network-assisted
Network , ‘ Select A, B, (C or D)?

Exploration

Multi-homing

V" | "‘ .'."" V
Rating function Select C or D? o
Network

Assess selection
opportunities Network Operator 2

Figure 1: Network selection landscape with highlighted identified criteria. C1: Controller
location (blue). C2: Rating function (gray). C3: Multi-homing (green). C4. Net-
work information sources (yellow).

multi-homed and, able to transmit data via two networks at the same time, as
identified by design criterion C3 (green). Possible controller locations according to
C1 for network selection are visualized as blue boxes, located either at a vehicle
or a network provider. The rating function design is not covered in the figure but
mentioned as C2 (gray), whereas network information sources according to design
criterion C4 are marked yellow. We define the following sections following to the
first design criterion C1 and highlight the analyses on the other three criteria in
the text.

3.1.1  Network-Controlled and Network-Assisted Network Selection

Network-controlled approaches, usually designed from the point of view of network-
operators, see the clients as indivisible network traffic producers. Their goal is to
map clients to their own access points or cells in a way, that available network
resources are used most efficiently [8, 9, 21]. They focus on their own provided
network resources, as exemplified in Figure 1 in the upper and lower blue box
(C1), employing top-level knowledge from network statistics (C4) about connected
clients to maximize resource provisioning [197, 115]. However, network-controlled
approaches suffer from two significant drawbacks. Firstly, network selection is re-
stricted to their own resources, ignoring cross-operator multi-homing (C3). Sec-
ondly, they ignore application-specific transmission requirements in their deci-
sions, focusing solely on throughput maximization for their clients. However, as
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detailed in the following paragraphs, efficient network selection should consider
these requirements in their rating functions (C2) to exploit the full potential of
available networks. Therefore, network-controlled approaches are out of the focus
of this dissertation.

In network-assisted approaches, clients select their network based on received
information about current network characteristics (C4). For Information gathering,
different ways have been standardized, e.g. the Access Network Discovery and Se-
lection Function (ANDSF) [69] from ETSI 3GPP or the IEEE Media-Independent
Handover Information Service (IEEE 802.21 MIH) [85]. These standards define in-
terfaces to request information from central and decentral sources, i.e. an exter-
nal information server or the network operators, visualized as yellow clouds in
Figure 1. Many approaches propose to employ these information services in the-
ory [8, 41, 145, 49, 188], while practical approaches ignore them due to missing
databases and high overhead, which is tried to be avoided.

An extreme case for using minimum information is the approach of Tian et
al. [207], in which clients and networks periodically exchange a QoS satisfaction
factor, which influences a probabilistic trigger of clients to re-select their network.
In the case of a low QoS satisfaction of many nodes in an area, a probabilistic
network re-selection is triggered for local nodes, even for satisfied ones, in order
to re-distribute network resources until better overall satisfaction is reached. The
selection itself stays in full control of the client, but the trigger decision is assisted
from the networks and fosters across-client optimization. As exemplarily shown
by Tian, network-assisted approaches can help optimizing network performance
of clients by the introduction of a macroscopic view similar to that of network-
controlled approaches without limiting the scope to network resources of a single
provider.

An approach, in which the network operators takes an active role (C1) is pre-
sented from Khan et al. [112], integrating two relevant components: Firstly, Khan
diversifies data traffic of clients by introducing traffic classes with individual QoS
requirements, employing the ITU-2000 traffic classes: conversational, streaming,
interactive and background, which today is the best practice in this field. To rate
their transmission quality (C2), he applies a utility function, considering for QoS
requirement satisfaction as well as monetary cost. Secondly, the authors introduce
multi-homing (C3) into network selection, which allows applications with contrary
QoS requirements to transmit data in parallel using different networks. Khan em-
ploys a network-assisted selection, based on reverse auctioning, in which, first,
network resources are offered from network operators, providing network infor-
mation according to C4, second, clients publish their transmission requirements
(C2) and, third, network operators (C3) bid for being selected for their transmis-
sion. Even though the approach presents the reverse auctioning mechanism as the
main contribution, we consider the developed transmission rating model, based on
satisfaction of application QoS requirements, as well as employing multi-homing,
as more important design milestones.
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3.1.2 Client-Controlled Network Selection

Client-controlled network selection approaches focus on the specific data traffic of
the client and available networks with their characteristics. Simple client-controlled
network selection schemes assume in their rating functions (C2) that all users want
to send as much homogeneous data as possible. This simplification allows investi-
gation of strategies, in which all users can get in total the most throughput from
the available networks. An example is the approach of Malanchini et al. [142],
presenting a game theoretic approach, and showing that certain dynamics in dis-
tributed network selection algorithms are required to converge to a Nash Equilib-
rium, which equals the optimum solution. A very similar approach was presented
by Zhu et al. [223], using Bayesian evolutionary games.

However, models focusing on dedicated QoS requirements of applications dom-
inate current research activities. Even though many authors emphasize the im-
portance of a well-defined rating metric (C2), they fall back to simple models for
evaluation [55, 172, 190, 212, 217, 223]. They present the dynamics of their network
selection approaches without investigating sufficiently how the discovered dynam-
ics rely on the design of their rating model (C2). Indeed, this relation is substantial
as shown by Wang et al. [214]. Most authors agree that simple linear rating models
are sufficient to select the best matching networks, providing responsive decisions.
Therefore, basic Multiple Attribute Decision Making (MADM) algorithms like Sim-
ple Additive Weighting (SAW), Gray Rational Analysis (GRA) and Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS), compared in [212, 39],
dominate the solution landscape and show good results. They apply linear weight-
ing and normalization to multiple attributes. GRA and TOPSIS additionally apply
a direct comparison between the different results to analyze the significance of the
performance surplus. Using these mathematical models, it remains a key challenge
to select a proper parameter set and to design adequate utility models.

One key model parameter characteristic in network selection is application QoS
requirement satisfaction, linked to Quality of Experience [111, 72]. The user expe-
riences the performance of the Internet connection only implicitly through appli-
cation behavior. Whenever the applications react as expected, the characteristics of
the Internet connection have been sufficient. Therefore, only adverse effects, i.e. a
stalling video through application requirement violation, influence the perceived
quality of the Internet connection. Hence, it is reasonable to apply a satisfactory
metric. As soon as all performance requirements are satisfied, a performance sur-
plus has no measurable benefit [160].

With good reason, many approaches use such a satisfactory metric in their rating
models (C2), e.g. [161, 190, 86]. However, most also keep their models too simple to
reach applicability of their rating metrics for general data traffic (C2). In contrast,
they focus on a subset of data traffic, e.g. video data [129].

Considering the information source, according to C4, on which decisions are
based, pure client-controlled network selection algorithms have to explore net-
works themselves, illustrated by the yellow box in the center of Figure 1 and have
to cope with limited information. A simple method from Senouci et al. [190] in-
troduces belief functions, which reduce the weights of different criteria according
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to the information quality in their MADM-based approach. Hence, networks for
which a more accurate characteristic prediction exists are preferred over others.
Although this leads to better predictable perceived characteristics, the method un-
derestimates the potential from using unknown networks. An approach with the
same goal is given in by Taleb et al. [203], who additionally propose to access the
network information service ANDSF, as explained above.

A method to encounter the issue of incomplete information (C4) about networks
is presented by Wu et al. [217], employing online learning algorithms based on a
multi-armed bandit model. Selecting an arm corresponds to selecting an available
network. After selecting a network, the algorithm uses it for at least some test sam-
ples, probing its quality, updating its reward functions for this network and, again
probabilistically selecting a network based on the expected reward. This algorithm
can adapt well to changing environments and changing data traffic. However, each
environment change leads to an exploration phase of a few hundred milliseconds
duration in which handover processes impair the transmission quality. Du et al.
[56] present a similar approach using Q-learning, which seems to converge slightly
faster.

3.1.3 Conclusions

Network-controlled network selection strategies optimize the performance of man-
aged networks efficiently and are common practice. However, they exclude net-
work resources from other operators or non-managed networks, e.g. private WiFi
access points, from network selection. Hence, we focus on user-controlled strate-
gies. Moreover, we do not consider the two as competing approaches, but rather as
complementary ones, with client-controlled strategies selecting between optimized
operator-networks.

Distributing data traffic over those managed networks improves the perceived
transmission quality substantially. We learned that the proper design of the rating
function, according to C2, is essential for network selection. Authors that compare
different selection strategies agree that increasing the level of detail for application
requirements in employed rating models leads to substantial benefits [142, 217,
214]. Especially a network selection, which relies on application QoS requirement
satisfaction, leads to advantageous decisions [16, 111].

Dealing with incomplete information about available networks, addressing Cj4, is
addressed in two ways: Firstly, exploring the network performance and, secondly,
accessing remote information, both improving the local information base. While
remote information can significantly decrease the need for inefficient exploration,
it might still fail in the presence of non-average data traffic conditions. Thus, ex-
ploration is required to react to sudden changes in the network performance. A
combination of both is useful. Accordingly, adaptive approaches seem to be most
promising, which use external information bases and, in extension, adapt the se-
lection based on actual environmental conditions.

Moreover, only a few approaches integrate multi-homing in their strategies, ad-
dressing C3. Enabling the access to multiple networks in parallel significantly
boosts the performance in application QoS requirement satisfaction, as shown in
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[112]. Hence, contrary requirements of different applications can be satisfied at the
same time using two or more networks in parallel.

Conclusively, related works identify critical design space parameters for network
selection strategies but barely focus on the underlying rating functions. For client-
controlled approaches, we consider satisfactory rating with a detailed application-
specific model as mandatory, while the presence of multi-homing provides en-
hanced selection opportunities. A similar combination was only considered in a
strongly network-assisted approach of Khan et al. [112]. In the next section, we dis-
cuss an additional selection component, which the presented approaches do not
examine at all: transmission time selection.

3.2 TRANSMISSION TIME SELECTION

For moving clients, the perceived network environment changes rapidly with their
location. Especially small and medium range networks get into and out of reach
frequently, while perceived characteristics of wide area networks change as well.

According to the idea of network selection, application dependent choice of net-
works is essential. Hence, for each delay-tolerant data transmission, a selection of
the transmission time is important as well, as discussed in the current section. We
identify two important criteria in which time selection schemes differ:

C1. Considered planning time horizon.
C2. Rating function design.

In the following, we discuss selected approaches that illustrate the current state-
of-the-art in time selection. Furthermore, we discuss their strengths and weak-
nesses regarding the criteria above.

3.2.1 Relevant Approaches

Bui et al. [26] improve video transmission through time selection using the mobile
network only. Hence, they present a video transmission framework, predicting the
future mobile network access of a client. Based on this prediction, they estimate
the point in time when to fill up buffers to optimize transmission cost. However,
they assume the cost to be anti-proportional to the current mobile network capac-
ity. Hence, clients should preferably transmit data when the network capacity is
high. They split the forecast model into a short term and a medium/long term
phase. For short term forecasting, they apply simple auto-regressive filters and se-
lect the parameters according to the user mobility. In contrast, the medium/long
term forecasting models take adjacent cells and movement into account. Hence,
they combine information from network exploration and external data sources to
estimate the network performance. As discussed in the previous section, we con-
sider this as a beneficial approach. Based on the network estimation, they propose
an algorithm that fills the video buffer when the network capacity is expected to
be highest. They state that large buffers help to make this method efficient because
they enable higher delay-tolerance of data transmission. Furthermore, they reach
a 30% cost gain over an algorithm that simply fills up the buffer whenever possi-
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ble. Even though Bui’s assumption that cost is lower when network capacities are
higher are hard to defend, the approach makes promising points. To clarify the
benefits, we analyze their approach using the findings of Lu et al. [137]. They pro-
pose an algorithm similar to that of Bui et al., sending data when network capacity
is high, aiming for decent video delivery. They extend the analysis by a multi-user
scenario. Focusing on the interplay of multiple users that compete for bandwidth,
they show that the presented strategy increases overall user satisfaction. Lu proves
that the approach statistically reduces critical load peaks, especially when there are
few network resources. This avoidance of critical peaks increases the probability
that application QoS requirements are satisfied at any time.

Indeed, the method leads to short high throughput bursts in high capacity net-
works. This transmission pattern has been identified as the most energy preserving
in the analysis of Lee et al. [132]. It allows the client to put its interfaces to sleep
in transmission pauses and, hence, to save energy. In contrast to Bui, he considers
using also WiFi networks for data transmission. In fact, he considers a scenario
of traveling in the subway of Seoul, where mobile networks are available. At each
station, there is additional free WiFi available. This scenario does not need a so-
phisticated prediction strategy because its time schedule is deterministic. Using
optimal offloading policies with large buffers, Lee reaches up to 63% cost reduc-
tion through WiFi offloading and conserves up to 42% of energy for communica-
tion. This performance gain shows that with an accurate knowledge about future
network characteristics, delay-tolerant data transmission can be efficiently moved
to better suited time and networks.

Moreover, the idea to use WiFi to complement the Internet access is discussed in
the following approaches. The framework Wiffler from Balasubramanian et al. [15]
follows this goal to offload delay-tolerant data. The study unveils two interesting
insights: Firstly, WiFi complements 3G availability, highlighting the importance to
use both in a smart way. Secondly, for the vehicle use-case, about half of the data
traffic can be offloaded to WiFi using a maximum delay-tolerance of one minute.
A detailed analysis of the impact of delay-tolerance on the offloading ratio and
the energy saving is presented in [133] by Lee et al. They conclude that 64-87% of
data can be sent via WiFi when offloading with a delay of up to 6 hours. They
expect an energy saving for transmission by 50-75%, confirmed by other analysis.
Energy saving in delayed offloading was also considered Ra et al. [168] including
the factor of network data rates in deadline calculation.

These approaches confirm that transmission characteristics can be improved us-
ing time selection. Furthermore, the benefit increases with the magnitude of de-
lay for offloading. Using larger buffers in video delivery means that data can be
prefetched for a longer duration. In fact, many approaches treat the tradeoff be-
tween monetary cost and time, as presented in the following. Waiting longer for
data increases the potential for delayed offloading. While bufferable video data is
delay-tolerant, this does not hold for much other data traffic. Waiting for transmis-
sions to complete, hence, is uncritical for, e.g., bufferable streams and background
data. In contrast, the user is impatient for other data transmissions, e.g. interac-
tive data requests or conversational traffic. The framework AMUSE [99] from Im
et al. exploits this potential, characterizing data traffic and asking the user for

19

Transmission in
bursts using
high-throughput
networks or WiFi
networks reduces
transmission time to
save energy and
releases resources
during phases with
low network
performance for
delay-sensitive
transmissions.



20

Time selection
approaches focus on
delay-tolerant data
only, ignoring mixed
data traffic. Network
selection is reduced
to WiFi-preferred
and satisfying
transmission
deadlines.

There is a research
gap for a combined
strategy treating
delay-tolerant as
well as
delay-sensitive
transmissions,
exploiting the
benefits of network
selection and
transmission time
selection at once.

RELATED WORK

feedback. The approach plans transmissions for a complete day, adapting the plan
gradually. They stress the finding that efficiency of these approaches rises with
higher delay-tolerance and more delay-tolerant data. Thus, their approach focuses
on identification of the magnitude of delay-tolerance of each data transmission.
Therefore, the authors do a survey and derive parameters about the willingness-
to-wait for different application data. Consecutively, they derive a model for the
user’s willingness-to-wait of each application, incorporating on data amount and
preference. These model terms are used in a linear MADM rating function, as
explained in the previous chapter. Applying their approach, they reach a cost re-
duction of up to 36%. The limiting factor willingness-to-wait is also identified by
other researchers. To increase the offloading potential, Cheng et al. [40] propose to
offer incentives for data offloading. Hence, they want to convince the users to wait
longer for data transfers, especially during network capacity shortages. They sum-
marize different strategies, ranging from extending high-speed data contingents in
mobile networks to monetary cash backs [224].

The presented approaches show that a significant amount of data can be de-
layed for later transmission via WiFi. They follow, like many other researchers,
one assumption: WiFi is always the best. However, this is not the case. Especially
in congested network, the service quality might decrease significantly and not al-
low applications to transmit data to their satisfaction. Cheung et al. [41] present
an approach, claiming to be the first ones incorporating QoS requirements of ap-
plications into the delay decision. However, they limit their QoS rating function to
one single parameter: transmission deadlines. Remembering the key attributes of a
network selection algorithm, as stated in the previous section, Cheung cannot hold
their promise. Nevertheless, we see Cheung’s claims as a first step in the right di-
rection. It considers that WiFi is not always the best option even when available. A
similar conclusion from analyzing deadlines is drawn by Mehmeti et al. [144, 145].
However, they also limit the network selection decision to holding a deadline.

3.2.2  Conclusions

The presented approaches clarify the potential of selecting the time for data trans-
mission. Even when only a single network is available, a good temporal transmis-
sion pattern can improve the performance, minimizing waiting times and saving
energy. Most approaches conclude that the benefits of temporal offloading rise
with the amount of data to be offloaded and the limit of the potential offloading
delay. However, the full potential of time selection evolves when considering addi-
tional networks and client mobility. The continuous location change of the moving
client comes along with a rapid change of the perceived network environment.
State-of-the-art delayed offloading approaches do not exploit the full opportuni-
ties. They aim to offload as much data as possible to WiFi, disregarding application
QoS requirements. Hence, they design unbalanced rating functions, which reflect
indistinct goals yielding to simple WiFi-preferred strategies.

To the best of our knowledge, nobody did focus on creating rating models or
transmission strategies, which completely integrate the advantages of both, trans-
mission time selection and network selection, in order to exploit the full potential
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for data transmissions in heterogeneous wireless networks. We target this research
gap in Chapter 4.

3.3 MOBILITY MANAGEMENT

To realize smart data flow distribution over networks and time, a network protocol
is required that is able to shape data traffic and route it flexibly. These challenges
are treated in the research domain of mobility management. To highlight the dif-
ferences in state-of-the-art mobility management approaches, we do not focus on
dedicated mechanisms but stress particular design decisions in them. Most ap-
proaches follow similar patterns and peek out only in a dedicated design decision.
In the following, we describe the concept of mobility management highlight out-
standing design decisions of selected protocols. Thus, we present the highlights
and shortcomings of more than 15 years active and still ongoing mobility manage-
ment protocol research and condense them into an easy to grasp discussion.

3.3.1 Problem Statement and General Concept

Mobility management pursues continuing network connections, even tough the
point of presence of the client changes, e.g. when it connects to another network.
This is called a handover. The essential problem in handover processes is the
change of the client’s IP address in the network layer. Transport layer protocols
like TCP and UDP rely on the IP address, storing them locally as a reference while
the connection is alive. In fact, they use the pair of the source and destination IP
addresses to identify the connection. What happens when an IP address changes?
We assume the client to change its IP address as a result of a handover. All network
packets are sent now via the new point of presence and therefore carry a new IP
address. The packets with a new IP address arrive at a server, which tries to iden-
tify to which connection the packets belong. Therefore, it compares the source and
destination IP address of the packet to those of the active connections in its local
memory. However, it is not able to find the new pair, since the source IP address
has changed. Accordingly, it discards the network packet. Consecutively, the con-
nection runs into a timeout and breaks. To continue the transmission, the client
has to re-initiate the connection.

This problem originates from the double role of IP addresses. IP addresses serve,
firstly, as a so-called locator. They identify the location, i.e. the point of presence,
of the client and are used for packet routing. Secondly, at the same time, the IP
address serves as an identifier. It is used to identify the client, i.e. its active transport
layer connections.

The general solution for this problem is to introduce a new identifier for active
connections, in order to separate the roles and let the IP addresses serve as locators
only. The mobility management protocol is then in charge to provide a dynamic
binding between locator and identifier, as illustrated in Figure 2. In the follow-
ing, we analyze how mobility management achieves this and how certain design
decisions affect their non-functional properties. The following state-of-the-art anal-
ysis is partially based on our publications A Concept for Vehicle Internet Connectivity
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Figure 2: Mobility management general concept

for Non-Safety Applications [184] and MoVeNet: Mobility Management for Connected
Vehicles [182] but covers extensions and modifications.

3.3.2 Direct and Proxy-Based Approaches

An essential difference of mobility management protocols is whether they use prox-
ies or not. Hence, we explain different proxy schemes and their advantages and dis-
advantages in the following. Proxy schemes use one or more intermediate nodes
for packet forwarding, while control packets are only sent to the proxy. Using
proxies introduces protocol transparency, round trip times and handover latency.
In contrast, direct handover schemes set up a straight communication between a
mobile node and its communication partner. Data as well as control messages are
exchanged only between these two entities. In the following, we discuss the three
options for direct, single-proxy and multiple-proxy mobility management schemes.
We illustrate the three schemes in Figure 3.

3.3.2.1  Direct Mobility Management

In direct mobility management schemes, client and server exchange data and con-
trol information using the direct route. Thus, both entities have to implement the
mobility management protocol in order to use the mobility features. Accordingly,
the feature is restricted to those servers in the Internet, which implement the mod-
ified network stack. The protocol is not transparent. It cannot be used from nodes
using a conventional Internet communication stack. After the connection setup,
the protocol context must be established to start protocol operation. This often
requires several round trip times and forbids using the protocol right after con-
nection start. Accordingly, using direct mobility management protocols is only
beneficial for heavy tailed data connections that persist for a longer duration [156].
Furthermore, each control signaling requires at least one round trip time for re-
quest and acknowledgment. In addition, setting up the protocol context for each
individual connection creates a certain overhead. However, the big advantage of
the direct protocol scheme is that it does not rely on additional entities. Therefore,
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Figure 3: Direct mobility management (left) versus proxy-based mobility management
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they are simple to introduce for dedicated clients and servers even though they
lack compatibility to legacy servers in the Internet. Relevant protocols of direct
mobility management are Multipath TCP [73], Host Identity Protocol (HIP) [151],
Shimé6 [159, 170, 169] and Multipath SCTP [191].

3.3.2.2  Proxy-based Mobility Management

In contrast to direct mobility management schemes, proxy-based mobility man-
agement introduces one or more intermediate nodes into the communication path,
resulting in two essential advantages. Firstly, a proxy can provide protocol trans-
parency. The proxy hides the mobility management protocol operation and con-
verts the data flow into a conventional connection towards legacy nodes. Hence,
the mobile node can communicate with all servers in the Internet. This design is
prevalent in Mobile IPv6 [164]. However, the idea to reach protocol transparency
through a proxy has also been applied to Multipath TCP derivatives [158, 171].
Due to adding a second proxy, the mobility management protocol can even be
hidden from both nodes, the client and the server. In this case, the intermediate sys-
tem manages client mobility completely. Protocols following this concept are Proxy
Mobile IPv6 [83], the Locator-Identifier Separation Protocol (LISP) [71] or Mobile
IPv6 Network Mobility (NEMO) [48]. The first and second select the access points
as a proxy, identify the client within a managed network and update its association
at the proxy. Thus, the client is not involved in the handover process. Therefore,
the handover happens only between the access point and the mobility managing
proxy. Since they are interconnected with a backbone cable network, handover la-
tency is very low [129]. In contrast, the last approach is meant to manage a whole
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subnetwork at once. For example, clients in a train connect to a NEMO router. The
router acts as a Mobile IPv6 capable client managing the mobility and provides
persistent IP addresses to customers [38]. Accordingly, all three approaches signifi-
cantly reduce signaling overhead via the wireless link. Combining the approaches,
using Network Mobility for Proxy Mobile IPv6 schemes reduces overhead further
[100].

The second advantage of proxy schemes is a reduced handover delay. A han-
dover determines the switch of a client from one access point or cell to another. A
small handover delay enables fast reaction on sudden changes. During a handover
process, the client can usually not send or receive data. Hence, a short handover
delay is beneficial. In mobility management protocols, the handover delay is deter-
mined from the latency between the triggering and the executing node. To reduce
the handover delay in proxy schemes, the proxy should be as close as possible
to the triggering node. In Figure 3, we marked those lines in red and attached a
big blue arrow to signalize how proxies should move towards the triggering node
to reduce handover delays. An approach, which exploits the closeness of proxies
for handover latency reduction, is Hierarchical Mobile IPv6 [196]. It introduces a
second level of proxies close to the mobile node in order to reduce the distance
and, hence, the delay between them. As soon as the mobile node has traveled a
longer distance, the main proxy switches to a closer second level proxy to keep the
optimized distance small [194]. However, the performance of this approach is lim-
ited by the dominant delay over the wireless link. The above-mentioned approach
Proxy Mobile IPv6 takes this delay out of the signaling loop and, thus, reaches
significantly lower handover delays. However, handovers are restricted to the local
domain of the network operator [130].

Proxy servers create certain detours that increase the round trip times for data
packets. To reduce round trip times, proxies should be close to the ideal path to
the communication partner. We visualize this in Figure 3 using orange arrows, in-
dicating that proxies should in best case be located on the direct route between the
mobile node and its communication partner without introducing routing detours.
Direct handover schemes do not share these problems. Inspired by this fact, there
exist route optimization mechanisms, which omit the proxy use [11, 43, 91, 14].
However, this concept violates the transparency aspect and reduces proxy-schemes
to direct mobility management schemes. Therefore, they have been replaced by the
novel concept Distributed Mobility Management (DMM), as detailed in the follow-

ing.

3.3.2.3 Distributed Mobility Management

An upcoming trend for round trip time reduction arises from an ambiguity when
multi-homing is active, i.e. the client uses multiple network interfaces in parallel.
We visualize this ambiguity in Figure 4. The left side shows the single-homed case
of a client, served from a single network operator. The client communicates with
multiple servers. To reduce the packet detours for all servers in the same way and
additionally decrease handover latency, the proxy should be as close to the client
as possible. Accordingly, Mobile IPv6 proposes to use the first access router as a
proxy [164]. However, when using the networks of multiple operators at the same
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time, the picture changes as illustrated in Figure 4 right. For a single connection,
the proxy should be closer to the communication partner to reduce packet detours,
i.e. additional hops along the routes. Furthermore, the proxy should be close to
the used network operators” points of presence to the Internet to reduce handover
latency. Accordingly, the proxy location for each connection should be close to the
points of presence of the most used network operators and also close to the optimal
route to the communication partner.

To solve this ambiguity, the concept of Distributed Mobility Management was
introduced [226, 76, 150]. Instead of using a single proxy for all connections, each
connection may use a different proxy. The proxy selection can be made based on
the communication partner’s location and the expected used network operators
in order to reduce round trip times. Moreover, there exist two different manage-
ment methods of this distributed proxy architecture: Fully and partially distributed
management [78, 130]. In fully distributed mobility management, proxies have to
organize themselves and can share information with each other [63]. Each proxy
is able to provide the mobility management service alone. In comparison, par-
tially distributed approaches have an additional central instance, inspired from a
software-defined network controller, which acts as end-point for signaling traffic
and can organize the interplay of proxies [77].

3.3.2.4 Layer of Mobility and Handover Granularity

Mobility management protocols can be implemented on different network layers
[57], c.f. Figure 2. As marked in Figure 2 in the yellow box, mobility management
is usually managed within the network layer or the transport layer.

Application Many applications implement mechanisms to continue their oper-
Layer: ation after network failures, e.g. Skype, including a switch of the
network access. However, these mechanisms require running into a
timeout before they are able to recognize the change. Hence, this
kind of mobility management is not seamless. In addition, each ap-
plication has to implement and run the mechanisms on its own
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which creates redundancy. Therefore, we do not consider these ap-
proaches further.

The transport layer covers flow control and is, therefore, well suited
for mobility management. Flow control enables shaping of the traffic
during and after the handover. Moreover, all relevant information is
available in this layer, covering IP addresses and ports. This enables
routing of individual data flows via different networks and also flow
forking, which distributes packets of a single data flow over multiple
interfaces. Examples are Multipath TCP [73] and mSCTP [117, 14].
However, the disadvantage of these approaches is that they are re-
stricted to the one protocol. Managing not all data traffic introduces
a load balancing uncertainty already for the client side. This uncer-
tainty might not be relevant for handover itself only, but it conflicts
with the goal of this thesis: smart data flow distribution over net-
works and time.

Network Layer implements the Internet Protocol (IP) and forms the
so-called waist of the Internet. It covers all data traffic, reflecting a
significant advantage for mobility management. However, it does not
allow identification of individual data flows. Accordingly, Mobile
IPv6 approaches do not consider routing of individual data flows
via multiple different networks. However, this has been recognized
as an important feature. Extensions have been developed in [209],
extracting information from transport layer for flow identification.

Another way to control packet routing, which gains importance, is
Software Defined Networks (SDN). A controller optimizes forward-
ing rules for a network of ‘"dumb’ routers in order to optimize trans-
mission characteristics and balance loads over multiple data routes.
SDN can be applied to realize mobility management [113, 84, 76, 79].
However, SDN suits mainly for optimization within a controlled
network, as operators may not allow external control of their hard-
ware. Hence, it matches to network-controlled mobility management
schemes. SDN-based mobility management can reach high perfor-
mance in a completely controlled subnetwork, even without mod-
ifying the underlying architectures. This qualifies the solution for
intra-operator use.

3.3.3 Conclusions

Recent discussions within the area of 5G design brought a new focus in mobility
management towards heterogeneous access networks, motivating for low-latency
connections and mechanisms. These discussions resulted in new Distributed Mo-
bility Management (DMM) concepts, further enhanced by the control plane sep-
aration concept from Software Defined Networks. Current research in DMM fo-
cuses completely on network operator-controlled concepts, which permit lowest
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handover latencies and lowest overhead to the mobile node. However, these ap-
proaches ignore coupling of access networks beyond the managed domain, e.g.
complementary cross-operator use of multiple cellular access networks and WiFis.
A different research area for mobility management developed with the rise of
Multipath TCP (MPTCP). It focuses completely on enabling this complementary
network use but ignores the results from earlier mobility management research,
neither reducing handover latency or management overhead nor providing com-
patibility to all IP traffic or legacy backend nodes.

The automotive scenario reflects a clear demand for a concept, providing the
advantages of both approaches, firstly, enabling comprehensive mobility manage-
ment in multi-operator heterogeneous networks and, secondly, providing opti-
mized connection and handover characteristics as well as applicability to all data
traffic, even to legacy nodes in the Internet. To fill this gap, we propose our client-
controlled protocol Mobility Management for Vehicular Networking (MoVENET)
in Chapter 6, inspired from Distributed Mobility Management but independent
from operator entities of access networks, which integrates the demanded advan-
tages. However, we do not see it as a replacement of network-operator-controlled
concepts but as a complementary enhancement mechanism, providing mobility
management on a higher scale covering all IP access networks. Thus, operators
should optimize characteristics within their managed network as proposed from
existing DMM methods, while, on top of this, MOVENET glues managed as well as
non-managed IP access networks together, providing a comprehensive and flexible
Internet access for mobile nodes.
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STRATEGIC DATA TRANSMISSION

Data transmission for mobile nodes significantly benefits both from reasonable
wireless network selection and from selecting a proper transmission time, as shown
in the related work analysis in Chapter 3. However, their combination has not been
sufficiently considered. In particular for scenarios with high mobility, as the con-
nected vehicle scenario focused in this dissertation, a combination of both seems
promising, defining the objective of this chapter.

Existing approaches for network selection usually restrict their scope to the
present-available networks and present-available data flows, i.e. those that are
available at the current moment. Clients profit from distributing the data traffic
reasonably over the available networks. This leads to a network selection in which
for each application the requirements are tried to get satisfied in the best possible
way. However, the restriction of these approaches to present-available networks is an
arbitrary simplification. In contrast, scientific work on delayed offloading demon-
strates the benefits of selecting the proper transmission time slot for delay-tolerant
application data. However, these approaches restrict their network selection to sim-
plistic models, as WiFi preferred, and delay the data transmission, if possible, to
match the temporal availability of WiFi networks. Hence, both research directions
demonstrate an essential optimization potential for distributing the data traffic of
a mobile client over one dimension: networks or time. Nevertheless, to the best of
our knowledge, nobody combines both in a proper fashion. A detailed analysis of
the related approaches is given in the Sections 3.1 and 3.2.

The goal of this chapter is to design a joint time-network selection and to an-
alyze its effects on the perceived transmission performance, i.e. focusing on QoS
violations that lead to effects which are visible to the user, like a stalling streamed
video or long delays during a conversation. Therefore, we target the integration of
network selection into transmission time selection. To combine the two concepts
we, firstly, define a combined rating model, presented in Section 4.1. It general-
izes specific rating model components from network selection, covering classical
QoS parameters, and model components from time selection, like deadlines, and
extends them with a novel transmission requirement model that allows to treat all
data in a unified way. The transmission rating model represents our first main con-
tribution. Secondly, in Section 4.2, we develop a combined time-network selection
approach, which we call Joint Transmission Planning (JTP), defining our second
main contribution as a novel approach for explicit network selection integrated
into transmission time selection. It employs heuristics for flow prioritization and
network selection derived from the presented transmission rating model. For eval-
uation, we compare JTP to three predominant state-of-the-art transmission strate-
gies, employing the same heuristics for a fair comparison of the strategies. We
show in Section 4.3 that JTP delivers a robustly high performance of 87-91% of the
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scenario optimization potential, significantly outperforming compared approaches
by 7-25%.

This chapter is based on our publication Impact of Time in Network Selection [183]
and extends the therein presented work with model improvements and advanced
analyses. Note that the employed time selection relies on a prediction of prospec-
tively available resources. We exclude the effects of prediction errors in this chapter,
assuming complete information about future-available networks, their characteris-
tics and the application data to be transmitted over time. The impact of prediction
errors on transmission planning and ways to handle them are addressed in Chap-
ter 5.

4.1 TRANSMISSION RATING MODEL

Our Transmission Rating Model presented in this chapter assesses the perceived
transmission quality, which is a subset of the often employed Quality of Experience
(QoE). According to Reiter et al. [173], QoE includes influence factors related to
the system, the user and the context. It measures the delight or annoyance of using
an application or service using a subjective mean opinion score. To define the
perceived transmission quality, we limit these influence factors to that related to
Quality of Service (QoS) metrics and monetary cost, as these are the parameters
that can be addressed from the transmission only. Accordingly, our rating model
provides a quantitative measure of application QoS satisfaction, balanced it with
monetary cost, reflecting conflicting satisfaction indicators of users. To this end, we
integrate the models from time selection into network selection into our approach.
An overview about all model parameters and variables is shown in Table 2 on page
41. To show the structure of the model, we firstly present the model components
and explain the most important components and weights. Secondly, we detail their
interactions and constraints in a formal model definition. Before we explain the
model components in the following, we first present two granularity abstractions
as prerequisites.

The model abstracts over time using time slots and data amount using data
tokens. Both can vary in their granularity. If the duration of time slots is long,
a planning time horizon is covered with fewer time slots. This corresponds to
a low granularity in time. It reduces the computational effort for planning and
constitutes a trade-off between accuracy and execution time, which we study in
detail in the evaluation. We divide the time T in time slots t of equal duration Ar.
Hence, time slots are defined by Equation 4.1.

LT
AT

Equivalently, the data amount can also be modeled with different granularity. Thus,
we define the data amount d¢ of a data flow f as a number of tokens to be planned
ps. Furthermore, the data rate d¢, of a network n in time slot t is defined as a
bucket that can hold a number of tokens B . The two data metrics are scaled
using the data token size d and are calculated using the Equations 4.2 and 4.3.

ds

pr= a (4.2)

(4.1)
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dtn

7

Bt,n = d (43)

4.1.1  Model Components

The rating model consists of three basic components. Firstly, the network model,
secondly, the data flow model and, thirdly, the user preference model, as visual-
ized in Figure 5. Through the interaction of the components, the model rates a
transmission plan p, which defines how many data tokens p¢¢n of a flow f are
allocated to a network n in time slot t. We present the model components briefly
in the following.

4.1.1.1  Network Model

We model networks with their availability over time and their transmission charac-
teristics. Our model covers throughput, latency, jitter and monetary cost for trans-
mission. Latency Ly, jitter ], and monetary cost ¢]*°™ are fixed parameters for a
network n over the treated time span. This network parameter set complies to state-
of-the-art network selection models [208] even though many new approaches focus
on throughput only, restricting their analyses to data traffic for which the through-
put impact dominates. To model throughput, we reduce all states that influence
network characteristics like location, network load or environmental effects to the
time dimension. Hence, for each point in time, we use the estimated throughput
of the client at its corresponding location and the network state. To provide that
estimated throughput, the model requires a network prediction and movement
prediction, as presented in Section 2.3, from which the characteristics for each time
slot can be derived. As a result, we assign an estimated throughput value for each
network n to each time slot t. It is defined as network capacity per time slot t
in buckets with individual size B¢ r,. This model goes beyond network selection
approaches because it considers the prospective throughput over time, combining
it with the models from time selection approaches [132, 203].
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4.1.1.2  Data Flow Model

The data flow model defines application QoS requirements to the data transmis-
sion. A requirement of property x is defined by X. The first requirement is about
the amount of data of a flow f to be transmitted, defined through a number of
tokens pr. Each token represents a fixed amount of data d, as defined in Equation
4.2. In addition, we let non-allocated tokens w¢(p*) contribute to the cost function.
We use p* as an alias for p indicating that in the employed function, the absence
of a token allocation creates an attracting force. Further requirements of the data
flow are minimum throughput, latency L, jitter T+, an earliest start time tfzt and a
deadline t¢!. These requirements are defined for each data flow and are attributed
with individual importance weights for each property x using w¥. The presence of
flow-specific importance weights is signalized with the yellow box in the center of
Figure 5. Data flow priorities are inherent to the specified requirements and their
importance. Accordingly, a data flow with many important requirements is con-
sidered as more important than a data flow without special requirements to the
transmission.

4.1.1.3  User Preference Model

If the inherent data flow priorities, as defined in the preceding paragraph, do not
comply with the user’s expectations, the user preference model may be employed
for personalized balancing of flows with the weight w}*¢". Furthermore, the user
preference model provides a trade-off between the contradicting objectives of mon-
etary cost and desired performance using the global willingness-to-pay parameter,
i.e. the monetary cost weight w™°™, which the user can decrease to improve the
application QoS satisfaction at an expense of allowing a higher monetary cost for
transmissions.

4.1.2  Formal Transmission Rating Model Definition

The model defines constraints and a rating function for a quality assessment of a
transmission plan according to application QoS satisfaction and monetary cost. It
forms the basis for integration of network selection into transmission time selection
models. In the following, the model is presented along with the corresponding
equations.

4.1.2.1  Objective

The objective of strategic data transmission is to find a transmission plan p that
satisfies the defined constraints and minimizes the rating cost function c(p), as
specified in Equation 4.4. The cost function consists of the application QoS viola-
tion cost cf'°™(p), the monetary cost ¢™°"(p) and an additional flow migration
cost component ¢™'9(p) that punishes switches between networks to avoid ping-
pong effects. Note that this represents a multi-objective optimization with fixed
objective weighting. During the evaluation, we vary the monetary cost weight to
show the effects of different objective priorities.
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Minimize c(p) subject to the constraints C1-C3 in Equations 4.10, 4.11 and 4.12.
c(p) =™ (p) +c™O™(p) + ™9 (p) (4.4)

4.1.2.2  Model of Forces

The different cost function components have to be subsumed in a function. To
describe their interaction, we employ a model inspired by acting forces, provid-
ing two beneficial properties. Firstly, existing forces lead to a certain tension in a
system while, secondly, contradicting forces eliminate each other and the result-
ing force reflects an imbalance of the tension. In the transmission rating model,
each cost function component, e.g. violations of application QoS requirements and
monetary cost, may activate a force. The presence of forces creates a certain ten-
sion in the system, reflecting the quality of the transmission. Hence, the absence
of tension, when there are no forces, complies to a high transmission quality, e.g.
a transmission with insignificant application QoS violations and low monetary
cost. Furthermore, imbalanced opposing forces indicate room for improvement,
i.e. that a different trade-off of conflicting goals could reduce the overall tension
in the model and, thus, increase the quality of the plan. For example, a minimum
throughput requirement violation might be compensated by employing a maybe
more expensive network with a higher data rate, if available.

We bisect the transmission rating model’s cost function into two mutually ex-
clusive activated components, which follow the model of forces, representing at-
tracting and repelling forces. Accordingly, the cost function can also be written in
terms of forces as presented in Equation 4.5.

c(p) = (p) + P (p) (4-5)

The attracting forces c***" (p*) arise from non-allocation of data tokens in a plan p*
and pull data tokens towards allocation to networks in general. Their magnitude
depends on flow-specific requirements, creating a general priority for flows, as
detailed in the following sections. In contrast, the repelling forces c"®P(p) arise
from, e.g., QoS requirement violations and can only be active for allocated tokens
in a transmission plan p. Employing the repelling forces, tokens of individual data
flows push themselves away from non-matching networks and time slots. Due
to cost function minimization, the effects of the forces distribute data tokens to
those networks and time slots, which match best for transmission, balancing the
attracting and repelling forces and reducing the overall tension. We illustrate the
impact of forces in Figure 6. Their characteristics are detailed in the following
sections along with the mathematical modeling of each cost function component.
To give an overview, we introduce the repelling forces, followed by the attracting
forces.

The monetary cost c™°™(p) emerges from data transmission over a network and
is a repelling force that pushes data tokens away from expensive networks. Note
that it is time invariant over the planning horizon and, therefore, represented as
a horizontal bar in Figure 6. Furthermore, flow migration cost c™9(p) punishes
handovers between networks because they create signaling overhead and disturb
the flow’s transmission continuity. Hence, it is a repelling force, pushing tokens
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away from all networks except the currently used one. To explain the forces from
the data flow model, we detail the application QoS requirement violation com-
ponent cf1°"(p), as shown in Equation 4.6. It consists of a linear combination of
six components, weighted for each flow with the user’s preference for this data
flow wiseT. Its first two components are deadline violation cost c&!(p) and start
time violation cost c¢'(p). They contribute quadratically to the strength of viola-
tion, i.e. the time offset, as shown in Figure 6. They punish token assignment apart
from the temporal desired scope. Latency violation cost ct and jitter violation cost
c]]c(p) are defined equivalently. They also contribute exponentially to their violation
difference between data flow requirements and network characteristics but are pre-
sented as bars because their violations are time-invariant over multiple time slots.
These components act as repelling forces.

Attracting forces arise, whenever tokens are not allocated, as desired. Accord-
ingly, the first attracting force is non-allocated token cost c}(p*). In addition, not
allocating sufficient tokens within a defined time frame leads to minimum through-
put violation C;Ep (p*), which defines our final cost component of the model of
forces.

cfowp) =Y wie | et (p)+ci(p) +cF(p) +c}p) +cH(p*) +cfP (p*) | (4.6)
feF

repelling forces attracting forces

In the following sections, we present the mathematical modeling of the rating
function. Therefore, we define the cost function components formally with equa-
tions and discuss them in detail.

4.1.2.3 Token Allocation Model

The token allocation model covers basic rules about how tokens can be allocated to
networks. Allocated tokens create data traffic on networks, which in return creates
monetary cost, acting as repelling force in the model. We assume that all monetary
network cost models like pay-per-use or high-speed-volume flat rates can be lin-
earized to a single input parameter as valid approximation over a short period. To
calculate the cost function component from monetary cost, the parameter w*°™
weights allocated data tokens to each network n linearly. The abstract monetary
cost ™™ (p) of transmission plan p is further multiplied with the trade-off pa-
rameter willingness-to-pay, i.e. the monetary cost weight w™°™, which balances
monetary cost against the other components of the cost function, cf. Equation 4.7.
Note that a large monetary cost weight w™°™ results in a low willingness-to-pay
of the user.

Tokens of a flow, which are not allocated in a plan u¢(p) lead to a requirement
violation of the flow, cf. Equation 4.8. This violation handles general non-allocation
and, thus, is modeled in the rating function as attracting force. To determine the
number of non-allocated tokens, we subtract all planned tokens p¢¢n of a flow
from the number of flow tokens to allocate p¢. To incorporate this violation from
non-allocated data tokens as cost component into the rating function, we multiply
the number of non-allocated tokens with a flow-specific weight wi'. Hence, the
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violation contributes to the cost function with the cost component c{ (p), according
to Equation 4.9.

Allocation of tokens additionally underlies two constraints. Firstly, this is the
capacity of the network. The maximum number of tokens, which a transmission
plan p can assign to a network n in a time slot t, is limited by the network capacity
in this time slot. This network capacity in time slot t is modeled as the token bucket
size B¢ n. We define this first restriction as constraint C1 in Equation 4.10.

Secondly, to connect to a network, the mobile node needs an adequate network
interface of type i € I, like a WiFi transceiver or a mobile network modem. We
define the number of interfaces of type i available for a mobile node using the
parameter k;. We present the according to constraint C2 in Equation 4.11. Thus,
the mobile node is not able to connect to more networks of the same type than
its number of available interfaces of that type. To model this constraint, we apply
two operators. Firstly, the identity operator I(x = y), which returns 1 if x is equal
to y, else 0. Secondly, we apply the signum function sgn(x), which returns -1 for
negative values of x, 0 for x = 0 and 1 for positive values of x. In this case, it
identifies if a network is used by any flow.

Cmon(p) — @mon . Z w]rllon . pr,t,n (47)
neN feF,
teT
VieF: ue(p®) =pr— Z Prin (4.8)
nen
VEeF: ci(p*) = wi  ue(p”) - wiser (4-9)
C1: VteT,ne N: pr,t,n < Bin (4.10)
feF
Ca: VteT,iel: ki > Z (]I(in =1i)-sgn <Z pf,t,n>> (4.11)
nenN feF

The equations model the token allocation, including monetary network trans-
mission cost for allocated tokens, violation cost for non-allocated tokens and the
network restriction from the mobile node’s available network interfaces.

4.1.2.4 Throughput Model

The throughput model defines the data rate of flows over time. It substantially dif-
fers from models currently used in state-of-the-art work in order to enable unified
treatment of all data flows. It covers a novel throughput continuity requirement,
which defines if a data flow must be transmitted continuously or to which degree
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Figure 7: Throughput model

it is allowed to be transmitted in bursts. This throughput continuity is an essential
flow requirement, as it can cope with delay-tolerant as well as with delay-sensitive
data flows. Treating all data flows in a unified way enables better optimization of
data traffic planning, as follows. Reasonable transmission of delay-tolerant data in
bursts is proven to increase transmission efficiency by Lu et al. [137], as the mo-
bile node may reduce the load in bottleneck regions, releasing resources for non-
delay tolerant data transmissions. However, the authors of that approach consid-
ered delay-tolerant data transmissions only and, thus, did not need a flow-specific
flow continuity requirement. Models without such a flow continuity requirement
either do not allow transmission in bursts at all. For example, classical network
selection models, demanding for a fixed throughput in each time slot [59, 60, 39],
do not intend transmission in bursts and, thus, waste the discovered optimization
potential. This behavior represents the first extreme configuration of our through-
put continuity requirement, demanding strict throughput continuity. In contrast,
most transmission time selection approaches do not consider transmission conti-
nuity at all, defining the requirement as a simple deadline [15, 168, 133], which,
in our model, corresponds to the maximum degree of allowing transmission in
bursts and pauses anytime before the deadline. More sophisticated models head
into the direction of this flow continuity, defining deadlines for subsets of data
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[137, 132], which might even be adapted dynamically to model acceptable start-up
delays and pauses for media transmission, as shown by Antoniou and Stavrakakis
[10]. In extension to that, our novel throughput model covers the configurable con-
tinuity requirement inherently, not requiring special treatment of corresponding
data flows.

Our transmission rating function uses the basic definition of throughput for its
requirement: an amount of data within a certain time span. Parametrization of
the time span length allows definition whether the transmission must be instantly
and continuous or to which degree it may be in bursts. The model covers two
throughput limits, an upper and a lower one. The lower throughput limit corre-
sponds to a classical QoS requirement, a minimum desired throughput. In our
rating model, it represents an attracting force, fostering token allocation. It defines
the minimum amount of data needed from the application during a certain time
span to work properly. Network selection approaches fix this time span to one time
slot, reducing throughput to a constant parameter during allocation. In contrast,
our transmission rating model uses the parameter At™" to define the time span
as a window and an amount of tokens 8}““‘, which should be allocated in it. Note
that the window size is defined relative to the selected time granularity At. Defin-
ing a larger window At™™, the tokens to be allocated can move freely in this time
span and, hence, allowing the data transmission to occur in bursts. The larger the
time window, the higher is the degree to which the transmission may happen in
bursts. A window length of a single time slot, instead, enforces transmission of a
data flow to be continuous and instant.

To show the effect of this model, we visualize an example in Figure 7. The outer
frame represents the availability of a network over time to which tokens can be
assigned. The blue shapes represent allocated tokens over time to this network
while gaps in between them represent transmission pauses. For simplicity of the
example, there are only a few data tokens, each representing an individual burst.
The two smaller rectangles represent the throughput requirement windows. The
upper throughput bound is painted in green with the shorter rectangle with length
At™eX, framing two tokens. The minimum throughput requirement is represented
by the longer rectangle with length A%}“m, framing three tokens.

For evaluation of the transmission using the rating model, these rectangle win-
dows slide over the analyzed period, from left to right, moving time slot wise
between the start time and the deadline of the data flow. For each sliding state, the
tokens inside the window are counted. To satisfy the upper throughput limit, the
number of tokens in the window must never exceed the specified maximum o}**,
as modeled in Equation 4.12. This constraint C3 restricts the transmission plan to
be realistic. It forbids to plan higher data rates than the application end point can
deliver. In the example, a value of 0{*** = 3 would comply the requirement. When
sliding the green window from left to right, the number of tokens in the window
never exceeds 3.

The lower throughput requirement is modeled equivalently. However, the limit
is softened with the additional component o, as shown in Figure 7 bottom. This
parameter models the number of tokens violating the minimum throughput limit
in this sliding state of the window. Thus, the number of non-allocated tokens vi-
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olating the requirement o are counted, as defined in Equation 4.13. Treating
non-allocated tokens, the lower throughput model belongs to the attracting forces
of our rating model and, thus, fosters token allocation. Assuming in the example
a minimum throughput requirement of 8}‘}3“ = 4, when the yellow colored rectan-
gle, i.e. the minimum throughput window, slides from the left to the right, there
exist are violations because of the transmission pause after the second burst. In
the example, it takes effect from the first moment on until the yellow rectangle has
passed the corresponding gap, reaching the end and covering the last four tokens.
Accordingly, the model creates a force over the complete time span of a violation,
meaning in contrary, that a single short high-throughput burst can satisfy the min-
imum throughput requirement as long as the window covers the burst. In Figure
6 shows the characteristic impacts of forces, this is marked by the green horizontal
bar within the minimum throughput shape.

Note that only the time slots between start time %?t and deadline a&u contribute
to the cost function. It ensures that no token allocation outside those time limits
is rewarded from the throughput model. In Figure 6, the throughput cost force
is illustrated with a horizontal bar between the flow’s start time and deadline
extended with a trapezoid, resulting from the sliding window. Token allocation
at a time slot t affects the throughput for all sliding window steps that cover
the time slot, as exemplified above. Hence, the token allocation creates a reward
for close-by time slots within the range of one time window. For the most left
sliding window step, at the start time of the flow, the green bar in Figure 6 is cut
off because only an overlap with the blue shape leads to a reward. Hence, the
possible reward for token allocation is smaller near the time limits start time and
deadline. This characteristic is intended and leads to two inherent advantages of
the model. Firstly, throughput violation close to the start time is rated less severe
than in the center, which might result in allocation of fewer tokens in this area.
Indeed, common flow control algorithms like from TCP ramp up the throughput
of a data flow. Therefore, the underrating in these time slots finally leads to a
more realistic data flow planning. A similar effect holds for the deadline. The
underrating in those time slots may lead to less allocated data traffic close to the
deadline and potentially shifts data transmissions to earlier time slots, leading to
a more conservative transmission near deadlines and keeping transmission plans
better executable in reality.

Finally, rewarding neighboring tokens leads to an imbalance between flows. The
number of counted tokens depends linear on the window size A%‘f“i“ and the
number of tokens to be allocated 6*'™. This linear dependence could overrate
high throughput data flows, which are allowed to be in strong burst, e.g. video
on demand. To create fairness between the data flows, we normalize the resulting
cost ciP(p*) to them. Additionally, to counteract general underestimation of the
throughput requirement through normalization, we scale it with parameter vy. Fi-
nally, the result is weighted by w{? to return the throughput violation cost of a
flow, specified in Equation 4.14.

In contrast to the other cost components, minimum throughput cost is limited.
As soon as the required minimum throughput is reached, this attracting force loses
its effect. Thus, each token allocation reduces the remaining cost saving potential.
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From the schematic view in Figure 6, each token allocation reduces the blue shape
by the red bar. This reduction constitutes the stateful characteristic of minimum
throughput requirement. Hence, applying the token allocation from the current
transmission plan p reduces the attracting forces.

to+ATRax

C3: VfeFtoeT: o' > Z Z Pfin (4.12)

t=tp neN

toJrA/’ETfnin
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4.1.2.5 Deadline, Start Time, Latency and [itter Models

The models for the deadline, start time, latency and jitter requirements, shown in
Equations 4.15 to 4.18, are very similar to each other. All of them are based on
a difference of two values expressing a requirement violation. To model the cost
component, we square violation differences and weight them linearly. Squaring of
violations leads to an important effect: It rates heavy violations more severe than
many small or even negligible violations. It fosters transmission planners to avoid
strong violations whenever possible.

For deadline violation, we determine the time by which the currently analyzed
time slot exceeds the deadline. The start time is modeled equivalently. Both relate
to absolute time. Hence, their equations contain the time granularity At. Latency
and jitter violations are both modeled using abstract values. Their violation is
squared and weighted. Moreover, we argue that time violations as well as latency
and jitter violations are perceived by the user over time, but it is not relevant how
much data is transmitted in that time slot. To model this characteristic, we use the
signum function for all of them and, thus, restrict violation to take effect just once
for a time slot and not separately for each allocated token. Accordingly, the four
cost components belong to the repelling forces of our rating model, which push
data tokens away from non-matching time slots and networks.

VEeF: cf'(p)=w{' Y sgn(psin) max(0,At- (t—tfh)? (4.15)

teT
neN

VFeF: cit(p) = wit: Z sgn(psn) - max(0, At (£ —1))? (4.16)

teT
neN
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VEeF: cf(p)=wf Y sgn(prum) max(0, Ly —Lp)? (4.17)
nEN
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teT
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4.1.2.6  Network Association and Flow Migration Model

A transmission plan can switch the networks over time, which are used for trans-
mission of a data flow. This is called a handover. Handovers cause some protocol
signaling overhead and often lead to a performance degradation of the transmis-
sion during the process [7, 38, 129]. Therefore, they should be applied only when
necessary. For this reason, we integrate a component for them into the cost func-
tion.

Handover identification for a data flow in a given transmission plan is not trivial
to model mathematically because transmission may pause and the handover des-
tination network is unknown. Therefore, a handover may span all networks and
all succeeding time slots in the planning horizon. To identify these events using a
mathematical model, we define network associations: Each data flow has an asso-
ciation to exactly one network in each time slot, cf. Equation 4.19. An association
signifies a possible transmission but does not imply it for the current time slot, cf.
Equation 4.20. Finally, a change of the network requires a change in network as-
sociation. We call this change of network association a flow migration. It specifies
the order and signaling action to migrate a data flow from one network to another,
independent of its actual data transmission. Since network association exists for
each time slot, the mathematical model can be simplified to check for changes in
consecutive time slots. Equation 4.21 achieves this. It checks for differences in con-
secutive time slots. The cost component c™'9 covers the flow migration weight
w™9 and, in addition, the component 1/2 because the component identifies each
flow migration twice, once for the origin network and once for the target network.
This way, flow migrations can be identified analyzing network associations.

VifeF,teT: Z Qftn = 1 (4.19)
neN
VfeFteT,neN: afin = sgn(psin) (4.20)
mi LUTnig 2
c g(p) = 2 : Z Z(O—f,t—l,n - af,t,n) (4'21)
feF teT|

neN t>2
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Table 2: Overview of rating model parameters and variables

Symbol Description

feF flow in flows to be allocated

teT time slot in overall planned time slots (time horizon)

nenN network in available networks (in time horizon)

iel network interface type i in interface types I

AT, T time slot duration, time T

d, d¢, d¢n  data token size, data of flow, capacity of network in time slot t
P a transmission plan, consisting of token allocations

P*(=7p) indication that the employed function accounts for non-allocated tokens
Pr number of tokens of flow f to be allocated

Bin capacity of a network n at time slot t (bucket size)

Pein number of allocated tokens of flow f to network n at time slot t
aftn flow association € {0, 1} of flow f in time slot t to network n

ki number of available network interfaces of technology i

Atmex size of max. throughput window of flow f in time slots

opax max. amount of tokens in max. throughput window of flow f
Atmin size of min. throughput window of flow f in time slots

gmin min. amount of tokens in min. throughput window of flow f
Of violation strength in tokens of min. throughput requirement
tdt deadline requirement € T of flow f

?1%‘ start time requirement € T of flow f

Ln, L latency of network n, latency requirement of flow f

T, It jitter of network n, jitter requirement of flow f

wig weight for parameter x (of flow f)

c(p) total cost of plan p

¢ (p*)  cost from attracting forces in plan p

ci(p*) cost for non-allocated (unscheduled) tokens of flow f in plan p
ciP (p*) cost for minimum throughput requirement violations of flow f in plan p
c"P(p) cost from repelling forces in plan p

c™on (p) cost from monetary cost of network wp*°™ in plan p

c™i9(p) cost from flow migration (handover) in plan p

C?l(p) cost from deadline violation of flow fs of flow f in plan p
ct(p) cost from start time violation of flow f in plan p

cost from latency violation of flow f in plan p

cost from jitter violation of flow f in plan p
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These equations finalize the novel data transmission rating model. It covers the
three objectives of (1) application QoS requirement violation, (2) monetary cost and
(3) flow migration. These three objectives are linearly combined to form the uni-
fied cost function c. It covers essential elements of network selection and extends
them with temporal models from time selection, i.e. our novel throughput model,
start times and deadlines. Thus, it defines a joint rating for time-network selection
in data transmission. An overview about employed variables and parameters is
shown in Table 2.

Minimizing the defined cost function c(p) subject to the constraints C1 to C3 de-
fines the transmission planning problem. Due to the rating model, validity and
cost of a transmission plan p can be determined in polynomial time. In addi-
tion, the knapsack problem [143], which is known to be NP-complete, defines a
sub-problem of the transmission planning problem, showing that the transmission
planning problem is not in NP. There is no algorithm known to solve it in polyno-
mial time. Thus, we argue that the transmission planning problem is NP-hard. We
detail this argumentation in Appendix A.1.

To target this issue, we develop transmission planning algorithms that use heuris-
tics to create good transmission plans in polynomial time. Their strategies and
designed heuristics are detailed in the following section.

4.2 JOINT TIME-NETWORK SELECTION IN TRANSMISSION PLANNING

In the previous section, we presented the rating model for transmission plans,
which enables evaluation of joint time-network selecting transmission strategies.
These transmission strategies form the focus of this section. As a main contribution,
we design the strategy Joint Transmission Planning (JTP) that explicitly applies a
joint time-network selection. For evaluation purpose, we adopt three transmission
strategies reflecting predominant state-of-the-art concepts. The first strategy is a
classical Network Selection (NS), as found in related work and detailed in Section
3.1. Second, we present an Opportunistic Network Selection (ONS), which extends
NS by the opportunity to omit data transmission if the transmission is not consid-
ered beneficial enough. Even though we did not find a direct correspondence to
ONS in related work, we consider it as an upper performance bound for network
selection approaches, combining different concepts, slightly extended by concepts
from time selection approaches. As third strategy we compare a classical Delayed
WiFi Offloading (DWO), as detailed in state-of-the-art approaches detailled in Sec-
tion 3.2, that prefers to send data via WiFi, planning ahead delay-tolerant data
transmissions without considering detailed network characteristics. In the course
of this, we investigate hypothesis H1:

H1: Transmission benefits significantly from joint time-network selection.

Current approaches usually consider only one of those dimensions. H1 covers the
idea that rating function minima are spread in this solution space and, hence, can-
not be exploited with focusing on only one of the two dimensions. State-of-the-art
network selection (NS) methods cover only data distribution over present-available
networks [55, 207, 86, 138]. In contrast, delayed offloading [145, 131, 40] and re-
source allocation [26] schemes do not consider the network selection sufficiently.
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They either move data transfers only temporally or simplify network selection
to, e.g., a WiFi-preferred strategy. Both concepts show essential benefits on their
own. H1 emphasizes the idea, that a combination of the two concepts, a joint time-
network selection, can unlock a hidden optimization potential and outperform
existing approaches.

4.2.1  Transmission Planners with Different Time-Impact

To investigate the above-mentioned hypothesis H1, we develop a novel time-network

selection strategy, called Joint Transmission Planning (JTP), and the three approaches,

which differ either in their transmission time selection or network selection strat-
egy. Note that we assume complete knowledge about the future network connec-
tivity and data to send. Hence, the presented strategies conduct a transmission
planning with perfect prediction. The problem of erroneous prediction is handled
in Chapter 5.

For comparability of the approaches, the four transmission strategies have one
thing in common: they employ the same heuristics as sub-functions, which we
derive in the following sections from the transmission rating model, presented
in Section 4.1. The first heuristic method determines a data flow priority and
sort data flows accordingly sorTFLows(FLows). The second one is called SORTNET-
MATCH(FLOW, NETWORKS) and estimates each network match for a data flow, finally
sorting the networks accordingly. Finally, the third heuristic method estimates if
a token allocation is beneficial, representing an opportunistic transmission deci-
sion GETMATCHBENEFIT(FLOW, TIME, NETWORK, PLAN). In addition, we introduce
a method ALLOCATETOKENS(FLOW, NETWORK, PLAN), which allocates tokens of a
flow to a network, if the transmission satisfies the constraints C1-C3. It guarantees
that resulting transmissions and plans are feasible. Note that the four transmis-
sion strategies are realized as a depth-first search, finding a solution fast, with
search-ordering and forward-checking, according to Section 2.4. Hence, they do
not explore different opportunities in each search step but follow the one that ap-
pears to be best. Search-ordering is covered by the strategies themselves, as well
as by the heuristics for benefit calculation, flow and network prioritization, con-
trolling the search path to take. Forward-checking is used to avoid transmissions
from violating the constraints, implemented in the token allocation method. As the
goal of the analysis in this chapter is comparison of joint time-network selection to
pure network and pure transmission time selection, the application of further opti-
mization methods to the presented strategies is out of scope. The named heuristics
are used equally from all three transmission planners to enable a fair comparison
of their search strategies. In the following, we present the transmission planning
strategies and, subsequently, detail the above-mentioned heuristic sub-functions
used by the strategies.

4.2.1.1  Network Selection and Opportunistic Network Selection

Our first strategy is a pure Network Selection (NS), representing the most ad-
vanced algorithms of this class, as discussed in Section 3.1. It does not cover time
selection. Accordingly, Network Selection does only consider present-available net-
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works and ignores any information about the future. Furthermore, following the
most advanced approaches in this field, it selects networks individually for each
data flow and employs multi-homing to enable concurrent transmissions via dif-
ferent networks. To make NS represent an upper bound performance for typical
network selection approaches, we eliminate the impact of incomplete information,
assuming NS to know the exact characteristics of each present-available network.
It prioritizes data to transmit, using the sub-function sorTFLows(FLOWS), and as-
signs the prioritized data to the best matching present-available networks, identi-
fied using the sub-function SORTNETMATCH(FLOW, NETWORKS), always transmitting
in best-effort fashion, i.e. as much as possible.

The second strategy is an Opportunistic Network Selection (ONS), which is
based on Network Selection and extends it by an opportunistic component from
time selection, deciding whether to transmit or not. Thus, it employs the token as-
signment decision sub-function ASSIGNMENTDECISION(FLOW, NETWORK, PLAN), as
detailed in Section 4.2.2, estimating the benefit of the transmission opportunity
and comparing it to a threshold cyim, which is set to 0 in the default case. If the es-
timated benefit is lower than the threshold cy;, then the network is considered as
insufficient and no transmission is triggered, assuming that there will be a better
matching transmission opportunity in the future. This behavior results in statisti-
cal delaying of data transmissions, integrating the time dimension into network
selection statistically. A similar time selection approach was presented by Balasub-
ramanian et al. [15], however without employing sophisticated network selection
algorithms. Even though we did not find any directly corresponding transmission
strategy in related works, we consider ONS as upper transmission performance
bound for early adopters of time-network selection, representing a statistical on-
line network selection with a limited time selection. Note that both strategies, NS
and ONS, are online approaches, considering only the present environment and
data to transmit.

Their procedure is given as pseudocode in Algorithm 1. It starts in line 2 with
the creation of an empty transmission plan to initialize the output variable. Next,
the algorithm sorts data flows according to their priority, using the heuristic sub-
function sorTFLOWS(FLOWS). Since Network Selection and Opportunistic Network
Selection work on time slots consecutively, they can be applied as online algo-
rithms. For each time slot, they iterate over the data flows, which are sorted accord-
ing to their priority. In these iterations, the sub-function GETMATCHBENEFIT(FLOW,
TIME, NETWORK, PLAN) sorts networks according to their flow-network matching to
the current data flow to assign. Finally, the algorithm comes to the point in which
the strategies differ: token assignment decision. Network Selection assigns data
whenever possible. In contrast, Opportunistic Network Selection uses the method
ASSIGNMENTDECISION(FLOW, NETWORK, PLAN) in line 9 to decide whether to assign
tokens of the current data flow or not.

4.2.1.2  Delayed Wifi Offloading

The third strategy, Delayed WiFi Offloading (DWO), represents most advanced
transmission time section approaches, e.g. of Cheung and Mehmeti [41, 145]. The
strategy DWO plans data transmission ahead with the preference to use prospec-



4.2 JOINT TIME-NETWORK SELECTION IN TRANSMISSION PLANNING

Algorithm 1 Network Selection (NS) and Opportunistic Network Selection (ONS)

1: procedure NETWORKSELECTIONBASE(flows, networks)
plan <« empty plan
flows < sorTFLOWS(flows) > sort data flows by priority
for time in Time do > progress of time
for flow in flows do
> for current time slot, assign to best matching available network
networks < soRTNETMATCH(flow, networks)
for network in networks do
if AssiGNMENTDECISION(flow, network, plan) then
> assign tokens to network, satisfying constraints
plan < AssiGNTOkEeNs(flow, time, network, plan)
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13 > Network Selection (NS)
14: procedure AssIGNMENTDEcIs1ON(flow, time, network, plan)

15: return frue

16:

17: > Opportunistic Network Selection (ONS)
18: procedure AssIGNMENTDEcIs1ON(flow, time, network, plan)

19: return GETMATCHBENEFIT(flow, time, network, plan)< ciim

tive WiFi resources but uses mobile networks for all data which cannot be of-
floaded to WiFi without violating the data flow’s deadline. However, they do not
consider selecting between more than one mobile network or different WiFis and,
thus, reduce the network selection to WiFi-preferred, not distinguishing between
different mobile or WiFi networks. To eliminate any performance impact from
incomplete information and let the strategy DWO represent an upper bound per-
formance approach for time selection, we assume present-available and future-
available networks as well as future data flows to be known a priori. Hence, DWO
sorts data flows, using the sub-function sorTFLows(FLOWS), and sorts prospective
available networks by their type, i.e. WiFi first. Subsequently, it plans ahead al-
location of their data to the WiFi networks, which will be available within the
data flow’s deadline, and allocates the remaining data to free resources of other
networks. This represents an explicit transmission time selection, according to the
prospective availability of WiFi networks.

Its procedure is presented in Algorithm 2 and implements the time selection
according to network resources availability and time constraints. For initialization,
lines 2-4 create an empty plan and sort networks by type, resulting in a WiFi-first
order, and data flows according to their priority, using the heuristic sub-function
sorTFLows(FLOws). For each data flow in the sorted list, it iterates over the type-
ordered networks. Within the desired transmission period of the data flow, DWO
tries to assign tokens to the networks, using the ALLOCATETOKENS(FLOW, NETWORK,
PLAN) function, which ensures constraint satisfaction of C1-C3. Accordingly, an as-
signment only proceeds if, firstly, the network has free resources left in the desired
transmission time frame of the data flow, secondly, the data flow may send addi-
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tional data in the treated time slot and, thirdly, the network interface may currently
access the desired network. The planning characteristic of DWO, in contrast to the
online characteristic of NS and ONS, is reflected in moving the time selection loop
into the network selection loop. This implies temporal independence of the net-
work selection from time, achieved through selecting on all networks predicted to
be available within the planning time horizon.

Algorithm 2 Delayed WiFi Offloading (DWO)

1: procedure DELAYEDWIFIOFFLOADING(flows, networks)
plan < empty plan
networks < sORTWIFIFIRsT(networks) > sort networks by type: WiFi first
flows < sorTFLOWS(flows) > sort data flows by priority
for flow in flows do
for network in networks do
for time in flow.startTime to flow.deadline do > time selection
> assign tokens to network, satisfying constraints
plan < AssiGNTOkENs(flow, time, network, plan)

L PN v AW N

4.2.1.3 Joint Transmission Planning

Our fourth strategy is Joint Transmission Planning (JTP), covering our contribution
of an explicit time-network selection. Like DWO and in contrast to the two previ-
ous strategies NS and ONS, Joint Transmission Planning considers all networks
available in the complete time horizon to plan for selection. As for the other ap-
proaches, we assume complete knowledge about data flows and networks to be
available.

Joint Transmission Planning focuses on the flow-network matching, employing
the heuristic sub-function SORTNETMATCH(FLOW, NETWORKS) and treats the desired
transmission time limit satisfaction of the data flow as a constraint for data allo-
cation. Accordingly, the algorithm selects those time slots for the data token al-
location, in which the best matching networks are, respectively will be, available.
Considering future-available networks and their characteristics for transmission
planning, Joint Transmission Planning explicitly integrates time dimension into its
selection strategy.

The procedure of JTP is shown in Algorithm 3. After initialization of an empty
plan and sorting of data flows in lines 2-3, using sorRTFLows(FLows), for each data
flow, the dedicated flow-network matching is calculated and networks are ordered
accordingly in lines 4-6, using SORTNETMATCH(FLOW, NETWORKS). For Joint Trans-
mission Planning, as for Delayed WiFi Offloading, the time selection loop is subor-
dinate to the network selection loop. Hence, it focuses on flow-network matching,
treating desired transmission time limits as a constraint, as shown in lines 8-9.
Joint Transmission Planning additionally reuses the transmission decision mech-
anism GETMATCHBENEFIT(FLOW, TIME, NETWORK, PLAN) of ONS, as shown in line
10, comparing an estimated benefit of the transmission to a threshold c1im, which
enables opportunistic delaying of data transfers beyond the planning time horizon.
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Further constraint satisfaction is ensured in line 12, using the function ALLOCATE-
TOKENS(FLOW, NETWORK, PLAN).

In a real system, this results in an entirely different algorithm design. The re-
alization of the two presented online network selection algorithms NS and ONS,
indeed, do not cover the time loop at all. In fact, the top-level time selection loop
from Algorithm 1 represents time progress in reality. In contrast, Joint Transmis-
sion Planning introduces the time selection as a new dimension in its algorithm,
enclosing the time selection explicitly and moving it inside the network selection
in order to select between all networks in the time horizon. This enlarges the al-
gorithm’s solution space, unlocking a new optimization potential by integrating
explicit time selection into dedicated network selection.

Algorithm 3 Joint Transmission Planning (JTP)

1: procedure JOINTTRANSMISSIONPLANNING(flows, networks)
plan < empty plan
flows < sorTFLOWS(flows) > sort data flows by priority
for flow in flows do
> sort networks according to their match to flow
networks < soRTNETMATCH(flow, networks)
> for best matching network, assign to constraint satisfying time slots
for network in networks do
for time in flow.startTime to flow.deadline do > time selection
if AssiGNMENTDECISION(flow, time, network, plan) then
> assign tokens to network, satisfying constraints
plan < assiGNTokENs(flow, time, network, plan)
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> Joint Transmission Planning (JTP)
: procedure AssIGNMENTDEcIsION(flow, time, network, plan)
return GETMATCHBENEFIT(flow, time, network, plan)< ciim
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4.2.2 Heuristics

The three transmission planners use common heuristics to make crucial decisions.
Using the same heuristics for each algorithm makes the strategies comparable and
proves the benefits of the conceptual algorithm design. The first one is the sort-
Frows(flows) heuristic, the second is the soRTNETMAaTCcH(flow,networks) heuristic.
Joint Transmission Planning and Opportunitic Network Selection additionally use
the heuristic GETMATCHBENEFIT(flow,time, network,plan).

SORTFLOWS(FLOWS) An essential part of the algorithms is flow prioritization.
Whenever the network resources are not sufficient, flow prioritization decides
which data to assign and which data to drop. In our algorithms, we assign tokens
of one flow after another. Hence, priorities resemble an allocation order. Therefore,
our heuristic calculates a restrictiveness value r(f, po). We calculate restrictiveness
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according to Equation 4.22, which we derive from components of the rating func-
tion.

t
6 po) = apeer 1P e )

This order is determined from the method sorTFLows(flows). The restrictive-
ness value depends on the cost that arises when the flow is not allocated as de-
sired, hence, using the empty transmission plan p for c’1°"(py). According to our
model of forces, only attracting forces exist when no tokens are allocated. Hence,
we use only the components of the attracting forces for the restrictiveness heuristic.
This resembles the non-allocated tokens c} (po) and the minimum throughput cost
c}p (po), which we weight with the user preference w}*". Moreover, to receive a
metric independent from the data amount, we normalize the cost to the number of
tokens py of the flow. This normalization creates fairness between huge data flows
and tiny ones.

Why do the repelling forces not contribute to the restrictiveness of a data flow?
Repelling forces usually represent violations. Hence, it depends on the network
to allocate tokens on whether repelling forces have an effect or not. Depending on
the scenario, incorporating the repelling forces into the restrictiveness metric might
have positive effects or even negative effects on flow prioritization. For example,
when there are only networks available satisfying all application QoS requirements,
most repelling forces have no effect. However, the impact cannot be estimated
without a detailed analysis of the expected network environment. Since we want
the heuristic to be applicable for our online strategies that do not have detailed
knowledge about the future, an estimation about the effect of repelling forces is not
applicable. Hence, we do not use repelling forces in the restrictiveness heuristic.

The forces are illustrated in Figure 6 on page 36. The non-allocated token cost
c¥(po), shown as orange-striped bar along the entire time horizon, is independent
of time. It is linear to the amount of data of the flow. In contrast, the minimum
throughput violation cost is restricted in time to the period between the flow’s
start time t* and its deadline t¢', illustrated as a blue striped trapezoid.

The flexibility in time dimension plays a crucial role in transmission planning.
Flow tokens whose transmission is delay-tolerant can tentatively be assigned to
different points in time as long as deadlines are met. This flexibility in the time di-
mension reduces their restrictiveness value and, hence, should also decrease their
priority to be allocated. The window parameter At™™ from or throughput require-
ment model in Section 4.1.2.4 reflects this flexibility and seems to be predestined
for this purpose. However, it is not a mandatory parameter for data flows require-
ment definition and, thus, it does not exist for all flows. Therefore, the throughput
window does not enable a fair comparison between all flows. However, to derive
an estimation, we select the time difference between the start time and the dead-
line. It does not reflect the flexibility but, however, correlates with it. Thus, the time
difference between start time and deadline limits the maximum flexibility of data
flows for movement in time dimension. Accordingly, the time difference between
start time and deadline is the supremum of the throughput window length, i.e. its
least upper bound.

(4.22)
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However, the difference between start time and deadline can reach large values.
Furthermore, as mentioned above, the flexibility of the data flows is only tentative.
When used for normalization of the restrictiveness, the difference influences the
result too heavily to reflect a tentative trend. As a solution, we apply the logarithm
to consider just its magnitude and use it in the denominator of the restrictive-
ness. Furthermore, the time difference between start time and deadline measures
at least one time slot. Hence, the logarithm can become zero. To make the heuristic
applicable even for this case of short time differences, we add 1, which avoids the
denominator of the restrictiveness equation to become zero. Accordingly, the equa-
tion of the restrictiveness including temporal flexibility of data flows T71¢X(f,p,) is
given in Equation 4.23. Finally, the sorTFLows(flows) method sorts the data flows
according to their restrictiveness T71¢*(f, py).

user T(prO)

flex
T f, =
(f:po) = wi 1+ log(tdl —t5t)

(4.23)

SORTNETMATCH(FLOW,NETWORKS) A major problem of transmission planning
is to find out, how good a token assignment of a flow matches to networks: net-
work selection. Equivalently to the previous method for flow prioritization, we
create a sorted list, here with preferred networks for each data flow. In this heuris-
tic, the repelling forces of our rating model play the major role. Hence, we take
violations of latency and jitter into account. In addition, we consider the monetary
cost of the networks. While latency and jitter rely on the flow-network match, the
monetary cost depends on the selected network only. Nevertheless, they belong to
the repelling forces and are independent of time, as visualized in Figure 6. To com-
ply with the design of the rating function, we use a satisfactory metric. Hence, we
calculate the latency and jitter matches, according to Equation 4.24. Like the rating
function, it covers the satisfactory quadratic mismatch and flow-specific weights
of the potential violations. However, there is an ambiguity between the heuristic
and the rating function design: While latency and jitter both rely on a single time
slot in the rating function, the heuristic estimates the match normalized to a data
token. Hence, we have to normalize these two terms by the expected number of
tokens in a time slot. For this estimation, we use the average minimum through-
put. Therefore, we divide the minimum throughput model’s token amount 8?““
by the dedicated time window length AtI™™. In many cases, the algorithm will be
able to allocate more tokens than the minimum to the network. Hence, the heuris-
tic tendentiously overestimates the effect of the requirement violation. However, a
better estimation for token allocation is hard to get. A second option is to use the
maximum throughput limit, which, in contrast, tendentiously underestimates the
effect. We prefer the overestimation of the effect over an underestimation since it
represents the more conservative option and usually gets closer to the actual result.
Nevertheless, a requirement satisfaction is still always recognized correctly. If the
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minimum throughput requirement is not defined for the flow, we use the average
throughput of the network instead, as modeled in Equation 4.25.

(W - max(0, Ly —Le)2 + w) - max(0, Jn — J5)?
Vnet(f/n) — w}lser_ f n O_exp f n +wmon i ngOTI
f
(4.24)
gpin sesmin | ATmin
—L if o - At >0
G?Xp —_ Atf f f (4-25)
gaverage  ,lco

Finally, the sORTNETWORKSMATCH method uses the heuristic vnet(f,n) to sort
the networks according to their match to a flow f. On a tie, we prefer the network
with higher capacity, potentially allowing more additional data flows to be allo-
cated on this network. This happens especially within network environments that
meet all application QoS requirements. Conclusively, vn et (f, n) provides a heuris-
tic network preference for transmission planning. However, the complete network
selection is accomplished within the next presented function.

GETMATCHBENEFIT(FLOW,TIME,NETWORK,PLAN) An important characteristic,
balancing the attracting and repelling forces of a flow allocation, is the GETMATCH-
BeENEFIT function. It determines how much benefit the allocation of one token of
flow f to network n at time slot t achieves. Therefore, we focus on the action of
allocating one token of a flow to a certain network at a certain time slot, which
finally resembles network selection. We isolate the forces caused by this allocation
and subtract the repelling from the attracting forces. If the attracting forces dom-
inate, the heuristic claims that the analyzed allocation is beneficial. The function
approximates essential parts of the rating function, normalized to a single token.

To estimate the repelling forces c"P(f,t,n) of a specific allocation with respect
to latency, jitter and monetary cost, we reuse the violation function vy et (f, n) from
SORTNETMATCH. Furthermore, we neglect the flow migration cost in the heuristic
because it creates a stateful temporal component, which is hard to handle but has
no significant effect on the final result. In addition, we consider time limits, namely
start time and deadline. Since these forces appear, like latency and jitter, per time
slot and not per token, we define their estimation equivalently. As presented in
Equation 4.25, we use the sum and normalize it by the expected number of tokens
in this time slot ot *P. Equivalently to the network violation function, we follow the
rating function design and use the satisfactory quadratic mismatch, balanced by
the flow-specific weights. The result for the time limit violation heuristic V¢ime(f, t)
is shown in Equation 4.26.

wser WET-mMax(0, 63t —1)2 + wdl - max(0,t —td!)?

Vtime(fr t) = W¢ : O_exp (426)
f

To estimate the attracting forces c®*'"(f,p) of non-allocated tokens of a flow,
we reuse the model from the restrictiveness metric v(f, p). However, we use the
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actual transmission plan p for the rating instead of the empty plan py. The essen-
tial difference from using the actual plan resides from the minimum throughput
requirement model, detailed in Section 4.1.2.4, because a token allocation creates
only a benefit as long as the minimum throughput is not reached.

GETMATCHBENEFIT(f, t,n,p) = 1(f,p) —Vnet(f,N) + Viime(f, t) (4.27)
~—
cdt‘fr(f,p) Cf?f’(f,t,n)

ASSIGNMENTDECISION(f, t, n, p) : GETMATCHBENEFIT(f, t,n,p) > clim  (4.28)

The presented heuristics estimates the forces. These forces are summed up in
Equation 4.27. To identify the balance, it subtracts the attracting forces from the re-
pelling forces. Assuming the heuristics to estimate the forces accurately, the farther
below zero the result of this heuristic is, the more cost can be saved with a token
allocation. According to Equation 4.28, the parameter c1im can be used to cure the
heuristic’s allocation imbalance or to allocate with a biased threshold. A positive
value signalizes that it might be beneficial to assign the currently analyzed tokens
to this time slot and network. Keep in mind, that Opportunistic Network Selec-
tion and Joint Transmission Planning use this metric to decide whether a token is
allocated or not. With a limit constant of ciim = 0, a negative sign shows domi-
nation of the attracting forces and, hence, fosters a token allocation according to
the algorithms. In contrast, a negative sign indicates that allocation at this network
and time slot is potentially not beneficial and should be avoided. Note that all
three transmission planning algorithms use the three presented heuristics. There-
fore, they differ only in their structure. This similarity enables a fair comparison of
their underlying strategies in the evaluation.

4.3 EVALUATION

To evaluate our developed transmission planners, we present the evaluation de-
sign and analyze the results in this section. Firstly, we introduce the dependent
variables and evaluation metrics. Consecutively, we present the simulation setup
with the independent and controlled variables. Finally, we describe and discuss
the evaluation results.

4.3.1  Evaluation Metrics and Dependent Variables

Transmission plans p are defined by a number of allocated tokens p+ +n, which
belong to a flow f and are allocated at a time slot t to a network n. Allocated
tokens define the primary decision variable of the problem. To rate the quality
of such transmission plans, we introduced the rating function in Section 4.1. It
provides a quality metric for data transmission plans p and rates application QoS
requirement satisfaction as well as monetary cost. This cost function is designed
for performance comparison between different transmission plans for the same
scenario. Therefore, we select the absolute cost c(p) as our first evaluation metric.
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Transmission planners have to decide whether to allocate data tokens in the
planning horizon or not. Non-Allocation can either mean that the data token has
been dropped or that it is delayed beyond the current planning horizon. The drop
and long-term delay rate is an important indicator to check whether the analyzed
strategy balances the attracting and repelling forces well or not. We define this
dependent variable by the share of overall data tokens that have been allocated in
the current planning horizon.

Transmission Planning relies on the network environment and data to transmit.
This data is not available long before transmission. Significant input changes make
recalculation inevitable. To be able to apply transmission plans, the planning pro-
cess has to be responsive and fast in the calculation. Hence, we select transmission
planner execution time as our second evaluation metric.

4.3.1.1 Normalized Rating Score

Absolute cost c(p) depends strongly on the scenario. For example, in a scenario
with bad network connectivity, application QoS requirements cannot be satisfied.
This dependence may result in a high cost value even in an optimal transmission
plan. Hence, the evaluation over multiple scenarios cannot be subsumed with abso-
lute cost. To achieve independence from the scenario, we introduce a new relative
metric: Normalized Rating Score (NRS). NRS describes a transmission plan’s used
share of the absolute optimization potential of the given scenario. A value of 0.8
means that a transmission plan uses 80% of the scenario’s optimization potential.
To define the optimization potential, we employ an upper and a lower bound.

As lower NRS cost bound, we select the lowest possible cost value copt of
the scenario. To identify this cost, we implemented an optimization as an Inte-
ger Linear Program (ILP) that minimizes the cost function using the IBM CPLEX
Branch&Bound solver. As upper cost bound for the relative metric, we select the
average cost of a best-effort random transmission planner cgn 4. We consider this
as a reasonable upper cost bound since no transmission planner should perform
worse than random. The exact algorithm to create random but valid transmission
plans is given in Appendix A.2.

Equation 4.29 normalizes the absolute cost ¢, of a transmission plan p to these
bounds. Instead of showing absolute cost, Normalized Rating Score presents the
share of the reached absolute optimization potential. Its value is 1 for optimal
plans and may be negative for plans with a cost lower than that of average random
plans. Hence, NRS enables direct comparison of transmission planner results over
multiple scenarios. We use Normalized Rating Score (NRS) as our third evaluation
metric.

NRS(p) = _CRnd —Cp (4.29)
CRnd — COpt

4.3.1.2  Relative Optimization Potential

To gain deeper insights of the performance characteristics presented using NRS,
it is instructive to analyze the therein defined absolute optimization potential as
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well. The absolute optimization potential is the cost value difference between the
average cost value of a random transmission planner and an optimal transmission
plan, as shown in the denominator of Equation 4.29. However, the values from this
difference are hard to interpret as they still rely on the scenario.

Therefore, we introduce the Relative Optimization Potential (ROP), as presented
in Equation 4.30, normalizing the optimization potential to the average random
cost. Hence, for an average random cost equal to the optimum, the Relative Opti-
mization Potential cost is o, representing the lower bound. In contrast, the Relative
Optimization Potential’s supremum is 1 for the case that the optimal cost is 0. We
especially use the dependent variable ROP to analyze the characteristics of the
NRS results. ROP is not an evaluation metric applied to the planning strategies.
Instead, it characterizes the scenario and is used as an indicator for correlating
effects.

CRnd — COpt
CRnd

ROP = (4.30)

4.3.1.3 Relative Detail Score

Absolute cost and Normalized Rating Score provide information about the overall
performance of a transmission plan. However, for a deeper analysis, it is addition-
ally interesting to identify the strengths and weaknesses of transmission plans. For
this reason, we introduce Relative Detail Score (RDS). It presents the relative cost
difference for one cost category v compared to this of to the optimal plan. Hereby,
we use the main cost sources from the defined rating function as categories: viola-
tion of deadline and start time, requirement violation of the minimum throughput,
latency;, jitter, allocated tokens and monetary cost. For each of these criteria v, the
difference between the cost of the analyzed transmission plan p and the one from
the optimal plan is divided by the absolute cost difference of the two plans. A
value of o means that the cost share of transmission plan p for criterion v is equal
to this of the optimal transmission plan. A value greater than o reveals a higher
cost share. It means that the transmission plan p creates a higher cost for criterion
v and reveals, that the planner should act more restrictive on it. In contrast, a value
smaller than o is a sign for a too restrictive behavior of the transmission planner
in criterion v. The designer of the transmission planner should consider making
the model on criterion v less restrictive in order to create room for improvement in
other criteria. The corresponding definition is given by equation 4.31. Hence, the
Relative Detail Score provides the means to do detailed analysis on a transmission
planner’s strengths and weaknesses. We select Relative Detail Score as our fourth
evaluation metric.

C —C
RDS, (p) = —2——¥Opt (4.31)
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Figure 8: Example scenario with one mobile network and three WiFi networks

4.3.2  Evaluation Setup and Independent Variables

For evaluation, we generate and simulate randomized connected vehicle scenar-
ios covering multiple networks, created subject to constraints as explained in this
section. Generated scenarios contain characteristics of mobile networks and WiFi
networks in ratio 1:3, employing randomly corresponding characteristics from 2G,
3G or 4G mobile networks, respectively, 802.11p, 802.11n or 802.11ac characteristics,
as detailed in Section 2.2. An example with four networks is illustrated in Figure
8, showing a mobile network in yellow and three WiFi networks in green, blue
and red along the street. From the vehicle movement, the network availability over
time and its characteristics are derived. This availability over time is illustrated
using the colored bars at the bottom. Each network has a certain availability and
characteristics, i.e. network capacities as bucket sizes B, ; for each network in each
time slot as well as latency, jitter and monetary cost properties.

The data traffic consists of four classes: interactive (5%), conversational (15%),
bufferable (55%) and background (25%). These traffic classes represent default cat-
egories. We give a detailed definition of the four traffic classes with the corre-
sponding requirements in Appendix A.3. Their share follows the mobile Internet
consumption analysis and prognoses from Sandvine[187] and Cisco [17]. In con-
trast to smartphones, the connected vehicle is supposed to sense the road environ-
ment and provide the data for driver assistance systems and automated driving
features [146], improving their service with aggregated external up-to-date infor-
mation [35]. To cover this scenario-specific up- and download data transfer, we
select a higher share for background traffic than for smartphone users. Instead of
about 15% for background data, we use 25% in our simulation. We consider this as
more realistic, even though the effects on the result are marginal. As background
data transmission is usually delay-tolerant, strategies implementing time selection,
i.e. Delayed Wifi Offloading, Opportunistic Network Selection and Joint Transmis-
sion Planning, profit from this change, highlighting the importance of transmission
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Table 3: Independent simulation parameters

Time slots (T) 25 50 100* 200 400
Networks (N) 1 2 4 8* 16 32
Data flows (F) 4 8* 16

Data traffic load (load) low medium* high
Monetary cost weight (Wmon) zero low medium* high

*default parameter values in the fractional factorial evaluation
The actual parameter values for zero, low, medium and high are detailed in the
corresponding sections.

time selection in the scenario. We configure the client with one mobile network mo-
dem and one WiFi interface.

In the following, we identify the independent variables. The scenario may vary
in its size, firstly in the planning time horizon and the planning granularity. The
granularity is defined abstractly through the number of time slots T and the time
slot duration Ar, as detailed in Section 4.1. Since T directly influences the prob-
lem complexity, we select it as an independent variable and vary it between 25
and 400 time slots. As a second independent variable, we identify the number of
available networks N within the given scenario. Since all presented algorithms tar-
get network selection, the number of networks N should have an impact on all
strategies. We expect a higher optimization potential in environments with high
network diversity. Hence, we select N between 1 and 32 available networks in a
given planning horizon. Thirdly, the number of data flows F influences granularity
of planning and the variety of network matches. We vary F between 4 and 16 data
flows. We select 4 as minimum to realize the data traffic share of the four defined
categories in each scenario. We separate it from a fourth independent variable of
data traffic load, which we investigate on its own. We expect that the strategies be-
have differently in sparse or overloaded data traffic scenarios. In connection with
the network capacity, the pair of the number of data tokens p¢ and the token size
d forms a similar duality as T and At: A high token count p; either can represent
high data traffic or, if the token size d is small, a high planning granularity. Finally,
we evaluate the impact of the willingness to pay, i.e. the monetary cost weight
Wmon- We vary it from zero to high. It balances the two main minimization objec-
tives of the rating function on flow QoS requirement violation and monetary cost.
With varying this parameter, we investigate the impact of the two objectives on the
presented transmission planning strategies.

Table 3 summarizes the five identified parameters with its values. For evaluation,
we use a fractional factorial evaluation design [25]. Hence, we vary only one sin-
gle parameter, keeping the other parameters as controlled variables constant at a
dedicated default value. In Table 3, the default values are highlighted and marked
accordingly. In the following, we analyze the absolute cost, the execution duration,
NRS, ROP, RDS and the data drop rate for each parameter variation and show the
Q25%, Qs09% (median) and Q759 quantiles for 50 randomized scenarios per run.
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Figure 9: Execution time (left) and absolute cost (right) over scenario length in time slots

4.3.3 Impact of Time Selection: Variation of the Planning Horizon Length

A main goal of this thesis is understanding the effects of transmission time selec-
tion in joint time-network selection. To evaluate the transmission time selection im-
pact of the planners on perceived transmission quality, we evaluate the presented
algorithms in scenarios with different planning horizon length. A scenario with
a longer planning horizon provides a higher potential for moving delay-tolerant
data transmission in the time dimension. This effect is also shown by Lu [137] and
Lee [132]. Note that a larger number of time slots can either correspond to a larger
temporal scenario planning horizon or to a higher granularity of time slots. We
vary the planned scenario planning horizon length from 25 to 400 time slots and
use the above-mentioned default values for all other independent variables. In the
following, we present and discuss the effects on the dependent variables using the
metrics presented in 4.3.1.

EXECUTION TIME. The execution time of the presented algorithms rises with
the planning horizon length, as shown in Figure 9 left, showing slightly exponen-
tial characteristics. There is no substantial difference between the execution times
of the heuristic approaches. All values for calculation a scenario length of 400 time
slots are below 0.05s , indicating the real-world applicability of the algorithms. In
contrast, the optimization approach requires about four to five orders of magnitude
more time to calculate the result. This long processing time disqualifies optimiza-
tion for real-world use and confirms the need for efficient heuristics. However, we
still use the optimization for evaluation purpose as an upper quality limit.

ABSOLUTE PERFORMANCE. The cost function plot in Figure 9 right shows about
linear rising cost function values for scenarios with longer duration. This effect is
expected since the average data traffic from the scenario generation process is
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Table 4: Median NRS gains of JTP over number of time slots

Time slots 25 50 100 200 400 mean

Gain over NS in % 26.22 25.90 23.45 25.53 26.18 25.45
Gain over ONSin % 18.19 1346 11.83 11.95 9.06 12.90
Gain over DWOin % 9.92 11.96 15.57 16.16 26,51 16.02

about constant for each time slot. Longer scenario duration, i.e. a higher number
of time slots, conclusively leads to more data traffic and therefore to higher cost
with same quality. However, the effects are not observable from absolute values, as
the confidence intervals are strongly overlapping because results strongly depend
on the dedicated scenario of each repetition. To receive a better understanding of
the performance of the approaches, we use Normalized Rating Score (NRS) in the
following, which cancels out scenario dependence.

RELATIVE PERFORMANCE AND OPTIMIZATION POTENTIAL. The Normalized
Rating Score results provide insights on how much of the scenario’s optimization
potential the approaches are able to use. They are shown in Figure 10 and detailed
in Table 4. The results of the approaches integrating a network selection show a
strict order in their NRS results, rising according to their time selection strength.
There exists a positive correlation between the degree of time selection of the ap-
proaches and their quality. However, time selection alone, represented by DWO, is
dominated on the long run.

Indeed, the Joint Transmission Planning (JTP) reaches the best results, exploit-
ing in median up to 91.45% NRS, i.e. the scenarios” absolute optimization potential.
The median results show an average gain of 25.45% over Network Selection (NS)
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Table 5: T-test results for Hy : JTP = ONS and JTP = DWO over number of time slots

Time slots 25 50 100 200 400

Prrr_ons  1.3-10770 12.1071° 48.10710 14.10710 12.70°5

Prrr_pwo  24-1077 1310710 39.70713 14.1070 1710713

and 12.90% over the opportunistic approach (ONS) and 16.02% over Delayed WiFi
Offloading (DWO). To confirm the statistical significance of these results, we exem-
plary convey a T-test with the null hypothesis that the results of Joint Transmission
Planning and Opportunistic Network Selection, respectively Delayed WiFi Offload-
ing originate from distributions with the same mean value, Hyo : JTP = ONS,
respectively Hp : JTP = ONS. Table 5 shows the p-values. As they are all far
below 0.01, the null hypotheses can be rejected, indicating that Joint Transmission
Planning significantly outperforms ONS and DWO, representing state-of-the-art
derived approaches with the upper-bound performance of their respective strate-
gies.

However, we observe a common trend in NRS for all transmission planners:
Their NRS shows a positive correlation with the simulated scenario length. We sup-
pose that the effect depends more on the scenarios” optimization potential than on
the actual performance of the transmission planners because it influences the three
heuristic planners implementing network selection in the same way. Indeed, we
observe in Figure 9 right that the difference of absolute cost between the optimal
and the random approach shrinks with rising planning horizon. This difference
defines the scenario optimization potential. We present it in a normalized form
as Relative Optimization Potential (ROP), as specified in Section 4.3.1, in Figure 10
left as a black line. It shows a decreasing trend with rising planning horizon length.
We expect this effect to originate from the following dependency: Increasing the
number of time slots but keeping the number of networks constant, decreases the
density of available networks. Moreover, keeping also the number of data flows
constant while increasing the planning horizon, reduces the probability that the
time limits of a data flow overlap with many networks. Thus, the opportunities for
moving a data flow in time dimension to use another network diminish. Accord-
ingly, the instances of the transmission planning problem with longer time horizon
get easier to solve. The decreasing optimization potential causes the effect of the
increasing relative performance of all three heuristic approaches with network se-
lection over time horizon length. The behavior of DWO supports this statement,
showing a strong negative correlation to the scenario optimization potential. A de-
creasing number of advantageous opportunities to move data in time increase the
importance of network selection and render DWO without sophisticated network
selection less effective. We analyze the effect of the scenario optimization potential
on the transmission planner performances further during this evaluation.

STRENGTH AND WEAKNESS ANALYSIS. To identify strengths and weaknesses
of the approaches, we have a deeper look into the resulting cost distribution of
the four strategies, comparing it to the cost distribution of an optimal transmission
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plan. Therefore, we employ the Relative Detail Score (RDS), as defined in Section
4.3.1.3. RDS is positive if the cost share of the approach’s transmission plan for a
criterion is higher than thus of the optimal transmission plan. Hence, a positive
value reveals that the potential for this criterion cannot be completely exploited, ei-
ther because of a non-optimal parameter choice or because of an insufficient model.
The same holds for negative RDS values. A negative value shows that the approach
acts too restrictive to this criterion. A less restrictive handling could release addi-
tional optimization potential for other criteria, which may be reached either using
a more accurate model or due to parameter optimization. Hence, we use the RDS
profile to identify the strengths and weaknesses of transmission planners and un-
veil imbalances between two criteria, resulting from non-optimal trade-off param-
eter selection. Releasing the restrictiveness from one criterion through parameter
changes can give more freedom to another one and may improve the overall per-
formance. Hence, in the case that all values are above zero, it is improbable that
trade-off parameter changes can significantly improve the performance of a strat-
egy. In contrast, such imbalances indicate general weaknesses of the strategy.

As presented in Figure 11, all strategies show closeness to the optimum for
the QoS requirement satisfaction of the data flows in time limits, throughput, la-
tency, jitter and unscheduled tokens. However, monetary cost characteristics show
a significant difference: The three state-of-the art strategies cause a much higher
monetary cost, leading to a huge imbalance in the characteristics, rising with the
scenario length in time slots. In addition, we observe a rising variance of the RDS
monetary cost values with rising scenario length in time slots, especially for De-
layed WiFi Offloading, showing that their performance relies strongly on the given
scenario. The imbalances for the state-of-the-art approaches reveal that there exist
substantial weaknesses in the strategies. It shows that the approaches cannot ex-
ploit the full optimization potential, selecting in general too expensive networks.
For larger scenarios, values slightly below zero can be observed for unscheduled
tokens for NS and DWO, which transmit more tokens because of employing a
best-effort data allocation. Introducing the opportunistic delaying of ONS, we can
observe a significantly lower RDS value for monetary cost, while unscheduled to-
kens do not sink below zero. This phenomenon explains the benefit of ONS over
NS, emerging from its decision opportunity not to transmit all data within the cur-
rent time horizon. However, there are no other RDS values significantly below zero.
Hence, the RDS profile reveals that presence of defects in transmission planning
strategies.

In contrast, Joint Transmission Planning shows low and overall balanced RDS
values. Notable impacts on the minimum throughput and unscheduled token cri-
teria indicate that the strategy may still be improved in its allocation decision. In
addition, we observe the marginal trend of a falling RDS for time limits in long-
term scenarios. It results from the fact that our heuristic approaches do not con-
sider data token allocation beyond the desired time frame between start time and
deadline. As the off-trading criteria unscheduled tokens already shows low RDS
values, we expect an additional heuristic for time limit violation handling to result
in negligible effects.
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coNCLUSIONS. The evaluation of the four strategies reveals significant benefits
from integrating transmission time selection and network selection. In fact, Joint
Transmission Planning (JTP) outperforms the approaches derived from state-of-
the-art by 25.45%, respectively 12.90% and 16.02% NRS. However, we observe a
similarly increasing performance of all transmission planners with time selection
over an increasing planning time horizon. As explained above, several effects cause
a decreasing optimization potential. We assume the two negatively correlated ef-
fects, increasing performance of the strategies and a sinking optimization poten-
tial, to be linked. Accordingly, the transmission planners achieve relatively better
performance in scenarios with a lower optimization potential. We investigate this
assumption further the following evaluation.

4.3.4 Impact of the Number of Networks

Varying the number of networks provokes network selection to take effect, with no
network selection impact in the case of a single network, and significant network
selection impact in the case of many networks. In fact, using a single network
scales down the solution space of our approaches to that of pure, single-homed
transmission time selection, reflecting important approaches of Bui et al. [26] and
Lu et al. [137]. We vary the number of networks between 1 and 32 and analyze the
scenario optimization potential and corresponding effects. Moreover, we compare
the joint time-network selection strategy to pure single-network transmission time
selection and pure network selection.

JOINT TIME-NETWORK SELECTION BENEFIT The absolute cost value of all ap-
proaches decreases significantly with an increasing number of networks in the
scenario, as shown in Figure 12. This effect confirms that a higher number of net-
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works provides a higher potential for network selection as well as for transmission
time selection.

Comparing the performance of JTP with a single network to the same perfor-
mance level of NS, we discover a factor 4 of additional networks, marked with a
golden horizontal line in Figure 12. Hence, the performance of JTP in an environ-
ment with a single network is equal to that of using NS in an environment with
4 times more networks. Analyzing this factor for 16 and 32 networks of NS, we
observe that the factor 4 stays similar, reaching 3.7 with 16 networks, respectively
5.3 for 32 networks, both marked with golden horizontal lines in Figure 12.

We assume that joint time-network selection reaches a similar performance as a
network selection in an environment with about 4 times more networks. However,
we cannot prove the general validity of the factor 4, which might be different
significantly different environments. Nevertheless, the analysis reveals a significant
trend that highlights clear benefits of joint time-network selection.

RELATIVE PERFORMANCE ANALYSIS The transmission planners with a sophis-
ticated network selection show the same strict order for variation of the number of
networks as for time horizon length variation. This confirms the benefits of Joint
Transmission Planning over the state-of-the-art derived approaches.

JTP achieves a median performance of up to 90.93% NRS, outperforming in av-
erage the approaches NS by 15.47%, ONS by 7.71% and DWO by 7.26%. However,
the benefits over ONS and DWO start getting significant (p < 0.01) at 4, respec-
tively 8, networks in the scenario horizon, as visible from Table 6. Furthermore,
the Normalized Rating Scores of NS and ONS show a U-shaped characteristic, vis-
ible in Figure 13 left, with a drop at 4 networks of 10.33%, respectively 12.27%,
and recovering with a rising number of networks. In contrast, JTP show a stable
performance, demonstrating its superiority and robustness against variation of the
network environment.
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Table 6: T-test results over number of networks

Networks 1 2 4 8 16 32

PjTp_ons 081 047 37-107¢ 1.8-1077 2.8-107'° 1.9.1077
PjTP—Dwo 074 0.43 0.14 32.1077 26-1078% 35.107°

The Relative Detail Score and execution time results show similar characteristics
as for the analysis of the variation of time slots. We detail these results in the
Appendix A.5. In the following, we investigate reasons for the insignificance of
JTP’s gain in environments with few networks and the discovered U-shape in ONS
and especially NS.

OPTIMIZATION POTENTIAL AND RESOURCE SATURATION. For the random
approach, representing the upper bound for optimization potential definition, we
observe an about constant absolute cost value for 1 to 8 networks, as illustrated in
Figure 12. For 16 and 32 networks, the cost value of the random approach starts to
sink. For all other approaches, the absolute cost function value sinks faster than lin-
ear, whereby the value of the optimum transmission plans decreases fastest. From
the falling characteristic of the random approach in absolute cost value for many
networks, there originates an interesting characteristic in NRS: The NRS over the
number of networks shows a U-shape for NS and ONS with a minimum at 4
networks, cf. Figure 13 left. This U-shape in NRS results from two superposed ef-
fects: First, a rising number of networks increases the opportunity to be able to
move data to other networks that are potentially available at another point in time.
Hence, increasing the number of networks increases the optimization potential,
especially for transmission time selection. This effect is also reflected by slightly
rising NRS values for JTP and DWO from 1 to 4 networks, while the performance
of NS and NRS drops in the same region. However, beyond that, there starts a
saturation of good networks, which causes the second effect. With a high num-
ber of networks, the probability of excellent networks being available increases.
Thus, there is a good chance that for most of the time excellent networks are avail-
able, which satisfy most application QoS requirements and are not too expensive.
Due to this saturation of excellent networks, the transmission time selection im-
pact loses importance and network selection strategies perform better, reflected by
rising NRS values for NS and ONS. Accordingly, the NRS values for DWO start
sinking at the same point because DWO lacks an appropriate network selection
and cannot select the best-suited of the available ones. To show this saturation
of network resources, we analyze the drop and long-term delay rate of the dif-
ferent strategies over the number of networks, as illustrated in Figure 13 right. It
illustrates what shares of data tokens are either dropped or moved for transmis-
sion beyond the planning horizon. It confirms the saturation statement of excellent
network resources. For the optimal schedule, the median drop rate decreases from
about 30% to less than 10% when reaching the saturation limit of 8 networks. Thus,
the two superposed effects result in a falling performance in NRS of state-of-the-
art network selection approaches with no or limited time selection strategies, while
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at the same time the presence of an appropriate network selection mechanism in
transmission strategies gains importance. For scenarios with few networks, the
ROP in Figure 13 indicates a low optimization potential, reflecting that selection is
in many cases not possible because there are no options. All heuristic approaches
perform well, as there is no significant challenge in data allocation. Therefore, JTP
develops its significant performance gain only in network environments with sev-
eral alternative networks in the planning time horizon. Nevertheless, constantly
best results of JTP and a strong robustness against different network environments
highlight the importance of integrating both aspects, transmission time selection
and network selection.

CONCLUSIONS. Varying the number of networks provides the opportunity to
compare joint time-network selection to pure single-homed time selection and pure
network selection. It reveals the following important finding, which holds at least
for the given scenario: Joint time-network selection provides a performance gain, which
is similar to using pure network selection in an environment with 4 times more networks.

In addition, the importance of transmission time selection is highest in envi-
ronments with few alternative networks, reflecting the case that, firstly, there exist
options for networks to select from and, secondly, there is no saturation of excellent
network resources yet, being available at any time. In contrast, network selection
gains importance as soon as there are many networks from which to choose. Hence,
the NRS performance of Network Selection (NS) and Opportunistic Network Se-
lection (ONS) sinks to a minimum in environments with few networks, while the
performance of Delayed WiFi Offloading (DWO) decreases towards saturation of
network resources. Finally, Joint Transmission Planning (JTP), integrating both as-
pects in its time-network selection strategy, mitigates these impacts. It outperforms
the state-of-the-art approaches by 15.47% (NS), 7.71% (ONS) and 7.26% (DWO),
proving its superiority due to robustness against different network environments
with a constantly high performance of in average 87.96% NRS.

4.3.5 Impact of the Data Traffic Load

In this section, we analyze how the amount of traffic of a mobile node influences
the performance of the different strategies. While keeping the network resources
and the number of flows constant, we vary the amount of data traffic in tokens to
be sent. Note that tokens represent abstract data units for planning with a token
size d. A high number of tokens can either correspond to a high amount of data
or a low token size d. We vary the number of tokens in three stages, according to
Table 7, keeping the token sizes d constant. We define the amount as the number of
tokens per time slot and distribute the number of tokens among the 8 data flows
in our scenarios, according to Appendix A.3. Varying the data amount reveals
interesting effects that we present in the following.

PERFORMANCE AND RESOURCE SATURATION The transmission rating’s abso-
lute cost function value reveals a rising characteristic with the number of tokens,
illustrated in Figure 14 left. As tokens create cost in the rating model in any case,
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Figure 14: Absolute cost value (left) and execution time (right) over data traffic load

contributing to repelling forces if allocated and contributing to attracting forces if
not, a rising number of data tokens comes with a rising cost function value. In ad-
dition, a higher data traffic load leads to an insignificant increase of the execution
time for all approaches, as illustrated in Figure 14 right.

However, an analysis of the Normalized Rating Score (NRS) and the drop rate
from Figure 15 gives a clear insight into the transmission planner characteristics.
The NRS of the network selection based state-of-the-art derived approaches NS
and ONS shows a rising characteristic and about constant, tendentiously sinking,
performance for DWO. DWO sulffers significantly (p<o.01) from the lack of a suf-
ficient network selection, while in scenarios with low data traffic load, it is able to
push most transmissions to WiFi networks, reaching a considerable NRS value of
79.01%. Starting from a low NRS level for NS of 65.46%, respectively 75.34% for
ONS, the performance rises to 77.58%, respectively 85.75%, while the performance
stays between 76.21-79.01% NRS for DWO. Again, the rising characteristic of NS
and ONS correlates negatively with the scenarios” Relative Optimization Potential
(ROP). We suppose that this decreasing optimization potential originates from two
correlating effects. Firstly, networks are used more intensively in general. There-
fore, it is less critical to decide for the best matching or cheapest networks over
time because nearly all possible resources are used. Secondly, the data drop rate
rises significantly from less than 10% to more than 30%, as visualized in Figure 15
right, reflecting that there are not sufficient appropriate network resources for allo-
cation of all data tokens. Therefore, the share of data which is dropped because of
a lack of resources rises in comparison to the share for which a dedicated allocation

Table 7: Traffic load parameters in tokens per time slot

high

Traffic load low medium

Tokens per time slot 30-60 120-150 270-300
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Figure 15: NRS (left) and drop rate (right) over data traffic load

Table 8: T-test results over data traffic load

Data traffic load low medium high

PP_ONS 1.0-107¢ 67-107""  0.096
0.006 12-1071% 49.1077

decision from the strategy is required. This effect creates a higher match between
the transmission plans of the heuristic approaches and those of the optimal one. Fi-
nally, for high data traffic load, ONS reaches a level with an insignificant (p=0.096)
difference to JTP, as shown in Figure 8. In contrast, Joint Transmission Planning can
cope well with any amount of data traffic, shows 86.87-89.82% median NRS and
outperforms the approaches derived from state-of-the-art by 18.23% (NS), 8.41%
(ONS) and 10.90% (DWO).

Furthermore, the Relative Detail Score analysis in Figure 16 confirms identified
effects and characteristics of the strategies. For ONS there are no RDS values sig-
nificantly below zero, while NS and ONS, transmitting in best-effort fashion, show
negative RDS values for unscheduled tokens, accompanied by exploding monetary
cost. This imbalance confirms the strategical defect of those approaches. In contrast,
Relative Detail Score reveals that Joint Transmission Planning tends to delay too
much data beyond the planning horizon, indicated by a significantly increased
RDS value for unscheduled tokens and a negative monetary cost RDS value for
low data loads. We try to cure this imbalance through parameter optimization of
the schedule decision, as shown in Appendix A.4. Even though the characteris-
tics of the RDS results change as desired for this optimization, the optimization
leads only to insignificant effects of the final result. Hence, the main difference to
optimal schedules seems to result from strategical defects of the approach.
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CONCLUSIONS. Increasing the data traffic of a mobile node leads to a saturation
of the available network capacity. Accordingly, the client uses most of the available
resources over the whole trip duration, reducing the Relative Optimization Poten-
tial (ROP) of the scenarios. With rising data traffic load, transmission time selec-
tion loses importance because later-available resources will be fully used and no
opportunities to transmit should be skipped. Accordingly, the NRS performance
of the two state-of-the-art derived network selection approaches NS and ONS rises
fast with increasing data traffic, while Delayed WiFi Offloading (DWO) shows
about constant, tendentiously sinking performance. Nevertheless, Joint Transmis-
sion Planning (JTP) outperforms the state-of-the-art derived approaches in most
cases significantly by 18.23% (NS), 8.41% (ONS) and 10.90% (DWO) NRS. It con-
stantly achieves high NRS results between 86.87% to 89.82% median NRS, proving
its robustness against variation of the amount of data traffic.

4.3.6  Impact of the Number of Flows

Incrementing the number of data flows increases the diversity of the data traffic,
which increases the opportunities for data flow prioritization and balancing. We
vary the number of data flows between 4 and 16, keeping all other parameters
constant. This also includes the amount of data traffic. The fixed amount data traf-
fic to be planned is distributed over the number of flows. Hence, with increasing
number of data flows, their amount of data sinks. We select the lower value of 4
data flows corresponding to the number of our traffic classes and using less than
4 data flows does not allow to model a realistic data traffic mix. Details about our
traffic classes are given in the Appendix A.3.
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Table 9: T-test results over data flow

Data flows low medium high

Pjrr_ons 86-10°% 15-107'2 30-10°°
Pjrp_pwo 97-107"" 52.1071° 3.9.10°°

PERFORMANCE AND OPTIMIZATION POTENTIAL. In contrast to the other pre-
sented parameter analyses, the number of data flows barely changes the absolute
cost function value, while the changes even trend into different directions, as vi-
sualized in Figure 17 left. While optimal plans reach a tendentiously lower abso-
lute cost function value for more data flows, i.e. a higher requirement diversity in
the data, it rises for all other approaches. The execution time of the heuristic ap-
proaches is nearly unaffected from the rising number of data flows (and constant
amount of data), which is beneficial for scaling. In contrast, the execution time of
the optimal approach rises severely by a factor of 66 for doubling the number of
data flows from 8 to 16.

The Normalized Rating Score results in Figure 18 shows stable results for all ap-
proaches, with tendentiously lower NRS results for 16 data flows than for 4. This
sinking relative performance confirms the earlier identified negative correlation
with the Relative Optimization Potential (ROP). We suppose that a high number of
data flows leads to an increasing diversity of data traffic, requiring more accurate
prioritization and balancing of data flows. Especially the balancing in network se-
lection is an interesting aspect. For the heuristic approaches, the network selection
in a time slot depends on the preference of the data flows with the highest priority,
i.e. the highest restrictiveness. However, in some cases, a common network prefer-
ence of multiple lower prioritized data flows might dominate the data flow with
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the highest priority. In the heuristic, we neglected these complex analysis depen-
dencies with the expectations, that those conflicts can usually be solved in similar
quality with time selection. Nevertheless, this effect can make a difference in the
scenario with many competing data flows. Furthermore, the Relative Detail Score
values show no exceptional characteristics and are, for completeness, presented in
the Appendix A.5.2. Finally, JTP outperforms the other approaches significantly, as
indicated by the t-test results in Table 9, in average by 22.81% (NS), 11.25% (ONS)
and 13.35% (DWO), reaching an average NRS performance of 89.46%.

CONCLUSION. The number of data flows has a slight but insignificant negative
impact on the performance and execution time of the heuristic approaches. For
all runs, JTP significantly outperforms the state-of-the-art derived approaches by
11.25% (ONS) and 13.35% (DWO), reaching a robust average NRS performance of
89.46%.

4.3.7 Impact of the Monetary Cost Weight

Our rating function covers two main components for transmission planning. They
are, firstly, application QoS violation and, secondly, monetary cost, whose mini-
mization reflects contradicting objectives. The user’s willingness-to-pay, defined
as monetary cost weight wmon in the user preference model in Section 4.1.1, bal-
ances the the two components. Awad et al. investigated the [13] potential of dy-
namic objective weighting between transmission performance, monetary cost and
energy consumption for their time selection approach. They demonstrate a signif-
icant benefit for adapting these weights according to the user’s context, demon-
strating the importance of analyzing the performance of the transmission planners
with different objective balancing.

We investigate the effect of balancing these objectives on the transmission plan-
ner performance. Therefore, we vary the impact of the cost objective from zero to
high. The corresponding monetary cost value weights won are shown in Table
10. The results are presented in the following.

PERFORMANCE RESULTS The monetary cost does not significantly influence the
execution time of the heuristic strategies. However, the optimal transmission plan-
ner shows a lower execution duration whenever one of the objectives dominates,
as illustrated in Figure 2o0.

The absolute cost values, presented in Figure 19 left, rise about linear over in-
creasing the monetary cost weight for all transmission planners, resulting from
the monetary cost which is added to the rating function without decreasing an-
other one. When neglecting the monetary cost objective, Network Selection (NS)
and Opportunistic Network Selection (ONS) reach similar performance as Joint
Transmission Planning (JTP). This changes towards dominance of the monetary
cost reduction objective. Indeed, the increasing monetary cost weight significantly
impairs the NRS of the Network Selection approach, sinking from 87.83% down to
56.52% NRS, as illustrated in Figure 19 right. Accordingly, most application QoS
requirements can be satisfied in the scenario with an instant transmission, if mone-
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Figure 19: Absolute cost (left) and Normalized Rating Score (right) over monetary cost
weight

Table 10: Monetary cost weight for objective balancing

Monetary cost weight zero low medium high

Weight Wmon 0 5 15 25

tary cost does not matter. For rating, this does not matter as we consider quality as
a relative metric, using the Normalized Rating Score (NRS). The latter characteris-
tic gets obvious from the data drop rate. ONS and JTP, outperforming NS as soon
as monetary cost is considered, cause a significant drop and long-term delay rate
of up to 30%, meaning that transmission of delay-tolerant data is delayed beyond
the planning horizon, while it is instantly transmitted in best-effort fashion by NS.
In contrast, Delayed WiFi Offloading (DWO) shows about constant NRS perfor-
mance till a medium monetary cost weight, distributing data more effectively over
available networks in the planning time horizon than NS. Due to its lack of an ap-
propriate network selection and best-effort transmission in the horizon, it reaches,
in general, a lower and finally sinking performance because the monetary cost is
only covered by the correlation of WiFi-preference and a statistically lower mon-
etary cost for WiFi in the scenario generation, ignoring the actual monetary cost
properties of the networks. For completeness, the RDS analysis is presented in the
Appendix A.5.3, without showing unusal characteristics. Finally, JTP significantly
outperforms the state-of-the-art derived strategies as soon as the monetary cost
is different from zero, reaching average NRS performance gains of 21.00% (NS),
8.73% (ONS) and 11.44% (DWO). It constantly shows high NRS performance for
all runs of 86.17% to 91.97%, proving its robustness against monetary cost weight
variation.
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Table 11: T-test results over monetary cost weight

Monetary cost weight Zero low medium high
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4.4 SUMMARY AND CONCLUSIONS

CONCLUSIONS. The monetary cost weight defines the user’s willingness-to-pay
for a higher connectivity performance. Our evaluation reveals that transmission
time selection is of particular importance when the monetary cost is considered. If
cost is neglected in the rating, i.e. the user does not care for the price to pay, most
application QoS requirements can still be satisfied from currently available net-
works through flow prioritization and network selection. However, as soon as cost
gains importance, moving delay-tolerant data transmissions to cheaper networks
dominates the rating and renders pure network selection ineffective. Nevertheless,
for any cost weight, our designed Joint Transmission Planning (JTP) continuously
shows high NRS performance of in average 87.97%. If monetary cost is considered,
it significantly outperforms the from state-of-the-art derived approaches in average
by 21.00% (NS), 8.73% (ONS) and 11.44% (DWO).

4.4 SUMMARY AND CONCLUSIONS

In this chapter, we investigate the transmission quality of combined time-network
selection, firstly, by designing a novel data transmission rating model and, sec-
ondly, by developing and evaluating a novel strategy for an explicit joint time-
network selection that we implement in our approach Joint Transmission Planning
(JTP).

Our novel transmission rating model, defining our first main contribution, cov-
ers application QoS requirements satisfaction and monetary cost. It integrates rat-
ing model components from transmission time selection and network selection
and extends them with a new throughput requirement model, which is modeled
according to the fundamental definition of throughput: an amount of data sent
within a certain time span. The model parameterizes this time span to define by
which degree a transmission is required to be continuous. If defined as a single
time slot, the model enforces continuous and instant transmission, equivalently
to models from network selection. Otherwise, the transmission is allowed to hap-
pen flexibly within the time span, enabling transfer in bursts. For a time span till
the deadline, the model equals that of transmission time selection. Thus our novel
throughput requirement model generalizes the two and is able to handle respective
data transmissions in a unified way.

Consecutively, as our second main contribution, we designed our novel Joint
Transmission Planning (JTP) with new design principles, integrating a sophisti-
cated network selection into a transmission time planning. It selects the networks
with the best flow-network matching within a certain planning time horizon and
uses the time overlap between the prospective network availability and the desired
transmission period of the data flow as a constraint for data allocation.

To evaluate JTP, we employ the designed rating model and compare JTP to
predominant state-of-the-art strategies, each representing an upper performance
bound for a certain transmission algorithm class. This is, firstly, a Network Se-
lection (NS) that allocates data to the best-matching now-available networks. Sec-
ondly, we compare an Opportunistic Network Selection (ONS) that extends NS
by the opportunity not to transmit data if the flow-network match is considered
as insufficient. Thirdly, we employ a Delayed WiFi Offloading (DWO) that tries
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to move as much data transmissions as possible to prospective available WiFi net-
works without violating transmission deadlines.

In our evaluation, we use a fractional factorial evaluation design, varying (1)
the scenario length, i.e. the planning time horizon in time slots, (2) the number
of networks, (3) the amount of data to transmit, (4) the number of different data
flows, i.e. data flow diversity and (5) the monetary cost weight, which balances the
application QoS satisfaction component of the rating model with monetary cost.
From this, we draw four main conclusions, ordered by their importance.

1. The novel Joint Transmission Planning (JTP) significantly outperforms the ap-
proaches derived from state-of-the-art in rated transmission performance by
7-26% and shows strong robustness against the applied parameter variations
(except a reduced planning time horizon) reaching 87-91% of the scenario
optimization potential.

2. The transmission performance of JTP is comparable to that when using Net-
work Selection (NS) in an environment with 4 times more networks.

3. Network Selection strategies perform well compared to JTP in scenarios with
(1) nearly no alternative networks, rendering selection at all obsolete, (2)
a huge amount of alternative networks, providing excellent connectivity at
nearly each point in time and rendering transmission time selection obsolete,
(3) an exceptional high data traffic load, rendering selective transmission de-
laying ineffective because all available network resources are required for
transmission and (4) ignoring monetary cost, as now-available networks can
in most cases satisfy application QoS requirements using simple data flow
prioritization, however, by employing predominantly expensive networks.

4. Transmission time selection strategies perform well compared to the trans-
mission performance of JTP in scenarios with sparse network resources with
some short-range networks within the planning time horizon, shifting delay-
tolerant data traffic to time slots covering short-range networks, while keep-
ing other resources free for time-critical data transfers.

In this chapter, we assumed the availability of complete information about net-
works and the data flows from a perfect prediction. In the next chapter, we investi-
gate the impact of erroneous prediction and analyze its effect on the transmission
planners. Consecutively, we design and evaluate an approach to treat arising is-
sues.



TRANSMISSION PLAN ADAPTATION

This chapter treats the performance of transmission planning under erroneous pre-
diction due to environmental changes and presents our approach to react to this
kind of uncertainty. Long-Term transmission planning using joint time-network se-
lection, as presented in the previous chapter, significantly improves the perceived
performance of the Internet connection. However, it depends on predictive infor-
mation. What happens if this prediction is erroneous? To investigate this question,
we firstly develop prediction error models for the connected vehicle scenario that
change essential characteristics of the predicted input values of transmission plan-
ning in a controlled manner, covering network characteristics, vehicle movement
and data flows to transmit. Note that we do neither rely on real data nor investigate
prediction methods. In contrast, we assume prediction to be available and analyze
how prediction errors of different kinds and strengths affect the performance of
our proposed models. From this, fundamental requirements for future prediction
models can be derived. We present a transmission plan execution algorithm and
show that its performance drops severely because it is unable to react to the en-
vironmental changes. This deficiency motivates for the design of more elaborated
execution algorithms.

Secondly, we introduce our transmission plan adaptation as an extension to
opportunistic transmission approaches, here applied to Opportunistic Transmis-
sion Planning (ONS). It implements the current transmission regarding an existing
long-term plan while reacting immediately to environmental changes. To make
the approach follow a transmission plan whenever it is feasible and, at the same
time, to give freedom for adaptation when following the plan is considered inef-
fective, we design three mechanisms that control data allocation depending on the
recognized environmental changes. Each of these mechanisms treats one certain
prediction component: network characteristics, vehicle movement and data flows
to transmit. We show that the resulting adaptation approach is able to sustain a
significant share of the performance gain from long-term transmission planning
and identify prediction error limits at which a re-planning should be preferred
over an ongoing plan adaptation.

5.1 PREDICTION ERROR MODELS

To provide a potential reality for simulation of the transmission plan execution
algorithms, we introduce prediction error models that derive actual values A from
the predicted values P, which have been employed for transmission planning. The
models implement a definable statistical prediction error between A¢ and Py, using
the parameter vy to scale the strength for scenario randomization. In this section, we
create such models for the three prediction components, network characteristics,
vehicle movement and data flows to transmit.
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To measure the error, we employ an extended Symmetrical Mean Absolute Per-
centage Error (SMAPE) [141], as defined in Equation 5.2. In contrast to the often
used Mean Average Percentage Error (MAPE), SMAPE is additionally able to han-
dle cases in which one of the two values is zero, without leading to infinite result
values. In extension to the commonly used definition, we handle the case of no
error explicitly Ay = Py in Equation 5.1, covering additionally the event of both
values being zero. To define the error of the three prediction components, we se-
lect A and Py individually for each model.

0, if Ay =Py
e(t) = (5.1)
IPAd - Glse
[Pel+]AL]
7 T
SMAPE = T ; e(t) (5.2)

5.1.1  Network Characteristics Prediction Error

The performance of an access network depends on the characteristics of its access
points and the environment. Most parts of the environment are static, like the
access point position, the landscape geometry or buildings. The signal propagation
stays about the same in this environment. Moreover, network users follow similar
patterns within their routines each day. These patterns allow network operators to
plan provisioning of sufficient resources for the daily average use. Severe under-
provision happens therefore mainly in locations, where the daily average need for
network access is expected to be small and temporal peaks are neglected.

Factors affecting the perceived transmission performance beyond that can be cat-
egorized in predictable long-term and non-predictable short-term impact factors.
A considerable share of the load is caused by heavy-tailed data traffic [187] mid-
dling out over time to a certain base load, which contributes to long-term impact
factors, barely changing over several minutes. Furthermore, randomly occurring
effects, like an unusual high user density, e.g. during public events or traffic jams,
may create a temporally dominating impact on the perceived network character-
istics due to network overload or even a transition [216, 216] of the underlying
network mechanisms [176, 181]. Furthermore, there might be effects, as torrential
rains, which affect the range of short-range network technologies. As these effects
persist for at least several minutes, we also rate them as a long-term impact that
can be considered in prediction but cause prediction errors during the transition
process.

For these long-term effects, the perceived transmission quality can be mapped
very well to the location, optionally varying in time patterns, using steadily up-
dated connectivity maps [154, 166]. For such a map creation and distribution, ad-
vanced monitoring concepts [202, 178, 177] may be employed. Accordingly, average
perceived network performance can be estimated well for the user location.

To model range-affecting effects, like in the torrential rains example, we employ
a narrow and truncated Gaussian distribution to select a number of time slots to be
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Figure 21: Network throughput prediction error model

removed from, respectively added to the center of the availability window of the

short-term network. To model other throughput prediction errors caused by these

long-term effects, we introduce a target offset ¢P-'°™9(y), which persists for a

limited random time span and is selected from a truncated Gaussian distribution.
The parameter vy scales the randomization strength, i.e. stretches or shrinks the
standard deviation of the distribution. As we consider these long-term effects to
change slowly, the actual long-term error e{P-'°™9 of the model converges to this

target offset e P-'°™9(y) over time, using a first order IIR low pass filter according

to Equation 5.3.

In contrast, user interaction creates erratic load peaks at the networks. Partially,
these peaks middle out, contributing to the base load. Nevertheless, superposing
load peeks create barely predictable fluctuations, defining short-term impact on
the network characteristics [92]. For our prediction error, we model a short-term
throughput offset e{p—Short using a truncated Gaussian distribution, re-calculated
for each single time slot (with length At of, e.g., 1 second). It contributes to our
network throughput prediction error e;?, as presented in Equation 5.4 and visu-
alized in Figure 21. Since we defined latency and jitter characteristics as invariant
within the limited planning time horizon, we vary those by a random offset from
a truncated Gaussian distribution.

Independently from the accuracy of the prediction itself, this model is able to
simulate different magnitudes of prediction errors for later analysis. To determine
the error strength SMAPE™€! of a network, we calculate the weighted sum of the
error values of throughput SMAPE', latency SMAPE'Y and jitter SMAPEI't,
according to Equation 5.5. In the evaluation in Section 5.3, we set them exemplary
to witY = wl't = 0.25and w'?,, = 0.5. For each of them, we set A; to the actual

value and P, to the predicted value. The error corresponds to the mean value over
all networks.

—

efP1om9 = o P9 (y) 4 (1 o) el G3)

tp_longetp_long+wtp_short €tp_short
t

e’ip = Wylet net t (v) (5.4)
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5.1.2 Movement Prediction Error

Movement of vehicles, and therefore the location at each point in time, depends,
firstly, on the usual travel time on road segments and, secondly, on erratic road
traffic events like traffic jams, red lights, overtaking maneuvers or crossing pedes-
trians. For arrival time estimation, employed for navigation, most of these effects
may middle out over the trip time. However, especially for middle- and short-range
networks, a spatial difference from the predicted location at a certain point in time
may result in a substantially different perceived network environment because the
vehicle is unexpectedly not in the covered area of a network.

Movement prediction errors shift, shrink or extend the time spans in which espe-
cially networks using short- and mid-range access points are available. For exam-
ple, a slower moving vehicle will reach a network access point later than expected
and stay longer in its covered range. The desired output for our movement predic-
tion error model is the temporal offset for network availability.

To model the movement prediction error, we randomly select a target velocity
v; 4"9¢ (y) from a truncated Gaussian distribution centered at the predicted veloc-

ity vP"¢4 and derive a relative velocity target error e'¢-¥ for the vehicle in time
slot t, as shown in Equation 5.6. The parameter y scales the standard deviation of
the Gaussian distribution, while its truncation stays fixed at speed zero and double
the predicted speed. As velocity is differentiable, we smoothen the target velocity
using a first order IIR low pass filter, as described in Equation 5.7 and depicted
in Figure 22. Movement errors sum up over time. Therefore, we employ an inte-
gration to derive the temporal offset €} in time slots, describing the spatial error,
presented in Equation 5.8.

Based on this offset, the vehicle perceives the network environment predicted
to be available in another time slot. We can express this in time slot shifts refer-
ring to the initial plan, which we model in a compensation function that, in the
case of a fast moving vehicle, may skip one time slot, or, in the case of a slow
moving vehicle, keeps the network characteristics of a time slot for the next one.
The model employs a compensation function f¢omp(X), presented in Equation 5.9,
which adds or removes one time slot for compensation. Note that employing trun-
cated distributions for movement randomization avoids errors beyond that, i.e.
moving backward and moving faster than double the speed. As input to calculate
the compensation e;°™? required in this time slot, the model uses the current tem-
poral offset € corrected by the sum of previous compensations At?f$¢t, as shown
in Equation 5.10. To derive the desired shifted network prediction as output, the
movement error model looks up the initial time-slotted plan of network prediction
with the calculated time offset AtTs¢t from Equation 5.11.

To measure the error strength, we define SMAPE™°V¢ using A = 0 and Py =
e;°™P /T, resulting in Equation 5.12. Setting A; = 0 means that an accurate predic-
tion does not include any compensation. However, each compensation to any time
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comp

Figure 22: Movement prediction error model

slot t contributes to the error, normalized to the predicted time span T. An average
required compensation of 1 in every time slot results in a maximum SMAPE pre-
diction error, reflecting the extreme cases of standing still or moving with at least
double speed.

— target __.,pred target
e;el,v — Vi (p’);)ed Vi = Vi pre(i(Y) —1 (56)
Vt Vt
rel_v __ ‘l”/GtV 1— rel_v
€t =oes "+ (T—a) ey (5.7)
ef =el*Vtef (5.8)
1 if x < —0.5
fcomp(x) =49—-1 ifx>0.5 (5.9)
0 else
AT = feamp (€ + ALY (5.10)
AtOffset — geomp 4 ppoffset (5.11)
1
SMAPE™OY® = - > lecomp] (5.12)

t=1
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5.1.3 Data Flow Prediction Error

Data flow prediction errors originate from unexpected events, triggering data trans-
fer in the background or from user interaction. The user may initiate, delay or
cancel a data transfer. Accordingly, we model data flow prediction errors in three
consecutive steps, reflecting those three actions.

Firstly, we add F data flows, each with a probability of pyqq. Added data flows
start at a random time slot within the planning time horizon. Their types are pre-
ferred in the following order: interactive, bufferable stream, conversational, down-
load. The flows follow randomized but typical characteristics of these categories,
c.f. Appendix A.3. The exact deviation depends on the desired scenario and user.
We provide selected values in the evaluation. Secondly, we cancel data flows with
the same probability pcancel for each flow from the new extended set. Cancella-
tion happens at a random time step from a uniform distribution with a peak at
zero duration for complete flow cancellation. In the third step, the model selects
canceled flows to be continued at a later point in time, which corresponds to an
intended pause or delay for the data transfer. The paused data flows continue with
same requirements and the remaining number of data tokens, as well as a shifted
deadline. For data flow prediction errors, the parameter y scales the probability
with which data flows are modified.

To calculate the SMAPE for data flows SMAPEfloW we set for each data flow
At s = 1 when the transmission is desired in the current time slot and P ¢ = 1 if the
desired transmission is predicted in time slot t, c.f. Equations 5.13 and 5.14. Hence,
it rates the overlap of the active times between the start time and the deadline for
each data flow in each time slot, reducing other parameters to the temporal overlap.
We do not consider other parameters, as a substantial change in other data flow
requirements is very similar to a removing the previous data flow and adding a
new one, which is covered in our model. Finally, according to Equation 5.15, we
measure the mean SMAPE over all considered data flows.

1, if tst <tgtdl

At,f — f,actual X f,actual (513)
0, else
1, if tst <t < tdl
Pt,f — 1 fpred fpred (514)
0, else
1
SMAPEftow — T D> Aps—Pyg (5.15)

teT
feFr

5.1.4 Prediction Error Examples

Figure 23 gives examples for the prediction error types. Figure 23 (a) shows a
predicted network environment, covering two networks, illustrated as dark gray
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Figure 23: Throughput for two networks over time. Network, movement and flow predic-
tion error examples with SMAPE strength o.2.
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Figure 24: Prediction error adjustment using a feedback control loop

shapes. The x-axis denotes time, whereas the y-axis shows the maximum through-
put over time, which a node can expect from this network. In the example, this
may represent a cellular network on the top, providing about constant throughput,
and a passed-by WiFi network which is available for 11 time slots, e.g. 22 seconds
at planning granularity of At = 2s. Figure 23 (b) demonstrates the effect of the
network prediction error of 0.2. The perceived network throughput differs slightly
from the predicted values in every time slot. The impact of a movement prediction
error is illustrated in Figure 23 (c), showing the case of a vehicle moving faster than
expected. The effect is not visible on the exemplified cellular network because it
provides constant throughput. In contrast, the WiFi, whose availability is limited
to a small area, gets into reach earlier and is available for one time slot less because
the vehicle passes it faster than expected. The two error models are combined in
23 (d), keeping the movement prediction error. In addition, the range of the WiFi
network is decreased, which might be caused by environmental effects, torrential
rains.

The two remaining Figures 23 (e) and (f) show the effect of the data flow pre-
diction error on an example transmission plan, consisting of allocated data to net-
works and time. Each color represents a data flow, which is allocated to networks
at corresponding time slots with a certain throughput, encoded by the height of
the bars. The transmission plan of Figure 23 (e) is derived from a prediction of 6
data flows. In the example, the prediction error leads to the following changes: (1)
the dark green data flow is canceled completely (2) two new data flows are added,
the anthracite and the blue one (3) the magenta data flow is paused and continued
later.

5.1.5 Prediction Error Adjustment

To evaluate the prediction error resistance of our algorithms, we have to derive
modified scenarios with a defined SMAPEgesireq error to the initial scenario, rep-
resenting the prediction. For all three prediction error models, the error strength
can be influenced using the parameter y. It scales trigger probabilities and the
standard deviations of distributions used for randomization. However, since the
models apply randomized modifications to the predicted scenario, the modifica-
tions and their strength (in SMAPE) are non-deterministic. Hence, the resulting
SMAPE is neither deterministic nor proportional to y but statistically correlates
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Table 12: Control parameters for the prediction error model creation feedback control

Network Movement Data Flow

Kp 0.45 0.09 0.03

positively with it. Based on this correlation, we assume that the system has a lin-
ear behavior. Hence, the control loop can then be developed with conventional
linear system theory, employing a P-control, which multiplies the control error
e(i) = SMAPEgesirea — SMAPE with a factor Kp and add the product to vy in or-
der to receive y;; 1 of the next iteration i. We continue updating the control error
in consecutive iterations as long as it exceeds estop, which we set to 0.01 for later
evaluation.

To tune the feedback control parameter Kp empirically, we employ the Ziegler-
Nichols method [225]. Accordingly, we increased the parameter Kp slowly over
multiple runs until y; starts to oscillate, defining K.rit. Finally, we set Kp =
0.5 Kcrit. As long as the controlled error does not diverge over iterations due to
controlled loop instability, a non-optimal parameter tuning is not critical. It leads
in the worst case to a slower convergence towards SMAPE gesireq in the feedback
control loop and therefore to additional CPU time required for the scenario cre-
ation process, which is relevant for simulation setup only. Therefore, convergence
and stability have not been investigated in detail. In tests, the result usually con-
verges to the desired result within a few iterations.

Yi+1 = KP(SMAPEdesiTed - SMAPF—) +Yi (516)

control error e (1)

5.2 TRANSMISSION PLAN ADAPTATION ALGORITHM

In this section, we design a transmission plan adaptation targeting robustness of
transmission quality even under erroneous prediction. We first design a transmis-
sion plan execution algorithm Exec(p) that is able to follow a given plan p. Analysis
of the execution reveals that it fails to sustain the performance gain from planning
in the presence of even small prediction errors due to its inability to react to envi-
ronmental changes. It leads to a severe drop in executed transmission plan quality.
In contrast, online algorithms, like Opportunistic Network Selection (ONS), im-
prove only the current state without considering prediction. They do not integrate
the time selection explicitly and, therefore, are not able to exploit the full optimiza-
tion potential of the analyzed transmission optimization problem. To receive an
algorithm that is flexible enough to react to environmental changes and that also
integrates time dimension, we combine the two concepts in this section. Therefore,
we use the results of long-term transmission planning to make the execution smart
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as well, employing opportunistic transmission to react to environmental changes.
We call this transmission plan adaptation Ada(p).

5.2.1 Adaptation Concept

The adaptation algorithm is based on an execution Exec(p) derived from an op-
portunistic transmission approach and touches only the current time slot of the
long-term communication plan. To let the execution follow the plan, we constrain
the decision of the underlying opportunistic approach whether to transmit data or
not, fostering each transmission that complies with the plan and suppressing each
transmission that does not comply with the plan.

Analyzing detected errors of the prediction on which the plan is based, the
adaptation approach selectively relaxes the introduced constraints of execution
and adapts parameters, unlocking selected transmission opportunities beyond the
plan as a reaction to environmental changes. For each kind of prediction error, net-
work characteristics, node movement and data to transmit, we present one dedi-
cated mechanism, which relaxes constraints if the detected environmental changes
are expected to impair the transmission quality, implementing an opportunistic
plan adaptation.

In the following, we first detail the execution algorithm, which extends an oppor-
tunistic approach with additional constraints. Second, we present the three mech-
anisms relaxing the transmission constraints, enabling opportunistic adaptation of
transmission plans when considered beneficial.

5.2.2  Plan Execution Algorithm

To explain the execution algorithm, we first recover the basics of transmission rat-
ing from Chapter 4 and, based on that, explain how execution extends opportunis-
tic approaches to follow the plan.

The transmission rating is based on a model of forces, presented in 4.1, briefly
recovered in the following. The rating function sums up two components, which
are active in a mutually exclusive manner, c.f. Equation 4.5. The first component,
the repelling forces ¢" P (p¢n ), is active when data is allocated. They punish the
violation of data flow requirements from allocation to networks with insufficient
transmission characteristics. As cost is to be minimized, the repelling forces let
data push itself away from non-matching networks. The second component, the
attracting forces c*'"(pj ), is active when data is not allocated. Note that p* = p
is a visual aid to indicate that the employed cost function component creates a cost
for non-allocated tokens. They punish dropped data and violation of minimum
throughput requirements, pushing non-allocated data towards networks.

Opportunistic approaches, as the presented Opportunistic Network Selection
(ONS) in Section 4.2.1, allocate data only if an estimated cost-benefit value, here
defined as the difference between estimated attracting c**'"(p} ;) and estimated
repelling forces cTep (pf,t,n), exceeds the cost threshold cim, as presented in Equa-
tion 5.17. To make the underlying opportunistic approach follow the transmission
plan, the execution algorithm constraints the opportunistic approach dynamically
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due to adapting the threshold cyim. If transmission should be suppressed accord-
ing to the given plan, it increases the threshold c{im to a maximum value cmax(f),
defined by the supremum of the attracting forces according to 5.18. In contrast, for
desired transmissions, the threshold c{i, is set to a minimum value ¢ i, defined
as the infimum of the repelling forces according to 5.19.

For the decision about whether to transmit or suppress allocation, i.e. which of
the two limits should be applied, the algorithm relies on a comparison of planned
and already allocated data for a data flow f to a network n at the current point in
time to, as shown in Equation 5.22. The algorithm releases the amount of planned
data pf,¢,n for transmission, according to Equation 5.20, which is defined by the
plan p and does not vary during the current time slot to. In contrast, the amount
of already allocated data s¢ ¢, in the current time slot tp, shown in Equation 5.21,
is continuously updated. As a result, the mechanism from Equation 5.22 fosters
planned transmission and, as soon as the amount of planned data has been trans-
mitted via the network in the current time slot, it suppresses transmission com-
pletely. With a perfect prediction, this results in implementing the plan accurately.

allocate if ¢ (pf ) —c"P(Prn) > Clim (5.17)

Cmax(f, t) =sup c®(pf,) (5.18)
teT

Cmin(f,t) = inf c"P(prin) (5.19)
TleNo

preH(f, to, M) = Prign (5-20)

SalloC(f’ to, TL) =Sftomn (5.21)

Cmin(f)r Salloc(f/ tO/n) < prel(fr tO/ Tl)
Clim = (5-22)
cmax(f), else

The execution algorithm Exec(p) performs well for perfect prediction but fails to
deliver acceptable results in the case of prediction errors, as presented in the eval-
uation in Section 5.3, because it is not able to react to environmental changes. The
underlying opportunistic approach, in contrast, is fully reactive and does not rely
on prediction. The following three adaptation mechanisms relax the constraints
and modify parameters of the execution algorithm in a way that, in the case of
prediction errors, it transmits data partially opportunistically, preserving the time-
network selection from the plan if possible. Each of the adaptation mechanisms
handles a certain kind of prediction error, network characteristics, node movement
and data flow changes.
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5.2.3 Extended Data Release Mechanism

The extended data release Mechanism is dedicated to handling network changes, re-
laxing, firstly, the network selection restrictions from the execution algorithm and,
secondly, the data release limitations of the algorithm. Changed network character-
istics can even affect whether it is beneficial to transmit or not. The opportunistic
approach is able to handle exactly this decision on its own by definition. Hence, to
relax the compliance to the planning and pass this responsibility, we modify the
lower threshold limit cin, setting it to zero according to equation 5.23, which is
the default threshold of the opportunistic approach ONS. In this case, the approach
decides for transmission as soon as it is considered beneficial, i.e. when the esti-
mated attracting forces exceed the repelling ones, defined by the rating function.

Cmin (fr t) =0 (523)

Furthermore, we handle network characteristic changes influencing the network
prioritization. In this case, we ignore the planned network selection and consider
planned time selection only. Therefore, the adaptation mechanism stops distin-
guishing between networks, considering the sum of allocated data in the current
time slot to over all networks N instead of checking each network individually.
This constraint relaxation leads to an automatic fallback to the opportunistic ap-
proach’s network selection algorithm. This is reflected in the sum over networks in
Equations 5.24 and 5.25.

Finally, network characteristics might cover unbiased short-term fluctuations of
the network throughput, based on the network load due to other clients, which
are close to impossible to foresee and, thus, usually averaged out for prediction.
Hence, the mechanism relaxes the amount of released data from the current time
slot, releasing data for each time slots after the planned transmission. In the case
of a lower data rate in the current time slot, not all data planned for allocation can
be transmitted. In the opposite case of additional data resources being available,
the mechanism fills gaps with data, which has been allocated in the plan earlier
but could not be transmitted, plus data, which has not been allocated in the plan
p§, according to the Equations 5.24. and 5.25. The new mechanism allows to trans-
mitting this data at a later point in time when there exist additional free network
resources. Furthermore, data, which was not planned or failed to be transmitted,
is used to fill free additional network resources if considered beneficial.

to
prel(f/ tO/n) = P? + Z Z Pfitn (524)
t=0neN
to
seMo(fto,m) =) Y span (5.25)

t=0neN
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5.2.4 Location Reference Mechanism

To cope with movement prediction errors, we present our corresponding adap-
tation mechanism, which refers to the initial plan by vehicle location instead of
time. When a vehicle moves e.g. faster than predicted, it reaches and leaves short
range networks earlier than expected, as shown in the example in Figure 23 (a,c).
Compared to the prediction, location-dependent network characteristics move to
another point in time. As a result, network availability is modified from the initial
time-line, impacting on the network selection of the transmission plan. However,
for delay-tolerant data transfers, the impact of network selection according to the
plan dominates the impact of allocating data at the planned transmission time. To
handle this issue, we introduce our location reference mechanism.

For delay-tolerant data, it refers to the time slot in the transmission plan, which
corresponds to the current vehicle location, preserving the initial network selection.
Thus it considers the spatial dimension of the plan, ignoring the temporal one,
employing a temporal offset emmove(to) to refer to the plan.

However, for non-delay tolerant data flows, e.g. interactive ones, this temporal
offset for transmission may lead to a violation of temporal QoS requirements, like
throughput continuity or a deadline. Hence, we limit the temporal offset € move(to)
to the maximum delay-tolerance of the data flow, which our model from Section
4.1.2.4 encodes in a throughput requirement window parameter Af}“m, according
to Equation 5.26. To determine the location referenced time slot tloc(f, to), we
add or remove the offset from the current time slot ty according to Equation 5.27,
depending on whether the temporal offset €move(to) is positive or negative.

t(f)ffset = min(A/t\}nin/ ”emove(tO) ”) (526)

to + t(f)ffset’ emove(to) >0

t'O¢(f, t0) = (5.27)

to —toffset else

Referring to the correspondent vehicle location to release data covers a substan-
tial issue: whenever the car stops, there is no further change of the location and,
thus, no additional data is released for transmission. The transmission pauses even
though there might be sufficient resources. The issue arises similarly when the ve-
hicle moves slower than expected. To address this problem, the mechanism relaxes
the condition for selecting the opportunistic transmission threshold ciim. It re-
leases data whenever a transmission for the flow is planned in the referred to time
slot, as shown in Equation 5.28, replacing the trigger used in Equation 5.22. Hence,
it is an additional trigger to allow transmission.

sAttoc(f 1o, m) < pTeH(f, t'°¢(f, to),n) or <Z pf,ttoc(f,tom> >0 (5.28)

neN
The transmission condition acts independently from the condition of the extended
release mechanism. Therefore, data allocated from this condition may not be re-
leased yet. Hence, it ‘borrows” unreleased data to transmit from consecutive time
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slots in which their transmission was planned. Hence, adding robustness against
slow vehicle movement, it completes our location reference mechanism. Accordingly,
the location reference mechanism is designed to handle especially movement pre-
diction errors. It, firstly, preserves network selection for delay-tolerant data and,
secondly, handles data release shortages during a slower than expected vehicle
movement.

5.2.5 Flow Prediction Error Handling

The third mechanism of our adaptation algorithm handles flow prediction errors.
Flow prediction errors refer to additional data to be transmitted, time shifts in
data transmission and canceled data transmission. For the first case of new data,
there exist no reference in the plan. Therefore, we release this data instantly for
opportunistic transmission, handling it equivalently to the non-allocated data p7}
in the plan. This way, the opportunistic algorithm automatically prioritizes active
data flows, integrating the new ones into the ongoing transmission. In the case
of canceled data transmission, other data flows may consume the freed up addi-
tional network resources, which is similar to paused and moved data transmissions.
This behavior is covered for already active transmissions from the location reference
mechanism. For all other data flows, this is handled of the underlying opportunis-
tic approach as follows. We use the SMAPE flow prediction error SMAPE oW (f, 1)
to determine the change of the data flow. For small changes at a dedicated flow f,
the planning might still be efficient. However, with a rising error for the flow, the
probability rises that the planning is inefficient. Hence, we design a smooth trans-
formation from the planned to an opportunistic transmission in order to react to
flow prediction errors. By default, the execution mechanism sets the opportunistic
threshold ciim to crmax to suppress a transmission of a data flow. In contrast, when
flow prediction errors occur, our approach does not suppress data allocation but
restrict it to opportunities in which at least an error-dependent benefit threshold
is reached. Therefore, we multiply the value c[}&* with a function x(f,t) € [0..1]
according to Equation 5.31. In our model, we select «(f,t) according to Equation
5.29 depending on the SMAPE flow error function between the current point in
time ty and one throughput window length At™™ back. Why do we limit this
time span? The flow prediction error, as defined in Section 5.1.3, calculates the
mean of the error over the analyzed time slots. Applying the mean value equals a
low pass filter and suppresses dynamics in the result. Accordingly, if the analyzed
time span were not limited but covered the entire planning time horizon, the filter
length would rise as well. Therefore, the reaction to flow prediction errors at the
very start of the prediction time horizon would be heavier than at a later point in
time, because a single value takes less effect in the mean. When a higher number
of other values is considered, it is essential to limit the analyzed time span for flow
prediction errors. Why do we select the throughput window length At™™ of the
data flow? As discussed above, Aﬂ“i” indicates the delay-tolerance of a data flow.
Hence, a data flow with a short delay tolerance requires fast reaction to detected
flow prediction errors. Keeping its desired transmission time is more critical than
keeping a planned network selection. In contrast, a slight shift of e.g. the desired
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Figure 25: Schematic of adaptation algorithm: Basic data release mechanism (blue) and
flow prediction error handling (orange).

transmission start for a highly delay-tolerant data transfer might not influence the
feasibility of a transmission plan at all.

In fact, the function «(f,t) decreases the strength of the suppression of unre-
leased data, depending on the flow prediction error. Reducing c1.%* allows the
underlying opportunistic approach to allocate unreleased data to well matching
opportunities. Thus, at an entirely wrong prediction, the algorithm behavior con-
verges to a fully opportunistic transmission of the data flow. A slightly wrong pre-
diction enables early opportunistic transmissions, whenever opportunities come
up for which a sufficiently high benefit is expected. Thus, prediction errors de-
grade the threshold of the underlying opportunistic approach. As a result, the
transmission may be earlier, i.e. more conservative, as it is not restricted to the
best-expected opportunity. The finally resulting adaptation algorithm threshold is

given in Equation 5.31.

to
€11 w(f/ t)
o(f, to) =1— Z f%ﬁ (5-29)
t=to—ATMn f
Cmax(f; tO) = sup Cattr(p?,t,n) : O((f/ tO) (530)

teT

Final adaptation algorithm threshold:

Salloc“:/toln) < prel(f,tloc(f,to),n)
0,
neN

SUp et Cattr(PFen) - &(f, to), else
(5.31)
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5.2.6  Adaptation Design Discussion

To illustrate the characteristics of our adaptation mechanism, we give an example
in Figure 25. It shows the maximum benefit for a data allocation over time as a
thin black curve. In the example, it has two maxima. In addition, the figure shows
the default cost-benefit threshold for allocation decision of Opportunistic Network
Selection (ONS) c1im = 0 as a red horizontal line over time. Opportunistic Network
Selection transmits data at the earliest opportunity for which it expects a benefit,
here during the left 'hill’. In contrast, Joint Transmission Planning (JTP) analyzes
the opportunities within the entire planning time horizon and selects the best-
expected ones for transmission. In the example, this corresponds to the right and
higher benefit ‘hill’. The transmission time spans of the approaches are marked as
colored bars in the figure. To visualize of the data release mechanism, we draw a
gray dashed line at the right, which exemplifies the amount of released data in the
plan of JTP for a data flow over time.

With perfect prediction, the adaptation mechanism releases data, which the un-
derlying opportunistic approach instantly allocates to the according networks. As
a result of newly released data in these time slots, the opportunistic transmission
threshold c1im is set to the ONS default zero, as illustrated with the blue line of
Ada(JTP)-rel. The blue bar below it indicates similar transmission of the data flow
as planned. What happens in the the case of erroneous predictions? In the case of a
data flow prediction error, the a-function reduces the threshold ciim dynamically,
illustrated in the figure as an orange curved line, Ada(JTP). In the example, this
leads to the partial earlier and more conservative transmission of the data flow,
indicated by the orange bar. In the following, we present four selected prediction
error scenarios and explain the adaptation approach’s automatic reactions.

Network We consider a case in which the latency of the network planned for

latency allocation is substantially higher than expected, leading to an appli-
cation requirement violation during strict execution. In contrast, the
adaptation Ada(p) releases data for allocation but does neither en-
force to follow the network selection nor the allocation decision. Af-
ter analyzing the actual environment, the underlying opportunistic
approach decides whether another network suits better for transmis-
sion or not.

Throughput  In the case of lower throughput than expected for the target network,

shortage not all released data can be transmitted as soon as planned. The re-
lease mechanism allows the approach to continue the data transfer
beyond the planned transmission time’s end. The same holds for al-
location of additional data to be transmitted, which causes the same
effect as data with an earlier expected transmission. The underlying
opportunistic approach automatically prioritizes data flows and de-
cides whether to reduce data rates of flows or to take over resources,
which have been reserved for another data flow in the planning. This
behavior can cope with resource shortages efficiently, using the op-
portunistic fallback strategy to weave in unplanned data.
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Throughput ~ During unexpected high throughput phases or a cancellation of a

over- planned data transmission, a straight plan execution cannot use the

provision additional free resources. In contrast, the location reference mechanism
enables transmission of as many tokens as possible whenever a data
transmission is planned. These additional allocations can speed up
the data transfer beyond the planning. Furthermore, the underlying
opportunistic approach automatically fills up the unused resources
with new, dropped or delayed data of other flows if this is considered
beneficial.

Different Faster or slower movement of the vehicle than expected leads to a

Movement  location offset, changing the perceived network environment at a
certain point in time. Since planning selects the transmission time
with respect to the availability of a matching network, referring to
transmission time does not completely reflect the intent of the plan-
ning. Networks of the planned transmission might be unavailable.
Thus, a straight execution fails. In contrast, our location reference
mechanism of the adaptation preserves the network selection by re-
selection of the transmission time in the limits of the flow’s delay-
tolerance. Therefore, it looks up the transmission plan at a refer-
ence time slot corresponding to the current vehicle location. This
re-selection of time might lead to a significantly new distribution
of data because the transmissions of different data flows are moved
independently from each other regarding their individually limited
time offsets. The underlying opportunistic approach implements a
possible re-allocation for this new data distribution.

Conclusively, the three mechanisms of our adaptation algorithm sustain benefi-
cial characteristics of planning whenever possible. In particular, they cope with all
three identified kinds of prediction errors: network characteristics, vehicle move-
ment and data flow prediction errors. Furthermore, the underlying opportunistic
approach for adaptation guarantees feasibility of the data allocation and changes
planned decisions on the fly when more beneficial transmission opportunities arise.
Thus, our adaptation algorithm combines the advantages of the two worlds: the
flexibility of opportunistic approaches and the long-term benefits from planning.

Our adaptation algorithm Ada(p) is integrated into the data allocation decision
of opportunistic network selection approaches. The underlying opportunistic ap-
proach of our adaptation algorithm is, in general, exchangeable. For evaluation,
we apply the algorithm to the Opportunistic Network Selection (ONS), which ap-
plies the heuristics developed in Chapter 4.2.2. Its core is the basic Network Se-
lection (NS), which it extends to the opportunistic allocation decision. To use it as
adaptation, the approach integrates our above-designed mechanisms. Therefore, it
replaces the constant ciim by the dynamic adaptation component in Equation 5.31.
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5.3 EVALUATION

In this section, we evaluate the resulting transmission quality and the execution
time of the adaptation approach and compare it to pure transmission plan exe-
cution and the online approach ONS. Firstly, we detail the evaluation setup with
controlled and dependent variables and, secondly, we present and discuss the re-
sults.

5.3.1 Evaluation Setup

To evaluate the adaptation, we measure its performance in scenarios with pre-
diction errors (SMAPE) as controlled variable and compare it to that of the op-
portunistic approach (ONS) and, for reference, to that of the Joint Transmission
Planning (JTP) with perfect prediction. To rate the performance, we apply the Nor-
malized Rating Score (NRS), according to 4.3.1.1. It normalizes the transmission
performance, defined in our rating model in Section 4.3.1, between the cost func-
tion value of an optimal plan and the average of random transmission plans and
determines the used share of the scenario’s optimization potential, defined as the
margin between these two bounds. We vary the SMAPE prediction error between
0.0 and 0.5, isolated for each of the three kinds of prediction error. Finally, we
present a combined prediction error, which superposes the three error models in
one scenario with the same SMAPE for each of the three. In addition, we pro-
vide an analysis of the algorithm execution times. Time measurements have been
performed using a single core of a server machine with Intel Xeon E5-2643 v3 @
3.4GHz and 512 GB RAM. For each run, we evaluated 50 randomized scenarios,
each with 100 time slots planning horizon length, 8 data flows and 8 networks,
equivalently to the default evaluation setup in Chapter 4. Note that the number of
data flows may vary in the flow and combined prediction error evaluation due to
adding or canceling data flows, according to the model. To show the typical perfor-
mance and its distribution, we give the Q25+, Q509 (median) and Q759 quantiles.

We show the performance of the adaptation approach with underlying ONS, ex-
ecuting transmission plans of Joint Transmission Planning approach (JTP) and acti-
vate different parts of the adaptation mechanism to show their effects. Exec(JTP) is
a pure execution of the transmission plan. The Ada(JTP)-rel represents the adapta-
tion approach with only the extended release mechanism activated, aiming to pro-
vide robustness against network changes. Ada(JTP)-rel-loc provides the results of
the adaptation after adding the location reference mechanism, addressing movement
prediction errors. The final approach, incorporating all three mechanisms, also the
flow prediction error handling, is denoted by Ada(JTP). Furthermore, we compare the
results of applying adaptation to an optimal plan to estimate the benefits of using
advanced planning approaches.

5.3.2 Impact of Network Prediction Errors

The SMAPE network prediction error quantifies the changes in the network through-
put, latency and jitter compared to the prediction. Those changes can reduce or



5.3 EVALUATION

increase the amount of transmittable data and affect the flow-network matching.
The error model is dominated by short-term network throughput fluctuations, re-
sulting from the activity of other users sharing network resources. We analyze the
effects of this error on execution Exec(JTP) and adaptation Ada(JTP) of plans from
Joint Transmission Planning (JTP) as well as optimal plans Ada(Opt).

PLAN EXECUTION. Figure 26 (a) shows the Normalized Rating Score (NRS) of
the analyzed approaches. Even small changes in the network environment render
the pure execution Exec(JTP) (cyan dashed) ineffective, dropping nearly down to
the performance of random plans at a SMAPE of 0.5, as presented in the absolute
cost value results in Figure 26 top right. The execution suffers from complete in-
flexibility, not being able to react to changes. This deficit is visible from the RDS
analysis of the execution in Figure 27 (e), showing a significant amount of un-
scheduled tokens, which leads to further violation of the minimum throughput
requirements, compared to the cost-value-optimized plan. A huge imbalance of
these two factors, owned by the attracting forces, to a significantly lower monetary
cost, belonging to the repelling forces, shows that the execution Exec(JTP) fails in
the decision whether to transmit data or not. Whenever a planned transmission
cannot be completed as planned, the approach drops the data, reaching an ad-
ditional data drop rate of 26.97% compared to an optimal plan, as visualized in
Figure 26 (c). These results attest the deficits of the approach, leading to substan-
tial inefficiency in transmission and evidence the need for a more flexible approach:
adaptation.

ADAPTATION. For the adaptation approach, the performance results are in the
desired range between Joint Transmission Planning (JTP) using perfect prediction
and Opportunistic Network Selection (ONS), converging towards the second. The
NRS results of the two framing approaches sink slightly with rising network pre-
diction error. We assume this to be caused from in imbalance in the network change
model, which tends to increase the amount of available access network resources,
decreasing the relative amount of data traffic, which is correlated with a slightly
worse performance of the two approaches, as identified in Section 4.3.5.
Activating only the extended data release mechanism of the adaptation, which is
designed to handle network changes, Ada(JTP)-rel (red dashed) sustains a benefit
of 7.76% NRS for moderate prediction errors of 0.3, corresponding to 65.64% of
the of the margin between ONS and JTP. Even for a high SMAPE of o.5 a perfor-
mance gain of 4.5% NRS, corresponding to 36.23% is achieved. The performance
of the approach with location reference mechanism Ada(JTP)-rel-loc and the com-
plete adaptation Ada(JTP) show equal performance to each other, slightly better
than activating the first mechanism only. This improvement is achieved by the lo-
cation reference mechanism, releasing all remaining data of flows in time slots in
which the flows have been allocated in the plan, helping to fill unexpected ad-
ditional network resources. As it can be seen from Figure 26 (c), the long-term
delay rate of the adaptation sinks in comparison to the optimum and JTP, converg-
ing towards this of ONS. The Relative Detail Score in Figure 27 (c) confirms this
behavior. Comparing the characteristics to those of JTP and ONS, the convergence
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towards ONS gets obvious with slightly sinking values, except the substantially ris-
ing monetary cost criteria, indicating the loss of the superior temporal transmission
pattern of JTP with stronger network changes, forfeiting purposeful transmission
delaying. This effect claims that planned data for which transmission could not be
completed should not always be released completely, as dictated from the mecha-
nism, but rather be considered to be delayed further. However, this decision relies
on an analysis of future available network resources, corresponding to planning
rather than adaptation. Since the resulting performance loss is limited, only high
network prediction errors justify triggering of a more complex re-planning using
freshly predicted input data. For small and medium network prediction errors, the
adaptation mechanism works effectively.

OPTIMAL INITIAL PLAN. Adaptation of an optimal plan Ada(Opt), according
to Figure 26 (a), leads to worse results by 4-6% NRS in comparison to Ada(JTP)
even though the initial plan is better. This is caused by an ambiguity of the opti-
mum for long-term planning. For a planning horizon, the optimum for the first
part alone differs from that of considering the complete plan. While the optimiza-
tion considers all possibilities in the considered planning horizon to improve a
long-term plan as a whole, ONS, the underlying approach of adaptation, opti-
mizes the current time slot only with a statistical delaying. Optimization over time
dimension creates long-term plans with a global optimum, referring to the entire
planning horizon, compared to online approaches targeting local optima, referring
to a single time slot only. When regarding a single time slot of a long-term plan,
this disparity takes effect in apparent priority inversions, firstly, for data flows
and, secondly, in the flow-network mappings. In the adaptation, the disparity of
the approaches leads to a mix of the two, partially eliminating the global optimum,
converging towards local optima. Since inversions are less often in JTP because of
using the same network selection as ONS, it is easier for ONS to interpret the
plan regarding efficient transmission. Hence, adapted plans from JTP outperform
adapted optimal plans Ada(Opt) for network changes. Considering the execution
time in Figure 26 bottom right, the disparity of approaches is also indicated from
a higher computational effort of Ada(Opt) compared to Ada(JTP), reflecting more
changes to the plan through adaptation. As follows, this can also be seen in the
Relative Detail Score (RDS) analysis in Figure 27 (d). Heading to a characteristic
similar to that of the execution mechanism at small prediction errors till a SMAPE
of 0.1, the RDS of Ada(Opt) converges very fast towards the characteristics of ONS
with low overall RDS values except causing a substantially higher monetary cost
compared to the optimal transmission plan. This higher cost reflects the limited
time selection capabilities of ONS, targeting local optima for single time slots. De-
spite these effects, the adaptation approach, when applied to plans from the op-
timal approach Ada(Opt), performs significantly better than ONS alone, profiting
from the original temporal transmission patterns of the optimization.

concLUsIONS. The adaptation approach Ada(JTP) succeeds with handling net-
work changes due to its extended data release mechanism, sustaining even for large
SMAPE prediction errors of 0.5 a performance gain of 4.5% NRS (36.23%). For
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moderate errors of 0.3, it can even sustain a gain of 7.76% (65.64%). It profits from
the similarity of algorithms for planning and adaptation, helping the approach
to identify planned behavior as beneficial. Therefore, in the presence of network
changes, the adaptation of plans from Joint Transmission Planning even leads to a
better overall performance than the adaptation of an optimal plan.

5.3.3 Impact of Movement Prediction Errors

The vehicle speed affects the time at which a node reaches a certain location, de-
termining basic network availability and characteristics. If the node moves faster
or slower than expected, the predicted network characteristics are shifted to an-
other point in time, creating a temporal offset for experiencing the expected net-
work environment. We analyze the effects of the movement prediction error on the
adaptation and execution approach in the following.

EXECUTION. Pure plan execution shows, similar to the behavior in network
prediction errors, a severely decreasing performance, even for small movement
changes, as presented in the NRS results in Figure 28 (a). The absolute cost value
of Exec(JTP) reveals that it performs even worse than the random approach in av-
erage for high movement prediction errors. The data drop rate presented in Figure
28 (c) and the RDS characteristic in Figure 29 (e) conforms to those of the net-
work prediction error analysis, showing the execution’s deficit of not being able to
transmit data at a later point in time if transmission as planned failed.

ADAPTATION. In contrast, the adaptation approach Ada(JTP) performs well,
reaching NRS results framed by those of JTP with perfect prediction and ONS,
as visualized in Figure 28 (a). 6.24% NRS over ONS, representing 57.26% of the
margin between JTP and ONS for a large SMAPE movement prediction error of
0.5. These results attest the effectiveness of the location reference mechanism of the
adaptation approach, targeting mitigation of the impacts of temporal offsets for ex-
periencing network environments. In referring to the plan in a spatial dimension,
the approach sustains the network selection from planning. To ensure compliance
with temporal transmission requirements, like holding deadlines, the temporal off-
set for spatial reference to the plan is limited to the delay-tolerance of the specific
data flow. Complying to that, the RDS results in Figure 29 (c) show close to optimal
performance for the time limits criteria, while also keeping all other criteria low.
Compared to the RDS characteristics of the JTP approach with perfect prediction,
shown in Figure 29 (a), only the monetary cost characteristic shows significantly
impaired results, still outperforming the corresponding results of ONS. The ap-
proach Ada(JTP)-rel-loc without the data flow prediction error handling performs
equally. However, when only applying the extended data release mechanism, i.e.
the Ada(JTP)-rel, the performance sinks significantly faster. Since networks are,
due to the applied prediction error, in many cases not available for transmission as
planned, the location the approach releases the data to be transmitted opportunis-
tically, thus, converging towards the performance of ONS significantly faster.
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OPTIMAL INITIAL PLAN. Applying adaptation to an optimal plan Ada(Opt)
does not reach the performance of applying it to the initially worse plan of JTP in
the presence of movement prediction errors, as visualized in Figure 28 (a,b). De-
spite of the similarity of the performance characteristics with that of the network
prediction error analysis, showing a rapid performance drop, the details behind
this claim different reasons, as visible from the RDS analysis in Figure 29 (d). The
RDS values for unscheduled tokens keeps constantly high, while the monetary cost
keeps constantly low. In contrast to the effects in the presence of network predic-
tion errors, the movement prediction error does not let the result converge against
the local optima. The RDS characteristics stay constant and differ from those ob-
served for ONS, as shown in Figure 29 (b), resembling the RDS results of the
execution algorithm, which transmits less data than beneficial. This claim is con-
firmed by the data drop analysis in Figure 28 (c), showing an increased data drop
rate for the Ada(Opt) approach compared to the optimal one Opt (black dashed).
However, the difference is far lower compared that of the execution. Despite the
data dropping effects, the approach Ada(Opt) is still able to sustain a gain of 4.14%
NRS over ONS, corresponding to 41.90% of the margin between ONS and JTP.

coNcLUSIONS. The adaptation approach with its location reference mechanism
is able to sustain 61.07% the performance gain from JTP over ONS for a moderate
SMAPE movement prediction error of 0.3. It seems to go into saturation after that,
sustaining still 57.26% at high movement prediction errors of o.5. This outstanding
result shows that movement prediction errors must be considered only as a minor
factor in triggering a re-planning of the transmission. Furthermore, the analysis
of adapting an optimal plan claims that the planning and adaptation approaches
should go hand in hand in order to sustain the benefits reached in the plan effi-
ciently. Accordingly, even though the initial plan of JTP is worse than optimal, the
performance after adaptation in the presence of network and movement changes
is significantly higher than that of an adapted optimal plan.

5.3.4 Impact of Data Flow Prediction Errors

User interaction or events triggering transmission in the background may add, can-
cel or delay data flows, resulting in differences in the planning. New data flows
may interfere with planned traffic, competing for network resources, while can-
celed flows release additional resources usable for other data. In the following, we
analyze the effects of data flow changes and how well adaptation mitigates their
impact.

PLAN EXECUTION. For data flow prediction errors, we observe a strong impact
on all approaches. The performance of execution Exec(JTP) shows a high variance
and drops in median already for small SMAPE data flow prediction errors of 0.1
below the averaged random performance. It drops even further to about 10 times
the cost of random approaches for moderate and high data flow prediction error
strengths, as shown in 30 (a,b). An obvious reason for this is that new data flows
are not covered in the plan and, hence, are not considered for transmission at all,
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leading to a strong impact of their attracting forces. The data dropping analysis
in Figure 31 (c) shows that 36.93% additional data is dropped from the execu-
tion Exec(JTP) with strong data flow changes, affecting the performance rating.
However, the RDS analysis of Exec(JTP) in Figure 31 (e) reveals that this impact
is dominated by another one. While all other RDS criteria converge towards zero
with rising data flow prediction error, the time limits criterion reaches a stable
value of about o0.1. Delaying data flows or stopping them earlier changes their start
times and deadlines. However, if an execution follows the old deadlines, this leads
to severe time limit violation, causing exceptional high repelling forces. Compared
to this impact, the other criteria get negligibly small. This demonstrates the impor-
tance of re-evaluating data allocation of a plan before transmission, as performed
by the adaptation approach.

As desired, the results of JTP with optimal prediction and ONS frame the perfor-
mance results of adaptation for any data flow prediction error, illustrated in Figure
30 (a). However, this envelope shows a negative performance trend in NRS with an
increasing variance during more data flow changes. We expect this to be caused
by the trend of the prediction error model to add additional data flows, which
complies with the negative correlation with the scenario optimization potential as
identified in Chapter 4, shown in the Appendix A.5.4.

ADAPTATION. The characteristics of the adaptation for a rising data flow pre-
diction error shows a strong convergence towards ONS, without reaching its lower
results. At an error of 0.5, the sustained gain from planning Ada(JTP) shrinks
down to 1.4% NRS, corresponding to 11.07% of the margin between ONS and
JTP using perfect prediction. For a moderate data flow prediction error of 0.3, the
gain is even 5.67% NRS (55.56%). In comparison to the sustained gains for the
network and movement changes of 4.5% NRS (36,23%) and 6.24% NRS (57.62%),
this is small. The adaptation’s Relative Detail Score (RDS) characteristics conse-
quently converge towards those of ONS with a higher monetary cost value and
slowly falling other characteristics due to the relative decrease of the impact of
these criteria. Regarding NRS results, the flow prediction error leads to differences
between Ada(JTP) and Ada(JTP)-rel-loc, which does not integrate the data flow pre-
diction error handling mechanism. The performance gain from this is negligible for
small errors but mitigates the impact of strong errors above 0.3, sustaining a gain
from planning and keeping performance above that of ONS, as visible in Figure
30 (a) However, the adaptation approach shows a slightly lower dropping rate for
medium prediction errors, close to those of ONS, catching up again to the value
of the optimum for higher errors. To give a visual impression of the strength of
changes, a typical example scenario with SMAPE of 0.5 is shown in the Appendix
AL6.

OPTIMAL INITIAL PLAN. In contrast to the other prediction error components,
applying adaptation to an optimal plan Ada(Opt) in the presence of data flow pre-
diction errors, sustaining a gain of 2.2% NRS (17.40%), outperforms the result of
applying adaptation to a JTP plan Ada(JTP), as visible in Figure 30 (a). The data
drop rate of Ada(Opt), presented in Figure 30 (c), is significantly higher than that
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for the adaptation of JTP plans. This is also reflected in the RDS results, visualized
in Figure 31 (d), showing a high but slowly sinking impact of unscheduled tokens
on the result, accompanied with a growing impact of the monetary cost criterion.
Besides that, constantly low RDS values confirm the similarity to ONS after apply-
ing adaptation targeting slot-wise local optima and increasing especially monetary
cost. This characteristic indicates that with a higher prediction error, more data is
allocated in a non-optimal way using ONS. Even though the trends in RDS and
NRS are similar for adapting a plan from JTP and an optimal plan, the much higher
drop rate of Ada(Opt) is prominent. We assume this to be caused by the different
allocation strategies of ONS and the optimal one, leading to the disparity of global
and local optima, as explained in the movement change analysis.

CONCLUSIONS. Data flow changes impair the performance at most of the three
prediction errors. While, at a SMAPE flow prediction error of 0.3, the adaptation
is able to sustain 5.67% NRS, corresponding to 55.56% of the margin between
ONS and JTP with perfect prediction, the value sinks to 1.41% NRS (11.07%) at
an error of 0.5. Thus, high flow prediction errors should be employed to trigger
a re-planning. For adaptation of an optimal plan, the performance after handling
data flow prediction errors is above that of adaptation of a transmission plan of
JTP.

5.3.5 Impact of Combined Prediction Errors

In reality, environmental changes do not occur isolated from another. Hence, we
create a combined prediction error, which simultaneously adds the three categories
of environmental changes with equal strength to the scenario. In this section, we
analyze the effect of this combination of errors and their impact on the adaptation
approach.

The characteristics of the adaptation approaches for the combined prediction er-
ror are dominated by the data flow changes. The reason for this is the dependence
of the changes on the plan. However, data flow changes add and remove data, re-
ducing the share of transmissions that can be executed according to the initial plan.
In contrast, network and node movement changes affect only planned data and re-
duce the efficiency of the transmission because, with increasing prediction errors,
long-term planning decisions pursuing a global optimum are replaced by online
decisions, approximating the local optimum for the current time slot for planning
data. Accordingly, the two error components apply only to this reduced share of
data, for which a reference in the initial plan still exists, thus, limiting their impact
on performance and reasoning the impact dominance of data flow changes.

EXECUTION. For the execution Exec(JTP) and a SMAPE of o.5, there are median
data drop rates of 70%, as visualized in Figure 32 (c). Similarly to the effects of
isolated data flow changes, this is dominated from time limit violations, as indi-
cated from Figure 33 (e). A performance far below that of averaged random plans
renders pure execution inefficient.
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Figure 33: Relative Detail Scores over combined prediction error (SMAPE)



5.3 EVALUATION

ADAPTATION. As for the precedent change analyses, the performance results
of JTP with perfect prediction and ONS construct a frame around the adaptation
approach results, as depicted in Figure 32 (a,b). They follow a decreasing trend
as seen for the isolated data flow changes. With increasing data flow changes, the
performance of the adaptation approach Ada(JTP) sinks in median about linear in
NRS, however with increasing variance. It converges towards the resulting qual-
ity of ONS, joining it at a SMAPE of 0.3, after which there is no significant gain
from planning in comparison to applying ONS alone. Not falling below the per-
formance of ONS, the adaptation demonstrates that it passes at least as much data
as required to be treated from ONS. Even though the overall performance joins
that of ONS, the resulting transmission is not identical. As shown in Figure 32
(c), the data drop rate of Ada(JTP) differs significantly from the data drop rate of
ONS, sinking from being close to the optimal to the center between optimal and
ONS. The Relative Detail Score (RDS) results, presented in Figure 33 (c), resemble
a mix of the characteristics of network and data flow prediction errors with slowly
rising monetary cost RDS values but high variances. Other RDS values constantly
stay low, meaning that, compared to an optimal plan, monetary cost violations
dominate the performance impact, followed by unscheduled tokens and minimum
throughput requirement violations. This result shows that a SMAPE of 0.3 for each
prediction error qualifies re-planning.

INITIAL OPTIMAL PLAN. In comparison, the adaptation of an optimal plan
Ada(Opt) shows similar performance with a positive peak at SMAPE 0.4 and, more
important, a lower variance of the results. Hence, even though the performance of
Ada(Opt) is worse in isolated assessment after applying environment changes for
the network environment and node movement, in the combined error analysis, it
outperforms adaptation of a JTP plan. The mechanisms of adaptation handling
network and movement changes can only sustain a gain from data, for which a
reference exists in the initial plan. Hence, after applying data flow changes, these
two lose their effect for changed data flows, explaining impact dominance of data
flow changes over the other two. Furthermore, while the data drop rate for adap-
tation of JTP follows that of its initial plan, adapting the optimal plan converges
towards ONS with an initial tendency to the pure execution. As follows, this is
confirmed by the RDS analysis in Figure 33 (d). While at low SMAPE errors being
dominated from a high data drop rate, i.e. the RDS value unscheduled tokens, the
characteristics converge towards the RDS results of ONS showing a high monetary
cost value. As illustrated in Figure 32 (d), the additional efforts for adapting the
initial plans are reflected by a rising execution time, indicating the higher change
rate through adaptation.

DISCUSSION. The combined error analysis demonstrates the feasibility of the
adaptation approach. For simultaneously occurring moderate prediction errors,
the adaptation is able to sustain a gain from initial transmission plans, while even
after convergence to ONS, the approach does not perform worse. With combined
environmental changes, the data flow prediction error dominates the result, reduc-
ing the impact of the other two, since they affect only data transmissions, which
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comply to the plan. Hence, the data flow prediction error is the most important
factor for considering re-planning.

5.3.6  Execution Time Analysis and Re-Planning

The measured execution times provided in the previous sections cover the exe-
cution of all time slots of the planning horizon. However, online algorithms, like
ONS and the adaptation are executed consecutively slot by slot, each at the re-
quired point in time, using the current state environmental state. Hence, we nor-
malize the execution time of these online approaches by the number of time slots
in Figure 34 for the scenario of 8 networks and 8 data flows. Accordingly, after an
initialization overhead, the planning approach JTP follows a linearly rising char-
acteristic increasing its execution time in average by a factor of 2.54 for doubling
the number of time slots. At a planning horizon of 1600 time slots, it reaches a
median execution time of 227 ms. For a re-planning, the time required to refresh
prediction, maybe based on external data sources, has to be considered as well.
We expect it to be achievable below one second, or two seconds if accessing exter-
nal databases. Hence, a reaction to severe environmental changes can be achieved
very fast. However, for interactive or multimedia applications, this additional de-
lay is by far too long [200]. For these cases, adaptation fills the gap. Reaching, after
a first initialization, an execution time for one time slot of less than 250 us, see
Figure 34, even in this non-optimized implementation, the approach is responsive
enough to handle sudden environmental changes instantly. The SMAPE prediction
errors quantify the strength of these changes and may be employed to implement
dedicated trigger conditions for re-planning. Since the performance of the adap-
tation approaches stayed above the performance of ONS, our combined planning
and adaptation approach defines an improvement to transmission performance of
mobile nodes using heterogeneous networks.

54 SUMMARY AND CONCLUSIONS

We designed and evaluated a data transmission plan adaptation approach Ada(p),
which effectively mitigates the impact of environmental changes on transmission
performance, enabling the application of transmission plans. The adaptation em-
ploys an underlying opportunistic transmission approach. It constraints the oppor-
tunistic decision variable whether to transmit or not in order to follow an initial
transmission plan, called plan execution Exec(p). In order to react to environmental
changes, we designed three mechanisms that each handles one kind of prediction
error and selectively release or modify constraints to allow the underlying oppor-
tunistic transmission approach to adapt the plan.

The mechanism treating network changes releases data for opportunistic trans-
mission, which was either planned for allocation now or at an earlier time slot or
not at all. Thus, the mechanism can handle network capacity fluctuations and fill
unused resources with unplanned data. The mechanism treating movement errors
extends the first by modifying the method to refer to the plan. Instead of referring
to the current time slot of the plan (planning happens in the time dimension), it
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Figure 34: Execution duration for one instance of the approach, corresponding to the com-
plete time horizon for planning and one time slot for online approaches

refers to the time slot in the plan that corresponds to the current location of the
vehicle. For delay-tolerant transmissions for which transmission time selection is
less important, this preserves the network selection pattern of the initial plan. This
location reference causes a temporal offset of the planned transmission. To sustain
temporal transmission requirements of data flows, we limit this offset individually
for each data flow by its delay-tolerance. The third mechanism treats data flow
changes. For these kinds of changes, there exists no reference in the plan to sus-
tain. Hence, we transmit unplanned data flows opportunistically and, for rising er-
rors in the current time slot, gradually decrease the threshold of the opportunistic
transmission to follow the initial plan, converging towards complete opportunistic
transmission at high data flow changes.

We apply this approach to plans of Joint Transmission Planning (JTP) and op-
timal plans and use Opportunistic Network Selection (ONS) as the underlying
opportunistic approach. The adaptation is able to sustain a significant share of the
performance gain from planning over ONS. For evaluation, we employed isolated
prediction errors to create environmental changes for the networks, the movement
and the data flows, varying them in strength between 0.0 and 0.5 (Symmetrical
Mean Average Prediction Error). Finally, we combined them due to applying all
three kinds of errors with equal strength to the same scenario. We present the four
main conclusions from this evaluation, ordered by their importance.

e For moderate isolated prediction errors of 0.3, the adaptation Ada(JTP) sus-
tains more than a half of the gain from JTP over ONS, in particular, 65.64%
for network, 61.07% for movement and 55.56% for data flow prediction er-
rors. Compared to that, the performance of an execution Exec(JTP) without
adaptation sinks far below the performance of ONS already for prediction
errors of 0.1. These results demonstrate that the adaptation is able to cope
with prediction errors effectively.
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e For strong, isolated prediction errors of 0.5, the Ada(JTP) still sustains 57.62%
for movement, 36.23% for network and 11.07% for data flow prediction errors
over ONS. The convergence towards the performance of ONS is especially
strong for data flow changes because there exists no theoretical gain from
planning. In particular, data flow changes dominate the performance when
applying the combined prediction error, converging to the performance of
ONS at an error strength of 0.3. In contrast to Exec(JTP), the adaptation
Ada(JTP) does not sink below the performance of ONS, providing a stable
lower bound performance.

e The adaptation is applied to single time slots. After initialization, it reached
a per-time-slot execution time of less than 250us in our tests, which enables
a responsive reaction to environmental changes without impairing latency
requirements of applications. In contrast, the planning approach JTP always
has to plan the entire time horizon, reaching a median execution time of
227.34ms for a planning horizon of 1600 time slots and is too inefficient for
instant reactions to environmental changes. This proves the necessity of adap-
tation with a processing time, which is lower by three orders of magnitude,
and attests its feasibility for real systems.

e Applying adaptation to an optimal plan Ada(Opt) leads in many cases to
worse results than Ada(JTP). We assume this phenomenon to be based on
the similarity of JTP and ONS, applying the same search ordering heuristics
for data flow and network prioritization. Thus, when data is released to be
allocated opportunistically using ONS, the probability is higher for Ada(JTP)
than for Ada(Opt) that the adaptation comes to the same or a similar re-
sult as in the plan. For Ada(Opt), it applies more changes and may create
inefficiencies due to destroying optimal transmission patterns and building
less compatible opportunistic ones. Thus, for the development of new trans-
mission planning strategies, we recommend analyzing the performance after
adaptation as well. In the case of detected inefficiencies, a better compatible
opportunistic approach as an underlying algorithm for adaptation should be
derived from the planning strategy.

Our adaptation demonstrates that it can effectively sustain a significant share of
the performance gain from planning responsively. In the next chapter, we present
our novel mobility management protocol MoVENET, which pools available wireless
network resources for a mobile node and enables dynamic data flow distribution
via the networks. It represents a platform for execution of transmission plans, as
presented in this and the previous chapter.



MOBILITY MANAGEMENT FOR TRANSMISSION PLAN
EXECUTION

This chapter addresses user-centric and flexible utilization of cross-operator net-
work resources, achieved with the design and development of our novel protocol
Mobility Management for Vehicular Networking (MoOVENET). The previous chap-
ters focused on strategic transmission planning and their adaptation to optimize
the data transmission for vehicles. However, the conventional Internet network
stack does not support the execution of those transmission plans because switch-
ing from one access point to another, i.e. performing a handover, breaks a running
connection. The reason for this is the double role of IP, as detailed in Chapter 3.3.
An assigned IP address affiliates the mobile node to an access network, enabling
packet routing. In addition, the communication partner uses the IP address for
identification of the mobile node. Hence, a change of the IP address during han-
dover, as desired, updates the affiliation of connections to the access networks but,
as an unwanted side effect, invalidates the identification of any open connection.
All open connections break and have to be reinitialized to continue or restart the
transmission.

To target this problem, researchers have developed various so-called mobility
management approaches. Famous ones are Mobile IPv6 [164] and Multipath TCP
(MPTCP) [73]. The basic concept, which all of them have in common is introduc-
ing a new persistent identifier for the client or connection to which actual IP ad-
dresses are mapped dynamically in order to achieve the desired packet routing.
Hence, the identifier stays valid even though the IP address changes and the con-
nection can continue its data transmission. Screening the landscape of existing
protocols in Section 3.3 reveals a gap for a protocol, which satisfies functional as
well as non-functional requirements imposed from strategic transmission planning
and the connected vehicle scenario. Protocols, e.g., do not support cross-operator
handover and multi-homing sufficiently (PMIPv6 [83]), do not cover the entire IP
data traffic (MPTCP) or lack compatibility with legacy nodes (HIPv2 [151], SHIM6
[159]). To analyze the gap further, we collect functional and non-functional require-
ments for enabling efficient transmission plan execution in the connected vehicle
scenario in the next section. Based on these requirements, we compose a novel
distributed communication architecture together with a protocol design, introduc-
ing new concepts for IP mapping, packet re-sending and complementary signaling
mechanisms.

The chapter is based on our publications MoVeNet: Mobility management for ve-
hicular networking [182], Publish-subscribe-based control mechanism for scheduling in-
tegration in Mobile IPv6 [185] and A Concept for Vehicle Internet Connectivity for
Non-Safety Applications [184] as well as the supervised student theses and works
[105, 6, 19, 215, 134]. The chapter revises and extends the therein presented con-
cepts and analyses. We evaluate the approach analytically, in simulation and with

MoVENET makes
cross-operator
network resources
available for flexible
use and, thus,
enables application
of advanced
transmission
strategies.
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a prototype, proving protocol feasibility and present its performance and new fea-
tures. Finally, we give considerations for integration of transmission planning, as
presented in Chapters 4 and 5, into the distributed architecture of MOVENET.

6.1 SYSTEM REQUIREMENTS

To realize data transmission planning, the mobility management approach has to
meet multiple functional requirements:

F-Req-1

F-Req-2

F-Req-3

All IP traffic. Data traffic management treats incoming as well as out-
going packets, especially of TCP and UDP data flows as well as ICMP
packets. All non-managed traffic affects the available network resources
and distorts the data traffic management’s result. Accordingly, the ap-
proach should cover the entire IP data traffic of the client. Transport
layer approaches, like Multipath TCP [73] or mSCTP [117, 114], cannot
satisfy this requirement.

Routing flexibility. Distribution of data flows over multiple networks
boost transmission performance, as shown in Chapter 4.3.4. To route
data concurrently via multiple interfaces, multi-homing techniques have
to be applied. In addition to traffic distribution, the handover of individ-
ual data flows, rather than treating all traffic as a unity, is an important
feature that enables spreading of data flows across parallel networks.
Whenever a data transmission plan requests it, the mobility manage-
ment approach has to move a specific data flow from one network to
another.

This requirement is not satisfied from network-controlled approaches,
like Proxy-MIPv6 [128, 78] or LISP [71] as well as most IP-based proto-
cols, e.g. most MIPv6 derivatives, which do not distinguish between dif-
ferent transport layer connections but handle all data traffic as a unity.

Compatibility. As stated in F-Reg-1, the approach shall grant access to
all media on the Internet. Since most servers in the Internet are not
assumed to implement new features timely or at all, mobility man-
agement approaches should be able to communicate with conventional
network stacks. A lack of this kind of compatibility is given for direct
mobility management approaches, like MPTCP [73], SHIM6 [170, 169]
or HIPv2 [151], as each communication partner has to implement the
required network stack modifications.

In addition, the fast-changing perceived network environment and desired ap-

plications in the connected vehicle scenario impose tough non-functional require-

ments. Firstly, these are safety-supporting services, which require low latency [65].
Secondly, it covers multimedia applications, conversational data traffic or mobile
office applications, which require high throughput, low latency or continuous data
transfer [200].



6.2 MOVENET ARCHITECTURE

NF-Reqg-1 Low-latency routing. The connected vehicle scenario covers safety sup-
porting applications and conversational multimedia traffic, profiting
from low latency access to the Internet. Hence, the architecture is sup-
posed to provide low-latency routing to the corresponding communica-
tion partners. For critical data flows, routing structures that introduce
additional routing delays to the end-points should be avoided.

NF-Req-2 Low-latency handover. The connected vehicle scenario is characterized
by high node mobility. Especially when using short-range technology,
like WiFi, connection duration is supposed to be short, as detailed in
Chapter 2.2.4. In particular, handovers of critical data flows between net-
works have to happen fast and seamlessly to allows controlling mecha-
nisms to react rapidly to unexpected environmental changes.

NF-Req-3 Low signaling overhead. The object under optimization is the Internet
access. Additional signaling overhead drains the available access net-
work resources and, thus, contradicts to the goal. Hence, the signaling
overhead of the protocol should be as low as possible.

NF-Req-4 High scalability and robustness. The number of vehicles, which are
connected to the Internet, is expected to rise to 9o% till 2025 [62, 92],
leading to an explosion of required peek network resources [58]. To
be able to cope with this amount of connected vehicles, the approach
must be scalable. In addition, the robustness of the approach must be
ensured to mitigate the effect of faults or attacks on the system.

The vehicle scenario imposes extreme requirements to mobility management.
High vehicle speeds and usage of short-range access networks lead to short net-
work connectivity duration and, therefore, frequent handovers. In addition, many
vehicle applications profit from a low latency connection [65]. Besides that, vehicles
as well as other mobile users both profit from the satisfaction of the presented re-
quirements. As presented in Section 3.3, existing protocols lack essential functions
for realizing execution of data transmission plans. To overcome those shortcom-
ings of other protocols and satisfy the presented requirements, we present the
protocol Mobility Management for Vehicular Networks (MoVENET), which is inspired
by different mechanisms of existing protocols that have proven to be efficient and
introduces new ideas for complementary mechanisms enabling flexible and dis-
tributed cross-operator mobility management.

6.2 MOVENET ARCHITECTURE

MOoVENET is a user-centric distributed IP mobility management protocol on the net-
work layer, incorporating complementary mechanisms for IP table synchronization
and connection initialization to optimize either for overhead or latency, depending
on the connection requirements. It provides flexible data distribution capabilities
to different routes letting dedicated scheduling algorithms, like the Transmission
Planning and Adaptation presented in Chapters 4 and 5, control network selection.
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DA: Data Agent
CA: Control Agent
MA: Mobile Agent
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Figure 35: Architecture of MOVENET. Data Agents act as proxies, hiding the protocol from
correspondent nodes. Management functions are taken over by the Control
Agent.

It consists of three kinds of entities, as illustrated in Figure 35: the Mobile
Agent, Data Agents and a Control Agent. For connections between a mobile node
and a correspondent node, the Mobile Agent in the vehicle establishes handover-
enabled data bridges to one or more Data Agents located in the backend, which
serve as proxy nodes, hiding the protocol from external nodes. The Control Agent
takes over responsibilities for the distributed system management for the Mobile
Agent, reducing signaling overhead via the wireless links. In the following, we first
present MOVENET’s distributed architecture and explain the responsibilities of its
entities.

6.2.1  Mobile Agent — The In-Vehicle Entity

The Mobile Agent is located at the mobile node and provides a virtual access
network, capturing IP packets to enable flexible routing via desired routes and
hiding mobility management from higher communication layers. It inserts and
removes MOVENET headers and manages the connections to the Control and Data
Agents.

6.2.2 Data Agent — Light-Weight Proxy

A Data Agent is a backend entity for data routing, acting as a proxy and end-point
for MOVENET, which converts data packets from the Mobile Agent into conven-
tional ones and conventional packets from correspondent nodes into MOVENET
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Figure 36: Simplified MoVENET Identification layer with all optional fields
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packets, hiding the protocol from external nodes. Hence, it provides substantial
compatibility, accounting for requirement F-Reg-3.

A Mobile Agent uses multiple Data Agents at the same time to optimize for
specific connection requirements of each data flow. This corresponds to the con-
cept of distributed mobility management, as presented in [226, 76] and detailed in
Section 3.3. As a result, Data Agents can be selected with respect to their location,
optimizing closeness to the optimal routes for individual connections and, thus, en-
sure low-latency for routing according to NF-Reg-2. Furthermore, selecting a Data
Agent close to the Mobile Agent reduces handover latency complying to NF-Reg-1.
Data Agents serve as anchor points for multiple vehicles and form a distributed
network, which provides high scalability and robustness through redundancy, ad-
dressing requirement NF-Reg-4.

6.2.3 Control Agent — System Orchestration

The Control Agent complements the distributed architecture of MoVeNet with an
entity, which takes over essential management functions from the Mobile Agent,
such as Data Agent selection, initialization and maintenance as well as IP address
synchronization. Thus, the Control Agent orchestrates a network of Data Agents
for the Mobile Agent, forming a partially distributed mobility management archi-
tecture for MOVENET.

6.2.4 Routing and Signaling Concept

MoVeNet employs complementary management mechanisms, which are applied
depending on the required management characteristics of each data flow, in par-
ticular regarding latency. For flexible data routing between the Mobile Agent and
Data Agents, two functions are required. The first function is the announcement
of available routes, i.e. wireless access networks, for packet dispatching to Data
Agents. For this purpose, MOVENET introduces two complementary mechanisms.

MOoVENET’s default mechanism sends IP addresses, identifying new available routes,

to the Control Agent, which serves as a publish-subscribe broker. It distributes this
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information to each active Data Agent of the Mobile Node, as illustrated in Figure
35 with black dashed arrows. The new routes can be used, as soon as synchro-
nization to all active Data Agents is finished and acknowledged from the Control
Agent to the Mobile Agent. Compared to other approaches, sending along signal-
ing information for each connection [73, 169], this approach reduces the overhead
via the wireless link to a minimum, in trade-off for a slightly longer delay for the
announcements. The complementary route announcement mechanism of MoVE-
NET accounts for low-latency, carrying signaling information piggybacked to data
packets and, thus, sending it on a direct route to Data Agents. It is designed for
connections that require fast handovers.

The second function addresses flexible packet transmission along announced
data routes for individual data flows, establishing the above mentioned handover-
enabled data bridges between the Mobile Agent and Data Agents. Therefore, MOVE-
NET employs a newly designed Identification header, inspired from HIPv2 [151],
which is located between network and transport layer, as shown in Figure 36.
MoVENET modifies the packet’s IP addresses to route data via the desired net-
work to the Data Agent. To be able to recover the original connection context and
continue routing to the target nodes, the Identification layer contains two identi-
fiers in the optional fields Correspondent Node ID (CN ID) and mobile node ID
(Node ID). Furthermore, there exist two additional optional header parts for con-
nection initialization and IP address synchronization. We detail the exact functions
of these headers and their conditions of presence in the following sections.

6.3 MOVENET PROTOCOL DETAILS

In this section, we first discuss MOVENET’s IP address mapping system between
the Mobile Agent and the Data Agents, implementing the handover-enabled data
bridge. We detail, which information is required at the corresponding entities to
enable handover operation. Consecutively, we explain the Agent and connection
initialization as well as the IP address table synchronization mechanisms, which
transfer the required information to the entities. Finally, this section covers fur-
ther enhancements of and considerations for MOVENET, completing the protocol
specification.

6.3.1 P Address Mapping System

Mobility management is based on providing stable end-points to the client and
corresponding node to hide changes of the network access from upper layers. To
provide hidden routing capabilities, the Mobile Agent and the Data Agent both
provide permanent IP addresses, establishing a handover-enabled data bridge to
which dynamically changeable addresses for routing can be mapped as desired.
For mapping, the packet must be identified and modified at four stages for one
round trip according to Figure 37. For each packet transfer direction, this corre-
sponds to one modification to enable routing and a second modification to undo,
i.e. hide, the first modification from the receiver.
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Figure 37: Packet processing stages of MOVENET to provide hidden routing capabilities

In the following, we explain tunneling, representing the default mapping ap-
proach of proxy-based mobility management protocols, e.g. applied in MIPv6, and
identify its shortcomings. Based on this, we developed a new mapping approach,
which configures multiple IPv6 addresses on the same network interface to mul-
tiplex data packets, creating an identification that simplifies processing and re-
duces per-packet overhead. Note that changing IP addresses of packets requires re-
calculation of transport layer header checksums to avoid the packet to be dropped
in network stacks. This is not repeatedly mentioned in the following description of
the processing stages. Furthermore, we abbreviate IP address changes with (new
source IP address, new destination IP address).

DEFAULT MAPPING APPROACH: TUNNELING. The simplest IP mapping method
that many mobility management protocols apply is tunneling, which encapsulates
the packet with the persistent IP addresses into a packet with the IP addresses for
routing. Hence, the proxy does not require additional information for outgoing
packets from the mobile node. Due to decapsulation of the packet, the proxy re-
ceives the actual packet, which can be forwarded. Accordingly, processing stages
I and III add a second IP header for routing, while stages II and IV remove it. In
stage I, the vehicle has to set the IP addresses of the initial header to (DA IP, CN
IP) and add the outer routing header with addresses (MN IP, DA IP). This process
constructs the inner packet for forwarding by the proxy, which is encapsulated in
the outer IP header for routing. At Stage II, the proxy decapsulates the first header
and stores the tuple (CN IP, transport protocol, src port, dst port) as connection
identifier, mapping it to the MN IP address. Stage III has to look up the stored
tuple for incoming packets, sets the internal header to (CN IP, MN IP) and creates
the outer routing header with the addresses (DA IP, MN IP). Finally, in Stage IV,
the mobile node decapsulates the packet and passes it to the upper layer.

This default approach has two disadvantages. Firstly, tunneling causes a per-
packet overhead of one IP header, i.e. 40 bytes, plus for many cases ensuring com-
patibility one UDP header of 8 bytes. Secondly, analyzing upper layer informa-
tion to determine the forwarding destination introduces a considerable per-packet
workload for the proxy machine. To address these issues, we employ the IPv6
address space in the following approach to simplify this process and reduce the
overhead.
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IMPROVED MAPPING APPROACH: FULL IPV6 ADDRESS MULTIPLEXING. IPv6
provides an address range to each node from which it can select one or more
IP addresses for its own network interface, using IPv6 autoconfiguration [206]. To
simplify the address translation process and reduce the packet overhead compared
to tunneling, the Data Agent can use multiple IP addresses to multiplex data traf-
fic, identifying the connection with its connection partners from the used Data
Agent IP address. We design and discuss two alternatives ways for IP address
multiplexing at Data Agents in the following, starting with the extreme approach,
which uses an own Data Agent IP address for each connection: A dedicated Data
Agent IP address for each connection enables induction of all connection param-
eters, i.e. IP addresses of the Mobile Agent, the Correspondent Node (CN) and
identification of the connection itself. For the connection setup, the Mobile Agent
couples the specific Data Agent IP address with the CN IP address. Accordingly,
each packet arriving at the DA carrying this IP address is known to belong to the
connection, with both its endpoints to which it must be forwarded. The approach
does not rely on the connection’s transport protocol, reduces the packet analysis to the
IP header and renders any additional header obsolete, i.e. reducing the per-packet
overhead to zero.

However, the concept requires extensive allocation of Data Agent IP addresses,
i.e. for each active connection one. Since unicast-address announcement requires
some effort in the network, covering time-consuming duplicate address detection
[206, 149, 53] and routing table updates of neighboring nodes, the Data Agent
could make use of aggregated route allocation [221], announcing a complete IP
address range to neighboring nodes. Even though this route aggregation is ap-
plied in practice within infrastructure route management [126] using Classless
Inter-Domain Routing (CIDR) [74] or Open Shortest Path First (OSPF) [44, 152],
there seems to exist no approach to announcing IPv6 address ranges from nodes
themselves. This might be due to the fact, that address ranges are usually used
to unify routing to multiple nodes within a sub-network rather than to address a
single multi-homed node. However, imitating these routing control messages, or
applying similar rules in Software Defined Networks (SDN), could provide an effi-
cient way to gather each packet at the Data Agent that is addressed to the covered
IP range.

Nevertheless, the Data Agent’s IP stack still has to be prepared to enable han-
dling of the packets from these addresses. To assess scalability for handling com-
plete IP ranges in current systems, we allocate multiple IP addresses in a Linux sys-
tem (Ubuntu 16.04) on a Desktop Intel i7-4790K machine with 8 GB RAM. There-
fore, we measure the time required for consecutively adding single IP addresses
and perform latency tests through randomly addressed pings to generated IP ad-
dresses of the local machine, as shown in Figure 38. Plot (a) shows the required
time for the allocation of the N'" IP address at a node. In the test, we allocated
42.000 IP addresses consecutively, measuring the required time for each allocation.
We observe two effects: Firstly, the minimum required time for allocation of a sin-
gle IP address rises with the number of already existing IP addresses. Starting in
average from about 0.01 ms for the first addresses, it rises to 1 ms around the
10.000'" address and 10 ms around the 40.000'™ one.
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Figure 38: Time required for allocating IP addresses and ping latency tests to the local
machine with n addresses

Secondly, and more severely, the variance of the required time rises significantly.
In several cases, the process for allocating a single IP address, which is expected
to be finished within less than a millisecond, required up to one second. Further-
more, beyond allocation of the 42.000 addresses, we faced severe system instabili-
ties in Linux, perceivable from about 80oo addresses on. Experienced instabilities
included system freezes and network interface breakdowns that could not be re-
covered without a system restart.

Occurring problems are also reflected in interface responsiveness, which we mea-
sure using pings to the configured IP addresses on the local host, as presented in
Figure 38 (b). After allocating a number of addresses, we ping randomly selected
ones from the local machine, measuring the network interface responsiveness of
the node itself. We observe an exponential rise of ping times when increasing the
number of allocated IP addresses. Till allocation of 32 IP addresses, there is no sig-
nificant effect on ping times to local host. However, after allocating 256 and more
addresses, the ping rises from usually less than 10 ps up to 300 ps in median and
finally to 4.83 ms for 32768 addresses.

The identified problems in network management and the presented impact anal-
ysis of the number of IP addresses of a node on latency and stability reveal that cur-
rent networks and systems cannot handle this extensive number of IP addresses.
This inefficiency renders the approach infeasible for the present time and opens
new questions in practical network management, which reach beyond the scope
of this dissertation. However, after closing these gaps, the presented principle of
full IPv6 address multiplexing can be applied to optimize future mobility manage-
ment approaches. To cope with the shortcomings of today’s systems, we present a
hybrid mapping approach in the following.
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Figure 39: MOVENET Identification header with optional correspondent node ID, used for
data transfer with the hybrid mapping approach.

HYBRID MAPPING APPROACH: NODE-DEPENDENT ADDRESS MULTIPLEXING.
As the presented full IPv6 address multiplexing approach does not comply with cur-
rent systems as required in F-Reg-3. We propose a hybrid approach that allocates a
dedicated Data Agent IP address for each Mobile Agent, significantly reducing
overhead and processing complexity in comparison to tunneling but using signifi-
cantly fewer IP addresses than the full IPv6 address multiplexing approach. In this
hybrid approach, a Data Agent generates a single dedicated IP address for each
Mobile Agent, serving for mobile node identification for all incoming and outgo-
ing packets. An additional multiplexing for the IP mapping is still required to
distinguish connections to different communication partners of the Mobile Agent.
Therefore, the approach employs a correspondent node identifier (CN ID), sent
along in the bridged communication between MA and DA. Transmitted CN IDs
just have to be unique for each corresponding node with an active connection to
the specific Mobile Agent, which is identified by the dedicated DA IP address.
Therefore, the identifier can be short. Instead of using a 128 bit IP address to refer
to the CN’s IP address, as tunneling does, this approach sends along an 8 bit cor-
respondent node identifier (CN ID), colored blue in Figure 39, to which the CN’s
IP address is mapped. This header causes a per-packet overhead of just one word,
i.e. 4 bytes, and allows a Data Agent to maintain connections to up to 256 differ-
ent corresponding nodes at the same time for each Mobile Agent. In the case of
more required parallel connections, the Mobile Agent has to employ multiple Data
Agents, as recommended in the architectural principles of our protocol MOVENET.

During initialization, the mapping information between the CN ID and the CN
IP is created at the Mobile Agent and transferred to the Data Agent, as detailed in
Section 6.3.3, describing the initialization processes. We explain the four stages of
the hybrid approach’s IP mapping method in the following. In processing Stage I,
the Mobile Agent looks up (or generates) the CN ID from the CN’s IP address, re-
places the addresses in the packet’s IP header by (MA IP, DA IP) for packet routing
and attaches the Identification header shown in Figure 39 to enable the mapping
at the DA. In processing Stage II, the Data Agent looks up the CN IP from the at-
tached CN ID and replaces the addresses in the IP header with (DA IP, CN IP) for
packet forwarding, dropping the Identification header from the packet to convert
the connection into a conventional one. For packets from the correspondent node,
the Data Agent uses the DA IP at which the packet arrives to identify the corre-
sponding Mobile Agent and its IP addresses. The approach profits from relying on
the IP header only and not on transport layer information, as tunneling does. The
DA looks up the CN ID from its database, rewrites the addresses in the IP header
to (DA IP, MA 1IP) for routing and attaches the Identification header according to
Figure 39 to the packet to enable the reverse mapping in the next stage at the Mo-
bile Agent. Finally, the Mobile Agent can determine the CN IP from the attached
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CN ID and revert the packet header, as required, for the upper layer protocol in
Stage IV.

In addition, as long as a CN'’s established context at the Data Agent persists,
packets to the dedicated DA IP address are forwarded via an active access network
to the mobile node, enabling return-routability, an often-desired feature of mobil-
ity management. However, packet arrival still depends on the access network’s
and mobile node’s firewalls. Note that, in the rare case in which two or more
connections from a MA to the same CN via the same DA shall be routed via dif-
ferent access networks, the agents have to identify the connection through packet
analysis (default today) including transport protocol and ports. Conclusively, in
trade-off with a 4-byte per-packet overhead with respect to the full multiplexing
approach as well as required packet analysis in the rare cases that multiple con-
nections to the same CN should be routed differently, the hybrid approach solves
the problem of extensive IP address initialization and, in extension, creates partial
return-routability.

In the following, we present latency optimization considerations, which explain
how Data Agents should be selected. Then we detail MOVENET’s management
processes for system and connection initialization.

6.3.2 Latency Optimization Considerations

The Internet connection in a vehicle enables access to external data sources, which
can complement local information sources of Advanced Driver Assistance Systems,
contributing to the vehicle’s safety. Low latency connections can provide infor-
mation updates more recently, enhancing the system performance. Hence, a low
connection latency is desirable at least for selected connections in the connected
vehicle scenario. As we stated in Section 3.3, Data Agent placement close to the
optimal route reduces the connection latency. To enable low latency connections,
MoVENET employs multiple Data Agents as proxies that can be selected individu-
ally for each data flow to be as close as desired to the optimal route. For non-critical
connections, MOVENET may aggregate multiple connections routes at a small set
of Data Agents.

Furthermore, the selection of a Data Agent close to the Mobile Agent reduces
the handover latency because signaling messages have to travel only a subset of the
route [93]. This shortened signaling path enables a faster reaction on unexpected
IP address changes and follows the concept of several Mobile IPv6 derivatives
[129], especially hierarchical Mobile IPv6 (HMIPv6) [196, 163]. Even though we
present location selection goals, an algorithm is out of the scope of this work.
Such algorithms may be inspired from cloudlet selection algorithms [88, 219] or
Software Defined Network controller placement algorithms [123, 220, 90], which
select nodes to optimize route latency, failure tolerance and load balancing.

121



122

In default
connection
initialization, the
CA selects a DA
targeting low route
latency between MIN
and CN.

MOBILITY MANAGEMENT FOR TRANSMISSION PLAN EXECUTION

6.3.3 Initialization Process

As first initialization step of the MOVENET protocol, a Mobile Node has to connect
to a Control Agent, according to Figure ??, in order to receive a unique identifier,
the mobile node identification number (Node ID). It represents a persistent ID
to refer to the mobile node with changing IP addresses within the distributed
mobility management system. Since this process is employed only once, e.g. at
device start up, we propose to use a secured remote procedure call (RPC). Using
default mechanisms ensures up-to-date security and fixes, independent from the
protocol specification and implementation. Next, to transmit data, a connection to
a Data Agent has to be set up. Therefore, we propose two different mechanisms.
The first mechanism (1) covers dedicated Data Agent selection and initialization,
which can be used to optimize the connection characteristics, as detailed in the
previous section. The second mechanism (2) complements the first regarding low-
latency, using active Data Agents of the Mobile Agent without sending a request to
the Control Agent. It is designed for short-lived and time-critical connection setup,
as required for many use cases in the automotive scenario [64].

6.3.3.1 Default Connection Initialization

MOoVENET’s default connection initialization selects and prepares a Data Agent for
transmission and sets up its communication stack states for packet modification, as
shown in Figure 40 (1). Note that underlined parts are present only for the hybrid
IPv6 multiplexing mapping approach. When the communication stack of the Mo-
bile Agent identifies a new connection, it determines a DA ID (in hybrid mapping)
and sends a Data Agent Initialization Request to the Control Agent, including DA
ID, Node ID and the correspondent node’s IP address, as illustrated in Figure 41.
It is essential to let the Control and Data Agent know the target for forwarding,
as MOVENET replaces the original destination IP address for packet routing. Next,
the Control Agent determines an appropriate Data Agent for this connection, tak-
ing into account its location, which affects the round trip time between the mobile
node and the correspondent node due to packet detours and also the handover de-
lay, as stated in Section 6.3.2, addressing NF-Reg-1. It initializes a Data Agent using
a secured remote procedure call (RPC), transmitting CN ID, Node ID, CN IP and
all active MN IP addresses to the DA. The Control Agent keeps this connection
alive for Data Agent maintenance, including failure monitoring [94, 82, 174] and
later MA IP updates. If not already existing, the Data Agent allocates an DA IP
address (or a range of addresses in case of full IPv6 multiplexing) and prepares
the connection context, mapping Node ID and CN ID to the allocated IP address.
Connection context establishment at the Data Agent covers allocation of a new IP
address (range for full IPv6 multiplexing) for the Mobile Node, if not already al-
located, and setting up forwarding rules for the new connection. Finalization of
this setup process is acknowledged to the CA and, in turn, to the MA, which can
consecutively start to send data to the correspondent node via the Data Agent. In
the meantime, MoVeNet caches arriving packets at the MA.

The procedure initializes Data Agents and enables their optimized selection for
each connection. However, it creates a certain delay till the actual data transmis-
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Figure 40: MOVENET connection initialization using (1) the default mechanism, initializing
a new Data Agent at an appropriate location and (2) the piggybacking-based
Fast Address Allocation mechanism, reducing initialization delay due to se-
lecting a Data Agent from already active ones. Underlined packet fields are
required in the hybrid approach but not in the full multiplexing.
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Figure 41: MOVENET Identification header of a Data Agent Initialization request, cover-
ing correspondent node ID (for hybrid mapping approach only), Node ID and
Single IP address field, carrying the correspondent node’s IP address.
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Figure 42: MoVENET Identification header with correspondent node ID (for hybrid map-
ping approach only) and Single IP address field. For Data Agent Initialization
Response, it carries the allocated DA IP address. For Fast Address Allocation,
it carries the correspondent node’s IP address (CN IP). In this case, the MA is
already identified from the used DA IP address.

sion can start. Therefore, we propose a second mechanism in the following, which
reduces the start-up delay.

6.3.3.2 Fast Piggybacking-based Connection Initialization

The complementary connection initialization mechanism Fast Address Allocation
(FAA) skips requesting the Control Agent for a Data Agent, instantly sending pack-
ets to a known Data Agent, employing the Identification header to piggyback all
FAA sends packets information for setting up the connection to a correspondent node. As a prereg-
without prior uisite, the Mobile Agent must already maintain the Data Agent, which, in return,
announli::;’: g’; knows the Mobile Agent’s context from previous or running connections, estab-
piggybacking 41 lished by the default connection initialization mechanism. In this case, optimized
required information Data Agent selection is restricted to known ones and must be accomplished with
toset up the [P the potentially limited knowledge of the Mobile Agent. We consider this approach
mapping context. 55 peneficial, firstly, for time-critical connections, which require timely transmis-
sion and, secondly, in the case that the Control Agent is not responding, e.g. due

to node failure.
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To initialize the connection, in every outgoing packet from the Mobile Agent,
the employed MOVENET Fast Address Allocation (FAA) header covers the CN IDs
and the CN IP address, using the single IP option as shown in Figure 42. With this
information, the Data Agent is able to establish the IP address mapping context
for the connection. Receiving a packet including the CN ID, acknowledges correct
connection setup to the Mobile Agent, which, in turn, stops attaching the Fast Ad-
dress Allocation fields in the MOVENET Identification header to outgoing packets.
The new mechanism eliminates the detour via the Control Agent and sends pack-
ets instantly to the Data Agent without creating any further initialization delay,
addressing NF-Reg-2 attaching all information required to set up the connection
context.

6.3.4 IP Table Synchronization

All MoVENET Agents maintain a table of currently valid IP addresses of the mobile
node. Data Agents and the Mobile Agent use this set of IP addresses to select the
desired route for running connections. To ensure proper protocol operation, the
table of valid IP addresses of the mobile node has to be up-to-date at the agents.
Synchronization delays either reduce the efficiency of the transmission because
valid routes are not employed or, even worse, late invalidation of IP addresses leads
to sending packets to dead ends, resulting in avoidable packet loss. Therefore, it
is important to synchronize the IP tables quickly. For this reason, MoVENET offers
two mechanisms: (1) a default mechanism reducing the signaling overhead and (2)
an optional complementing low-latency mechanism, both visualized in Figure 43.

6.3.4.1 Publish-Subscribe-Based IP Table Synchronization

Our default mechanism for IP table synchronization uses the Control Agent as
a publish-subscribe broker to distribute signaling information from the mobile
node to all subscribed Data Agents, as illustrated in Figure 43 (1). The Mobile
Node informs its Control Agent about the IP address update, using the MoVENET
IP Synchronization header fields, shown in Figure 44. Consecutively, the Control
Agent synchronizes the routing tables of the Data Agents, which are subscribed to
updates in the context of the Mobile Agent, using remote procedure calls (RPC),
if possible via the kept-alive connections from Data Agent initialization. As soon
as synchronization of all subscribed Data Agents is completed, the Control Agent
answers to the Mobile Agent with a synchronization acknowledgment, releasing
new announced IP addresses for operation.

This publish-subscribe based mechanism for IP table synchronization reduces
signaling overhead, addressing NF-Reg-3, compared to informing each Data Agent
or even each connection on its own, which is the default in most other protocols
[185]. However, the detour via the Control Agent to reach each Data Agent intro-
duces additional latency. Hence, the mechanism is designed for connections, for
which a few hundred milliseconds extra handover delay are not relevant. Note
that due to multi-homing and the applied make-before-break principle, i.e. keep
using the previous link until the new network link is ready to transport data, this
handover delay does not necessarily denote a transmission pause but only a de-
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Figure 43: IP address synchronization mechanisms. (1) Default IP address update using a
publish-subscribe mechanism with Control Agent as a broker. (2) Optional fast
piggybacking-based IP address update.

layed use of newly available networks. However, in the case that no redundant
second access network is available, the make-before-break principle is not applica-
ble. Hence, several non-delay-tolerant connections rely on fast network continuity.
To address this issue, we designed an optional complementary second synchro-
nization mechanism, introduced in the following, which speeds up informing of
Data Agents about new IP addresses.

6.3.4.2 Piggybacking-Based IP Table Synchronization

We complement our first mechanism with an optional piggybacking-based IP up-
date mechanism, which allows MOVENET to use new routes instantly without prior
announcement, closing the handover delay gap of the first mechanism and address-
ing NF-Reg-2. It is illustrated in Figure 43 (2), employing the optional MoVENET IP
Synchronization header fields, as shown in Figure 44, to attach IP address changes
to every data packet from the mobile node to the Data Agent. As a result, the
Mobile Node may send packets via new routes as soon as they are available, even
before synchronization of Data Agent IP tables because all required information
to accept and forward the packet is covered in the attached IP Synchronization
header fields.

With this information, the Data Agent can update its IP table. To acknowledge
correct reception of the IP update, it attaches the MoVENET IP Synchronization
header option as well. As soon as the synchronization is acknowledged, i.e. at
least after one round trip time between Mobile Agent and Data Agent, the Mobile
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Figure 44: MoVeNet Identification header with optional piggybacking IP Synchronization
header fields marked blue. Sending IP updates along with the packet speeds up
the synchronization in trade-off for higher overhead.

Agent stops attaching this information to packets. Hence, the decision whether to
use the mechanism or not, represents a trade-off between handover latency and
overhead. We propose to use it for time-critical transmissions only. Note that IP
synchronization affects all connections of the addressed Data Agent. Thus, apply-
ing the piggybacking-based fast IP Address updates to the most critical ones, all
other connections profit from this early update as well; however not from the first
packet but after the arrival of the information at the Data Agent, respectively the
acknowledgement of the Mobile Agent. Hence, the new mechanism eliminates ad-
ditional handover delays completely, allowing the Mobile Agent to send packets
instantly via new connections to the Data Agent, without prior announcement.

6.3.4.3 MOVENET IP Synchronization header

The employed MoVENET IP Synchronization mechanism enables synchronization
even during concurrent modification of IP tables at both communication partners.
The header fields consist of one mandatory word, i.e. 4 bytes, as depicted in Fig-
ure 44. The first and second bytes in the header are a sequence number s and an
acknowledgment number a, showing the state of synchronization of the commu-
nication partner. The third and fourth are counters that determine the number of
attached IP addresses to be added add to the IP table T and the number of IP
addresses to be removed rem from the IP table T of the communication partner.
To synchronize the IP address tables T, the designed mechanism employs (1)
local sequence numbers s; and s, (2) a local acknowledgment number a; and
(3) a fifo-list L containing unacknowledged IP address changes, flagged if they
are added or removed. The header fields s and a of outgoing packets in an IP
Synchronization header are filled with the local numbers s; and a;. The counters
add and rem are set according to the entries of the fifo-list L. First, all IP addresses
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to be added are attached to the packet, followed by the IP addresses to be removed
from the communication partner’s IP table T. The synchronization actions are as
follows:

o Send IP address changes: For each IP address change in the local IP table T, a
corresponding entry is added to the fifo-list L and the sequence number is
increased by one s; = s+ 1.

o Send acknowledgment: IP address changes of the communication partner can
be detected by comparing the received sequence number s to the received
acknowledgment number a, calculating the number of changes ¢ = s —a.
To avoid handling of duplicate received IP synchronization headers, the re-
ceived sequence number is set s, = s. The following update procedure is
triggered only in case of s > s,. The received changes are applied to the local
IP table T. To acknowledge correct reception and to provide independence
of own changes from the communication partner’s ones, the local sequence
and acknowledgment numbers both are increased by the number of received
IP address changes sy = sy +c¢, ap = ai + c. Adding c to both numbers
decouples received updates from local changes for the two communication
partners, enabling concurrent modification of the local IP tables T.

o Receive acknowledgment: New acknowledgments can be identified by compar-
ing the local acknowledgment number to the received one, calculating the
count as ¢, = a— a;. To signalize that an acknowledgment has been re-
ceived, the local acknowledgment number is set to the received one a; = a
and c, items are dropped from the fifo-list L of unacknowledged IP changes.

If the piggybacking mechanism is activated for a connection, the MoVENET IP
Synchronization header is attached to IP packets due to three triggering conditions:
(1) to send IP changes if the fifo-list L is not empty, (2) to acknowledge IP changes
if a packet is received with s > a or (3) to confirm acknowledgment reception
in order to make the communication partner stop sending acknowledgments if a
packet is received with a # a;. In contrast to the simple update-ack mechanisms of
Mobile IPv6, HIPv2 or SHIMS6, this mechanism facilitates MOVENET to announce
even parallel IP changes at any point in time and not only consecutively, one after
another. This advanced synchronization improves the protocol’s flexibility in han-
dling environmental changes according to F-Reg-2 and reduces handover latency
complying to NF-Reg-2.

6.3.4.4 Control and Data Agent Synchronization

Applying the MOVENET header for IP address updates from the Mobile Agent to
the Control and Data Agents has two major purposes: Firstly, it can be transmitted
easily from bypassing sockets. As connections are managed through MoVENET, a
signaling communication using higher layer services would be treated from the
system. In the case of failures, the system would not be able to recover itself be-
cause signaling is blocked from the non-working managed link, creating a system
deadlock. Thus, the MOVENET header attached as IP extension represents an inde-
pendent mechanism, ensuring system robustness according to NF-Reg-4. Secondly,
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Table 13: Specification of the Identification header flags. The left table shows the assign-
ment of message types to flag values. The right table contains the bitmasks used
to determine the presence of header fields.

Header Field Flags Message Type Receiver Mask
CN ID 0001 Data MA /DA xxx1
Node ID 0010 Data Agent Init. Request CA 0111
Single 1P 0100 Data Agent Init. Ack. MA 0101
IP Synchr. 1000 Fast Address Allocation DA x101

IP Address Synchronization MA/CA/DA  Txxx

the approach reduces the overhead and can be attached to critical packets, elimi-
nating delays to satisfy NF-Reg-2.

However, Control and Data Agents are both connected to the Internet with wired
interfaces, which are, firstly, not managed through MoVENET and, secondly, less
restricted in terms of throughput. Hence, these Agents are free to use default syn-
chronization mechanisms, whose efficiency, security and robustness are proven
and maintained from the operating systems. We apply remote procedure calls
(RPC) to accomplish the communication, keeping alive the used connection to
omit the connection setup, reducing the synchronization delay. We propose to use
secured remote procedure calls, allowing a reliable and efficient transfer. As syn-
chronization data structure, Conflict-Free Replicated Data Types [22, 192] may be
applied, which offer the advantage of strong eventual consistency [51], mitigating
errors from synchronization and concurrent updates.

6.3.5 Identification Header

The full MoVeNet Identification header is shown in Figure 45, consisting of one
mandatory word and several optional ones. It starts with the fields Next Header
and Header Length, dictated from the IPv6 extension header specification [50]. They
are followed by the 4-bit fields Version, flags Flags and the 8-bit correspondent
node ID (CN ID), required for the hybrid IP mapping approach only. The flags
indicate the presence the optional header fields CN ID, Node ID, Single IP, IP
Synchronization, as presented in the previous sections and shown in Table 13 left.
From their presence, the message receiver can identify the type of message, as
presented in Table 13 right. Hence, all data packets passing the handover-enabled
data bridge contain the CN ID (since using the hybrid mapping approach). Data
Agent Initialization messages contain a Single IP field, which is used to signalize
the intended IP mapping. Furthermore, the Node ID as header field is required
only for identification at the Control Agent and is used to refer to the Mobile Agent
from the backend entities, i.e. Control and Data Agents. Finally, the IP address
synchronization mechanisms set the fourth flag, signalizing the presence of the
corresponding header fields.
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Figure 45: MoVeNet full Identification header with all optional fields marked blue.

6.3.6 Event-Based Retransmission Trigger

MoVeNet introduces a new mechanism to let reliable network protocols continue
transmission instantly after network interruptions due to resending the last passed
packets as an external trigger, improving transmission efficiency in environments
with short-lived network connectivity.

When no Internet access is available for more than a second, reliable protocols,
as TCP or SCTP, pause transmission until a timeout triggers retransmission to
probe the connection. Each time the probing fails, the timeout duration is doubled
until the connection times out completely. This mechanism of TCP as well as SCTP
works independently from other layers, following the principle of separation of
ISO/OSI layers.

In a harsh environment of short-lived link connectivity, the absence of access
networks for several seconds and intentionally paused transmission from con-
trol mechanisms, this may lead to severe performance degradation and unused
resources. We provide an example in Figure 46, showing an extreme case for bet-
ter understanding. In the example, the exponentially rising retransmission trigger
timeouts, illustrated as blue arrows, attempt packet retransmission in situations
without connectivity. The long retransmission timeouts waste resources, when net-
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Figure 46: Extreme case example showing MoVENET’s Advanced Retransmission Trigger.
Default retransmission triggers fail, probing the network during periods with-
out network access. In contrast, the MoVENET Trigger takes information from its
managed lower layer into account to continue transmission as soon as possible.

works get in reach, leading to unnecessary long transmission pauses. To address
this issue, MOVENET employs its network layer knowledge to trigger packet re-
transmission externally, visualized by the green trigger arrows in Figure 46. The
mechanism caches the last seen incoming and outgoing packet of each connec-
tion in the Mobile Agent. As soon as a new access network is available, the Mobile
Agent repeats passing the packets, serving as an external trigger for transport layer
protocols to recover from transmission pauses, as shown with the green dotted line.
This simple mechanism can create significant performance benefits in continuing
paused transmissions.

6.3.7 Security Considerations

Employing IP extension headers, as in the presented protocol MoVENET, is consid-
ered as a security risk by Gont [80]. Especially mobility management protocols are
subject to special threads on IP binding updates, legitimating re-routing and injec-
tion of packets. To encounter these security issues, different proposals exist. Firstly,
only Cryptographically Generated Addresses [12] should be used to ensure that
the source IP address belongs to the right client. However, this approach cannot
authenticate additional header fields of MOVENET. Hence, whenever the MoVENET
Identification Header transports sensitive information, i.e. for IP synchronization,
we propose using IPv6 Authentication headers [108] encapsulating the MOVENET
header to ensure integrity and authenticity.

An alternative approach is using the Encapsulating Security Payload (ESP) [109],
which encrypts the whole packet in IPsec fashion, as considered for mobility man-
agement by Santa et al. [188]. However, this requires higher computational efforts
and leads to significant protocol overhead. A second alternative approach is embed-
ding a Keyed-Hash Message Authentication Code (HMAC) [121, 210] as employed
in the Host Identity Protocol (HIPv2) [151] or Multipath TCP [73]. It provides the
advantage of a smaller overhead, embedded as a protocol header field of the mo-
bility management protocol. However, being integrated into the protocol itself, the
security mechanism, and thus the whole protocol, has to stay up-to-date in its
specification and all its specific implementations within the fast changing security
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sector. Therefore, we prefer to rely on default mechanisms, which are maintained
by the operating system, decoupling security from the protocol tasks.

Furthermore, MOVENET employs remote procedure calls as default service com-
munication to synchronize the backend entities, i.e. the Control and Data Agents.
We propose to use Transport Layer Security (TLS) [175], applied for most secure
communication on the Internet.

6.3.8 Robustness Considerations

The distributed design of MoVeNet and redundant mechanisms create an intrinsic
system robustness against node failures, as required from NF-Reg-4. On failure
of a Data Agent, only the subset of active connections using this DA is affected.
Since the Control Agent is in constant connection with Data Agents, we propose
to use a monitoring at this node. In case of a non-responding Data Agent, the
Control Agent may instantly create a new one with similar characteristics for the
Mobile Agent and forward the new Data Agent IP address. In the meantime, the
Mobile Agent may use any other known Data Agent to re-initiate the corrupted
connections.

In the case of a Control Agent failure, no active connections are affected. Data
Agents keep working even without the Control Agent. However, new connections
have to be initialized using Fast Address Allocation and IP address synchroniza-
tion must use the piggybacking-based mechanism to contact the Data Agents di-
rectly. In parallel, the Mobile Agent should initialize a new Control Agent and new
Data Agents to recover seamlessly from CA failure.

6.3.9 Further Overhead Reduction

The piggybacking-based control mechanisms, as presented in this chapter, attach
extra information to each outgoing data packet until the corresponding synchro-
nization or initialization is acknowledged. Since the packet contains sensitive in-
formation, the authenticity of those packets must be ensured, using the above-
mentioned mechanisms. Both add substantial additional overhead to the packets.
However, the update is already achieved with the first arriving packet, contain-
ing this information. Each consecutive piggybacked packet does not contribute to
the function of the protocol and serves only as a backup for the previous ones.
To reduce the overhead according to NF-Reg-3 induced from those mechanisms, a
specific implementation of MOVENET may attach this information only to the first,
or the first few packets sent out to the Data Agent. This method decreases the
reliability of the protocol, since each packet, which arrives without piggybacked
information before the update is accomplished must be dropped from the Data
Agent for practical or security reasons. However, the probability that one of the
tirst packets arrive is very high. The used strategy for omitting this information
may consider the criticality of the data connection and remains open to the spe-
cific protocol implementation.
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In the following, we discuss the design decisions of MOVENET with resulting sys-
tem properties and compare them to the targeted set of functional (F-Req) and
non-functional (NF-Req) requirements. Consecutively, we detail the handover la-
tency composition in a structural analysis.

6.4.1  Design Implications

Managing traffic on the network layer based on IPv6, MOVENET can handle all
data traffic of conventional nodes. For legacy IPv4 data traffic or IPv4 based access
networks, MOVENET may employ IP 6to4, respectively 4t06, tunnels between the
Mobile Agent and the Data Agent. Since the "waist” of the modern Internet is IP,
MOoVENET is capable of handling “all” data traffic of clients to the Internet, satis-
tying requirement F-Reg-1. The multi-homing concept of MOVENET, employing a
dynamic mapping of individual connections to available networks, allows a client
to distribute data traffic as desired. This is required to enable execution of data
plans, as presented in Chapter 4, and satisfies the requirement of high routing
flexibility F-Req-2.

MoVENET communicates via proxy servers that hide the protocol from commu-
nication partners. The proxies hide the protocol operation and create compatibility
to communicate to every node in the Internet, which employs a conventional net-
work stack, fulfilling requirement F-Regq-3. The applied distributed mobility man-
agement principle allows MOVENET to select proxy servers reasonably per connec-
tion, firstly, to use close to optimal data routes, reducing round trip times according
to requirement NF-Req-1 and, secondly, to minimize handover latency, accounting
for requirement NF-Reg-2. Latency for handover and connection setup can selec-
tively be improved further using the presented alternative piggybacking-based
signaling mechanisms. In contrast, the default signaling mechanisms target and
satisfy the low-overhead requirement NF-Reg-3, while the improved mapping con-
cept, employing single-interface IPv6 address multiplexing, reduces the per-packet
overhead to 4 bytes for the presented hybrid mapping approach; respectively to
zero bytes for the full multiplexing mapping approach, which may be applicable
to future systems. The distributed system structure, employing redundant proxy
servers, coupled with the integration of alternative signaling mechanisms that can
deal with the failure of other nodes, creates strong system robustness as well as
system scalability, addressing and satisfying NF-Req-4.

6.4.2 Handover Delay Analysis

To assess handover delays, we compare the time from the handover trigger till
the first packet has arrived via the new route. Absolute values from simulation
show trends and effects, which strongly rely on the actual (simulated) underly-
ing network environment. Therefore, we first formally derive the handover delays
from the scenario subroutes. The handover consists of two stages, firstly, signaling,
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DA: Data Agent
CA: Control Agent
MN: Mobile Node
CN: Correspondent Node
NO: Network Operator

Figure 47: Delays between entities of MoVeNet

which informs all involved nodes about the route update, and, secondly, routing,
which covers passing of packets via the new route.

We formally describe the line delays in the MOVENET ecosystem, covering the
mobile node, the network operator’s point-of-presence (NO), the Control Agent
(CA), the Data Agent (DA) and the correspondent node (CN). Between the nodes,
there exist link delays, as labeled in Figure 47 with At, considering symmetric
links, i.e. similar delays in both directions of the links.

As summarized in Equation 6.1, each handover delay Aty o covers the delays for
signaling and the final packet transfer. In the default mechanism, signaling consists
of the path to the DAs via the wireless link and the CA, while data takes the direct
route to the Data Agent. As soon as the DA receives the signaling information,
it may use the announced link for forwarding data to the MN. The handover is
finished from the point of view of the Data Agent. However, for data from MN
via the DA to a correspondent node, the MN has to wait for an acknowledgment
before sending data to ensure that the DA is ready to accept and forward data
via the new route. We express the additional delay for the MN in the Equation
6.1 using the Identity operator I(x = y) which is 1 if x = y, i.e. adds this delay
factor to the handover for the Mobile Node’s point of view, else 0. Employing the
triangle inequality to simplify the equation, giving a lower bound of the delay by
neglecting the routing detour via the Control Agent, we receive Equation 6.2.

At]q[e(;ault = (Atmn + Atno +Atcea ) (1 +1(node = MN)) + Atmn + Atno (6.1)
NO CA DA —_— NO DA
signaling ack.

signaling data transfer

At]sjglple = (Atmn +Atno) - (2+I(node = MN)) (62)

NO DA

In contrast to most other mobility management protocols, MOVENET separates
the control from the data plane, i.e. from data forwarding proxies. The default
handover mechanism sends signaling information to the CA, acting as a publish-
subscribe broker, which distributes it to subscribed DAs, reducing overhead and
simplifying control. In architectures without control and data plane separation, e.g.
Mobile IPv6, the DAs can be seen as integrated into the CA, reducing the delay
Atno + Atca to Atno, equal to the lower bound of MOVENET, as presented in
quﬁgtion 6.2 o
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configurator

Figure 48: Handover Delay Simulation Scenario

Furthermore, the art of reducing handover delays employs hiding parts of it in
other processes. For example, Proxy Mobile IPv6 [83] uses data link layer signaling
to identify the mobile node. The access router informs the proxy about the new link
location and IP address, hiding the signaling latency as well as data transfer till
the access router in the delay of the network layer connection setup [128]. However,
this is feasible only in a completely managed network and, thus, favored for intra-
operator handovers.

In contrast, piggybacking mechanisms of MOVENET eliminates the signaling de-
lay due to hiding it in the data transfer delay, sending all required information
to process the packet along with data. An announcement is no longer required
for data sent from the MN to a correspondent node, giving instant access to new
routes for this data transfer direction and reducing the delay to data route latency.
In contrast, for data sent to the mobile node, the DA needs a route announcement,
thus doubling the delay until the first packet arrives at the destination, the mobile
node. This results in a handover delay At{#s* as defined in Equation 6.3, employ-
ing the identity operator to model the data direction dependent handover delay.
Comparing the delay to that of Mobile IPv6, we identify a delay improvement of
2/3 for data from the mobile node.

Atfast — . (At%g +At’5’2) - (1+1I(node = DA)) (6.3)
—_——

signaling ack.

data transfer to DA with signaling

65 SIMULATIVE EVALUATION

In the following, we describe our simulation setup and evaluate the handover delay
as well as the effects of MOVENET’s retransmission trigger.

6.5.1 Simulation Setup

We simulated MoVENET with a single-homed and with a multi-homed node using
Oment++ 4.6 with the INET 3.0 framework. For reference, we additionally simu-
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Figure 49: Cumulative distribution of handover(HO) delay in s

late the Mobile IPv6 implementation xmipv6 available for single-homed clients in
the INET framework. To integrate vehicle mobility, we use SUMO o0.26 (Simulation
of Urban MObility). We created a mixed scenario, covering motorway, suburban
and urban areas, letting a single vehicle pass the track from Frankfurt Nieder-
rad to Frankfurt Alte Oper (old opera). Along the track, we locate 9 WiFi access
networks (802.11g) with an extended range of about 500 meters, as illustrated in
Figure 48, covering the track completely. They are connected to ISP networks, col-
ored in the graph, which consists of routers R1 to R5 (on the top of the picture),
interconnected via links with 10 ms latency to model intra-ISP processes. Agents
and ISP networks are interconnected with the backbone network, defined by R6
to Rg, using links with 1ms latency. We define four runs, differing firstly in the
transport protocol, either using a single UDP or TCP flow and, secondly, in the
direction of the communication, either from the mobile node to the server or in
the opposite direction. We compare the performance of three mobile nodes: (1) a
single-homed node using Mobile IPv6, (2) a single-homed node using MOVENET
and finally (3) a multi-homed node using MoVENET. Piggybacking mechanisms
are activated. For each run, we simulate 100 scenario repetitions, resulting in up to
800 assessed handovers per run.
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6.5.2 Handover Delay

Figure 49 shows the cumulative distributions of the handover delay for the three
compared mobile nodes. Note that all presented handover delays are from the
point of view of the Data Agent.

Analyzing TCP handover delays in graph (a) and (b), MOVENET reaches extraor-
dinary gains over Mobile IPv6 (4408ms) for handover delay in median by factor
47.41 (93ms) for single-homed mobile nodes and factor 407.45 (11ms) for multi-
homed mobile nodes. These significant gains emerge from the MOVENET retrans-
mission trigger. In about 95% of cases, the TCP retransmission trigger continues
more than 1s late. In about 10% of cases, the time loss of the TCP triggering in
comparison to MOVENET is even more than 10s.

The benefit of piggybacking, which avoids the detour via the Control Agent, can
be observed by comparison of the UDP results in graphs (c) and (d). Piggybacking
is active in the run (d) UDP MA to CN and not applicable, i.e. inactive, for the run
(c) UDP CN to MA. The run (d) shows in median a performance gain of factor 1.78
over Mobile IPv6, attaching signaling information to packets in order to avoid the
detour via the Control Agent. In contrast, the performance gain for the UDP run
(c) in the opposite direction, where piggybacking is not applicable, is only 1.33
over Mobile IPv6. This improvement is a result of the shorter packet route, which
does not take the detour via the CA.

Furthermore, there is a significant performance improvement for MOVENET em-
ployed at a multi-homed node in comparison to a single-homed mobile node, re-
ducing median handover delay for MOVENET nodes in average over the four runs
(a-d) by factor 6.7. A single-homed client has to pause transmission at a handover
during interface reconfiguration. In contrast, the applied multi-homing-based make-
before-break paradigm [165, 23, 213] prepares the new network for transmission be-
fore handover execution and, in the meanwhile, continues transmission via the
previous network. Thus, multi-homing enables an instant change of routing to a
second active network without creating any transmission pause.

6.5.3 Retransmission Trigger

To stress the MOVENET retransmission trigger, we create connectivity gaps in the
simulated scenario by decreasing the range of the WiFi access networks to about
200meters and use a single-homed MoVENET Mobile Node. Figure 50 shows the
number of transmitted packets over time in two runs with activated, respectively
deactivated MOVENET retransmission trigger. Plateaus in the graph represent trans-
mission pauses, which should be minimized, whereas a rising slope belongs to a
running transmission.

Transmission pauses begin for both runs at about the same points in time, mean-
ing that the network gets out of reach for both runs equally. However, we iden-
tify a length pattern in transmission pauses before TCP successfully triggered re-
sumption. Exponentially rising timeouts trigger TCP retransmission attempts at
t = 2™ — 1 seconds after network connection loss. In the example, TCP successfully
triggered resumption in three cases after 31 seconds and in the two other cases
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Figure 50: MOVENET retransmission trigger effect simulation on a single-homed client run-
ning a single TCP connection from mobile node to server

after 63 seconds. In Section 2.2.4, we analyzed connectivity durations to short- and
mid-range networks at different vehicle speeds and identified usual maximum du-
rations of 10 seconds to 1 minute. Accordingly, TCP triggers can easily miss entire
networks after a longer connection loss.

In contrast, the green solid line in Figure 50 illustrates the results for the event-
triggered MOVENET enhancement. As soon as the network is ready to transmit
data, MOVENET successfully triggers the TCP connection and makes the transmis-
sion continue. In the example, this simple mechanism leads to an improvement
of 64.73% additionally transmitted packets, showing the advantages of the intro-
duced triggering approach.

6.6 PROTOTYPICAL EVALUATION

To assess the real-world applicability of MOVENET, we developed a prototype and
investigated the complexity of its networking and processing operations. Moreover,
we stress on the performance difference between the default and the piggybacking-
based initialization and IP synchronization mechanisms and evaluate system per-
formance.

6.6.1 Linux Prototype Design

Three core functions of a mobility management protocol are, firstly, providing a
persistent virtual network access for the mobile node connections, avoiding inter-
ruptions, secondly, the mapping between a changing real network access to the
persistent virtual one at involved entities and, thirdly, synchronization of involved
entities to complete the distributed mapping. We target to use available Linux func-
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Figure 51: Emulated scenario for MOVENET protocol evaluation using CORE emulator.
Links are annotated with their round trip time.

tions to implement those features through system configuration without changes
of the kernel, ensuring simple setup and upgrading of systems.

As MOVENET operates on the network layer, our Linux prototype employs a
dummy network interface configured with a static IP address representing a persis-
tent virtual network access for all connections. A dummy interface usually accepts
but drops all packets except those addressed to localhost. To capture packets and
safe them from being dropped, we employ the Linux netfilter framework, which
usually serves for defining firewall rules. It provides the opportunity to forward
packets in the network stack to a queue, accessible from user space. We configure it
to employ this option to all packets sent from the persistent node IP address. Packet
processing in the user space simplifies implementation and decouples the proto-
col operation from the Linux kernel, ensuring easy system integration. However,
the transfer between spaces introduces an additional processing delay. This imple-
mentation approach has been applied for several mobility management protocols
of different kinds [87, 157, 18, 158]. The prototype modifies the packets according
to the mapping approach of MOVENET, as detailed in Section 6.3.1. Consecutively,
the packet with modified IP addresses for routing is pushed back to the network
stack, using the netfilter pre-routing hook, ensuring that the packet is routed via the
network interface as identified by the inserted packet source IP address.

To address the third core function, synchronization of involved entities, we em-
ploy a Linux raw socket, which bypasses the dummy interface and netfilter process,
reaching independence from the network management of MOVENET for signaling.
This independence from the managed connections is important because signaling
unlocks access networks for data connections. If signaling used standard connec-
tions managed by MoOVENET and if all active network connections fail, no signaling
information could pass anymore to Data Agents to unlock new ones, resulting in
a system deadlock. Using a raw socket to handle signaling, bypassing the network
filters, solves this issue.
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Figure 52: Connection setup time in time-to first byte for MOVENET allocating a new IP
address at DA, using an existing IP address, using Fast Address Allocation
(FAA) and reference without MOVENET (a). Additional round trip time caused
by MOVENET (b).

6.6.2  Prototype Evaluation Setup

To create a controlled evaluation environment, we use the Common Open Research
Emulator (CORE) [3], which enables the creation of multiple fully functional Linux
instances on a single machine interconnected via simulated network links. In con-
trast to alternatives as Mininet [124], CORE supports simulated IPv6 networks, as
required for MOVENET.

We set up an emulation environment, consisting of a correspondent node with
a conventional network stack, a Control Agent, a Data Agent and a mobile node,
configured with a MOVENET Mobile Agent, as shown in in Figure 51. Links con-
necting these instances have a line delay of 2 ms. The mobile node is connected
using a link with 4oms line delay, representing the wireless transmission. In ad-
dition, we connect the correspondent node through a backbone network whose
switches are interconnected with links with a 5 ms line delay.

6.6.3 Connection Setup and Round Trip Time

Setting up the handover-enabled data bridge between Mobile Agent and a Data

Agent for a new connection requires some time, differing for the two complemen-

tary initialization mechanisms, targeting either a low route delay or low setup la-

FAA speeds up the tency. To assess the different connection setup mechanisms, we evaluate the result-

connection ing time to first byte of a UDP transmission to the Data Agent, covering MOVENET
initialization by . . . . .

44.25% compared to connection setup measured' as ‘the tlr'ne till the first byte arrives at the correspon-

the default dent node and the round trip time. Firstly, we address the issue of creating a new

mechanism. 1P address at the Data Agent, which has to be announced in the surrounding net-

work through lower layer routing protocols before its use. This case is denoted in
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Figure 53: UDP and TCP throughput with MOVENET using an ideal network link

Figure 52 (a) with the most left bar, new IP, employing MoVENET’s default mecha-
nism, using the Control Agent as broker for Data Agent selection and initialization,
and generating a new Data Agent IP address for the mobile node. The the first data
can be sent in median after 2335.99 ms, mainly caused by the setup of a novel IP
address at the Data Agent. If the same mechanism is used, but the Data Agent re-
uses an already existing IP address, the delay requires in median only 209.81 ms
in the evaluation scenario, which is 94.99% less. To avoid these high latencies, we
firmly recommend Data Agents to allocate a bunch of IP addresses for the follow-
ing operation during their initialization and whenever they are close to running
out of unused addresses.

In comparison to the default mechanism, the piggybacking-based fast address
allocation (FAA) connection initialization mechanism reduces the connection setup
delay by 92.85 ms (44.25%), reaching a median delay of 116.96 ms, in expense for
a restricted Data Agent selection and some additional per-packet overhead. The
reduced delay of the 92.85 ms is dominated by the time required in the default
mechanism for transferring the signaling packet, passing the wireless link for the
Data Agent Initialization twice, for request and response (in total about 8o ms).
Compared to a reference connection setup without using MoVENET, FAA creates
only an additional delay of 8.70 ms (7.44%) in the evaluation scenario.

The Data Agent as proxy introduces a routing detour, causing an additional
route delay. In addition, the packet processing at the four stages at Data and Mo-
bile Agent requires a certain time. As illustrated in Figure 52 (b), these two delay
sources lead in the evaluation scenario to a round trip time delay increase by 8.63
ms (7.38%), differing only insignificantly from that for packet forwarding and con-
nection setup using FAA. The similarity originates from using the same detour for
sending, and producing a slightly higher processing effort for initialization than
for forwarding. Using well-selected Data Agents as connection proxy servers, as
discussed in Section 6.3.2, this additional delay can be minimized.
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Table 14: MOVENET prototype component-wise processing time and memory consumption

Description CPU time Percentage Memory allocation
MOoVENET prototype stack 63523.1 ns 1584 Bytes
Sum MOVENET user space 695.0 ns 1.09% ¢ 32 Bytes
Checksum calculation’ 537.0 NS 77.27% ® o Bytes
Packet serialization? 84.7 ns 12.19% ° 32 Bytes
Packet decoding?® 21.6 ns 3.11% ° o Bytes
Flow identification? 13.7 NS 1.97% ° o Bytes
Address translation? 14.0 NS 2.01% ° o Bytes
others? 24.0 NS 3.45% ® o Bytes
Sum MoVeNet processing only> 73.3 NS 2.44% € o Bytes
Conventional stack (reference) 3000.5 NS 48 Bytes

! may be offloaded to the network interface controller (hardware processing)
2 due to user space implementation

3 mandatory processing components of MOVENET

@ percentage of MOVENET prototype stack CPU time

b percentage of Sum MoVENET user space CPU time

¢ percentage of default stack CPU time
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6.6.4 Throughput Impact and Scalability

To assess the applicability of the prototype, we evaluate the maximum throughput
which the prototype implementation can deliver on our test system. Therefore, we
send TCP and UDP data from the mobile node to the correspondent node using
the Linux tool iperf in the emulated setup of Figure 51. The simulated network
links and intermediate nodes provide unlimited throughput. The setup reaches a
throughput of 1.17 Gbits/s for UDP and 0.89 Gbits/s TCP throughput, correspond-
ing to 24.66% less, as shown in Figure 53. This high performance ascertains the
applicability of the implemented MoVENET prototype for further protocol evalua-
tion. The limitation seems to be caused by delays in the packet processing pipeline,
introduced from the user space transfer.

To analyze the packet processing delays introduced by the MoVENET prototype,
we present component-wise latency benchmarks in Table 14, ascribed with the de-
lay sources. Therefore, we send a packet from an application, transfer it to the
user space with netfilter, process it in MOVENET and finally drop it. The packet
requires in average 63523.1 ns to pass the complete prototype stack. However,
packet-processing of MOVENET in the user space takes in average only 695.0 ns per
packet, causing just 1.09% of the stack’s delay. Analyzing the CPU time required
for processing the components of the MOVENET user space implementation further,
we discover that 77.27% (537.0 ns) are caused from packet checksum calculation,
which can be processed in hardware at the network interface controller in an opti-
mized kernel implementation. In addition, 12.19% (84.7 ns) belong to packet serial-
ization, which is also required in the user space implementation only. Mandatory
components for a kernel implementation, dominated by including packet decod-
ing, flow identification, address translation consume an accumulated CPU time of
73.3 ns only. In relation to sending a packet using the conventional network stack,
requiring in average 3000.5 ns on our evaluation system, this increases the packet
processing delay by only 2.44%. This analysis shows that MOVENET packet process-
ing adds only an insignificant delay in packet processing, qualifying the concept
for real world application.

67 TRANSMISSION PLANNING AS CONTROL ENTITY FOR MOVENET

MOoVENET provides the means to maintain valid network routes for mobile nodes
and use them to dispatch packets. In contrast to other mobility management pro-
tocols, MOVENET does not control the mapping of data flows to these routes itself.
In contrast, this strategic decision is addressed by our transmission planning and
adaptation, as presented in the previous chapters. These sophisticated algorithms
replace simplistic methods for network selection and control the actual distribution
of data.

The decision of how to integrate these planning algorithms into the MOVENET ar-
chitecture depends on the identified prediction error impact, as analyzed in Chap-
ter 5. The adaptation can effectively mitigate the impact of moderate prediction
errors from movement and network characteristic changes. In contrast, data flow
prediction errors have a strong and hardly addressable impact on transmission
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performance. As data flow changes are usually triggered by user interaction, the
mobile node is predestined for initial calculation of long-term plans, using Joint
Transmission Planning, as presented in Chapter 4. As for IP synchronization, the
Control Agent can be used as a broker for transmission plan synchronization be-
tween the agents.

Adaptation must be applied to outgoing and incoming data for the mobile node
and, hence, has to be located at the Mobile Agent and the Data Agents, as illus-
trated in Figure 54. An open challenge remains to the distributed adaptation at
those entities, as it is time-critical to sustain the benefits from planning. For outgo-
ing data from the mobile node, adaptation can be applied straight because the node
monitors all environmental changes and, thus, has essential required information.
However, incoming data traffic to the Mobile Agent from Data Agents faces two
challenges. Firstly, Data Agents either have to receive updates on environmental
changes or induce them from the sent and received data traffic. Secondly, data
is routed via different Data Agents, which requires a low latency coordination of
their adaptation, each observing and managing only a subset of the active data
flows. The distributed system faces a trade-off between full information sharing
on the one hand, which produces significant management overhead, partially even
via the wireless links, and may introduce extra delays for adaptation. On the other
hand, not sharing all information may result in an inconsistency or divergence of
adapted plans at the different entities, with which the system has to cope. We ex-
pect a dependency from the number of employed Data Agents on this potential
inconsistency. Furthermore, the long-term re-planning rate may affect these dy-
namics as well, resetting the inconsistency to zero. The resulting system dynamics
require deeper analysis, which is beyond the scope of this dissertation, and open
new research challenges for the future.
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6.8 SUMMARY AND CONCLUSIONS

Mobility management for Vehicular Networking (MOVENET) is a user-controlled
and multi-homing-based distributed mobility management approach, creating cross-
operator network resource pools. Available networks can be employed dynamically
for selective distribution of the user’s data traffic to available links, enabling the
execution of data transmission plans. Its distributed architecture, composed of the
Mobile Agent (MA) located at the mobile node, Data Agents (DA) for data forward-
ing and a Control Agent (CA) that supports the Mobile Agent in system manage-
ment, provides system robustness, scalability and compatibility to backend nodes
with a conventional network stack.

Novel complementary control mechanisms of MOVENET for connection initializa-
tion and route announcement enable demand-based and connection-specific opti-
mization of non-functional requirements. MoVeNet employs a publish-subscribe-
based mechanism to distribute route announcements to all employed Data Agents
to minimize the overhead. For latency-sensitive connections, the complementary
mechanism may send data instantly via a new route without prior announcement,
piggybacking required signaling information, which eliminates handover latency.
Furthermore, the default initialization mechanism covers an optimized Data Agent
selection for connection-specific route latency reduction, selected by the Control
Agent. Its complementary mechanism, Fast Address Allocation (FAA), contacts a
known Data Agent instantly, sending signaling information piggybacked with the
data to eliminate connection setup latency.

MoVENET introduces a novel IP mapping approach at Data Agents (DA), namely
IPv6 address multiplexing, which reduces per-packet overhead and eliminates trans-
port layer dependence for packet forwarding. Using IPv6, nodes receive an address
space from which they can select an own address for their interface. Our approach
targets using multiple Data Agent IP addresses at the same time, one for each man-
aged connection. Accordingly, the Mobile Agent sends packets of each connection
to a dedicated DA IP address from a reserved range. The DA and MA can iden-
tify the connection including the packet’s forwarding destination from the DA IP
address, which the packet carries. As current Linux systems show degrading per-
formance with more than about 1000 employed IP addresses, we propose a hybrid
approach, using dedicated IP addresses per MA, which reduces the number of
required IP addresses significantly. To identify the correspondent node for packet
forwarding, MOVENET attaches a correspondent node ID (CN ID) to each packet
between MA and DA, which creates only 4 bytes overhead.

Furthermore, we show by simulation that TCP’s exponentially rising retransmis-
sion probing is inefficient in environments with sparse network coverage and fast
moving clients, e.g. a connected vehicle. To address this problem, MOVENET intro-
duces an external event-based trigger to make TCP continue transmission as soon
as possible. Therefore, the Mobile Agent stores always the last sent and the last re-
ceived packet. As soon as MOVENET recognizes an available new route, the trigger
re-sends the stored packets, triggering TCP to continue data transmission.
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We evaluated MoVeNet using simulation and a Linux-based prototype. We es-
pecially highlight the following three main contributions, ordered by their impor-
tance.

1. Complementary mechanisms provide demand-based and connection-specific
performance optimizations on management processes and create robustness
for the distributed system.

Measured with our Linux prototype system in an evaluation setup, the low-
latency initialization mechanism FAA reduces the initialization delay by 44.25%
compared to the default mechanism. The resulting delay covers only 7.44%
(8.7oms) additional time to first byte relative to a reference connection initial-
ization without MOVENET. Furthermore, the fast piggybacking-based route
announcement mechanism sends signaling along with data, eliminating ad-
ditional announcement delays completely. Moreover, in the case of node fail-
ure of either a Data Agent or the Control Agent, one of the complementary
mechanisms is still applicable, which ensure seamless protocol operation.

2. The novel IP mapping approach of MoVENET simplifies packet forwarding
at the proxy, the Data Agent. It employs dedicated Data Agent IP addresses
per connection, respectively per Mobile Agent in the hybrid approach, for
identification of the packet’s destination. The new approach has three advan-
tages. Firstly, it simplifies the processing for forwarding, relying only on the
IP header, which compared to network address translation creates transport
layer independence. Secondly, it eliminates per-packet overhead, respectively
reduces it to 4 bytes, compared to 40 bytes for tunneling. Thirdly, the hybrid
approach introduces return routability, i.e. the correspondent node is able to
send data to the mobile node via the managed connection despite changing
IP addresses, as long as the DA IP address is active for usage with the CN.

3. The event-based retransmission trigger of MOVENET addresses TCP’s ineffi-
cient connection recovery in the connected vehicle scenario with sparse net-
work availability. It increases the number of transmitted packets in a simu-
lated scenario by 64.73%, demonstrating the effectiveness of this mechanism.

MOoVENET resolves the mobility management restriction of many approaches to
resources of a single network operator, while providing substantially improved
management and routing characteristics. Together with the contributions of trans-
mission planning and adaptation, MOVENET pushes strategic joint time-network
selection towards real systems in order to exploit the hidden optimization poten-
tials discovered in this dissertation.
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Future autonomous driving systems release drivers from their task to control the
vehicle, letting them use their travel time productively or for entertainment. Re-
sulting future peak demands in network resources during rush hours cannot be
satisfied from mobile networks, even considering expected network improvements
[58]. Hence, smarter ways to cope with this problem are required, defining the goal
of this dissertation. In the following Section 7.1, we summarize our approach of
using strategic data transmission with joint time-network selection and highlight
our contributions. Consecutively, we give an outlook on future works, stating new
research questions based on our contributions.

7.1 CONCLUSIONS

This dissertation addresses the improvement of the perceived transmission quality
for connected vehicle users in order to treat future expected connectivity demands
that mobile networks alone will not be able to satisfy [58]. To achieve this goal,
we designed data transmission strategies and mechanisms that exploit the full po-
tential of heterogeneous wireless network environments. To this end, we highlight
our four main contributions in the following.

To assess the perceived quality of transmissions, we presented a novel trans-
mission rating model, constituting our first main contribution. The rating model
focuses on application QoS satisfaction traded-off by monetary cost, addressing the
user’s perceived quality of transmissions. We combined components from trans-
mission time selection models and network selection models. However, these rat-
ing approaches are incompatible with respect to their throughput requirement
models. While network selection employs a fixed parameter to model the through-
put requirement, transmission time selection defines deadlines by which trans-
mission of data sets should be completed. Hence, they address either continuous
or delay-tolerant transmission. To solve this conflict, we generalize existing ap-
proaches in our novel throughput requirement model in characterizing through-
put by its fundamental definition: an amount of data transmitted over time. By
parametrizing the time window length of the requirement, throughput require-
ments can range from continuous and instant transfer for a time window length
of one time slot to broad temporal flexibility for large windows. Hence, the new
model is able to treat transmissions with different delay-tolerance characteristics,
which have been modeled independently before. Connection-specific weights for
each requirement, complete the generalization of state-of-the-art models and allow
rating of transmissions in a unified way.

Our second main contribution is the development of a novel time-network selec-
tion strategy, realized in our Joint Transmission Planning (JTP) approach. It creates
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transmission plans that avoid application QoS requirement violations and reduce
monetary cost due to moving transmissions to points in time that provide the
best-matching transmission opportunities within a certain time horizon.

To evaluate the performance of the joint time-network selection strategy, we com-
pare its performance to that of leading strategies from the state-of-the-art. JTP out-
performs the state-of-the-art approaches in nearly all cases by 7-26%. Evaluation
reveals that pure network selection suffers in environments with sparse network
resources, offering few choice and significant changes in network quality over time,
as they consider only the current situation. In contrast, pure transmission time se-
lection approaches suffer in environments with many different networks due to
the lack of a sophisticated network selection. In extensive scenario variation, our
presented approach JTP is the only one that shows over a planning time horizon
overall performance robustness reaching a constantly high performance of 87-91%
compared to the optimum. These results demonstrate the superiority of our joint
time-network selection approach.

As JTP is a planning-based approach, strict execution of its plans lacks robust-
ness against prediction errors, i.e. due to incomplete information or environmental
changes. To sustain the benefits of joint time-network selection in practice, we de-
signed a transmission plan adaptation approach as our third main contribution.
During plan execution, it modifies the current transmission in order react to en-
vironmental changes. Therefore, our adaptation approach employs an opportunis-
tic transmission strategy as underlying algorithm and introduces constraints forc-
ing it to follow a transmission plan. As a reaction to environmental changes, the
adaptation approach selectively relaxes the introduced constraints to enable par-
tial opportunistic transmission instead of following the plan strictly. In particular,
we designed three mechanisms, each handling one kind of environmental change,
namely movement, network and data flow changes. Based on the prediction error
strength, the mechanisms introduce dynamic offsets to modify the plan and relax
the constraints. Due to the introduced mechanisms and even under strong move-
ment, respectively network changes, the adaptation sustains 57%, respectively 36%
of the performance gain from planning. For moderate data flow changes up to
61% can be sustained. The performance of the adaptation converges to the perfor-
mance of the underlying opportunistic approach for growing changes, providing
a robust lower bound. Conclusively, adaptation effectively copes with prediction
errors caused by incomplete information or environmental changes, sustaining a
significant share of the performance gain from planning.

To push transmission planning towards real systems, we developed the proto-
col Mobility management for Vehicular Networking (MOVENET) as our fourth contri-
bution, which pools available network resources and enables flexible packet dis-
patching without causing connection interruptions. Existing protocols suffer from
individual weaknesses, which impede their use in the connected vehicle scenario.
Excluding certain IP data traffic, restrictions to networks within a limited managed
domain, or inefficiency due to long connection setup and handover delays are just
a few examples that disqualify existing approaches.

MOoVENET introduces a distributed architecture, composed of Data Agents, a
Control Agent and the Mobile Agent. The Mobile Agent (MA), located at the mo-
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bile node, creates a stable point of access at the network layer, hiding flexible data
routing and multi-homing from upper layer protocols. Data Agents (DA) serve as
end-points for this flexible routing, hiding MoVENET protocol operation from the
mobile node’s communication partners to provide compatibility. Furthermore, the
Control Agent (CA) supports the MA in management tasks and DA orchestration,
reducing the overhead via the wireless links.

MoVeNet employs complementary mechanisms for connection initialization and
for route announcement, enabling handovers. For each, a first mechanism employs
the CA and a complementary mechanism contacts DAs directly to reduce latency.
The mechanisms can be selected individually to address specific QoS requirements
for each connection. The first route announcement mechanism targets a low over-
head by employing the CA as publish-subscribe broker for control information. Its
complementary mechanism addresses a low-latency handover by eliminating de-
lays from routing detours. For connection initialization, the first mechanism selects
and initializes a new DA based on its location to minimize the connection-specific
route latency. The second mechanism skips this initialization and employs an ex-
isting DA, attaching required signaling information to the data packets, which are
instantly sent to the DA. This low-latency mechanism eliminates additional setup
delays and, in our tests, reduced the time-to-first-byte significantly by 44%. Fur-
thermore, the proposed mechanisms introduce system robustness, allowing Mo VE-
NET to cope with failures of the CA or DAs and to continue operation seamlessly.
Beyond that, MOVENET’s novel event-based packet retransmission trigger mech-
anism reduces transmission recovery delays of TCP in sparse network environ-
ments, achieving in our evaluation up to 64% of additionally transmitted packets.
Finally, MoVeNet implements a new IP mapping system for packet forwarding
at DAs, achieving independence from the transport layer and reducing the per-
packet overhead to o to 4 bytes. Using the new IP mapping approach, the DA
creates a dedicated IP address for each mobile node, which is employed for all its
communication. Hence, for packet forwarding at the DA, the desired destination
of all incoming packets can be identified efficiently from the IP header. Evaluation
of MOVENET demonstrates its feasibility and efficiency for the connected vehicle
scenario.

In summary, this dissertation provides a solution to mitigate the impact of ex-
pected future resource bottlenecks of mobile networks by employing strategic data
transmission, exploiting the full potential of heterogeneous wireless network en-
vironments. The collaboration of the presented mechanisms leads to a system in
which flexible route selection in heterogeneous networks is enabled by our op-
timized mobility management approach MoVENET. To control its transmissions
and to cope with rapid environmental changes and incomplete information, our
solution employs the presented adaptation algorithm. It modifies data transmis-
sion plans from the key component of this work, our joint time-network select-
ing transmission strategy Joint Transmission Planning, which fosters application
QoS satisfaction traded off by monetary cost. This way, the demonstrated signifi-
cant improvement of the perceived transmission quality provided by strategic data
transmission can be exploited in future systems.
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7.2 OUTLOOK

Insights gained in this dissertation open new perspectives and challenges for the
future role of time-network selection in network management. In the following,
we highlight future research directions referring to the single-client system and
the access network ecosystem.

e Final integration of the presented mechanisms into a holistic system remains
as an open task, enabling real-world application. While MOVENET exists as a
working protocol prototype, it still lacks a full integration of JTD, the adaptation
and prediction approaches as generic containers. Especially the selection and
integration of network and data flow prediction offers further research opportu-
nities. We propose to use connectivity maps for network predictions, extended
by short-term network estimation, inspired work of Bui et al. [27] and Poegel
et al. [166]. For data flow prediction, historical patterns show good results [15],
which might be enhanced further with pre-fetching models [116].

e The coordination of responsive transmission plan adaptation over multiple en-
tities introduces introduces new challenges. To coordinate a distributed adapta-
tion, Data Agents may exchange information. This exchange produces a consid-
erable overhead and, moreover, may introduce a latency to reactions. Accord-
ingly, for these distributed algorithms, an extensive information exchange for
virtually deterministic cooperation has to be traded-off by working on incom-
plete or aggregated information with a context-dependent information granu-
larity. This trade-off is certainly influenced by the transmission plan updating
frequency because updates sent to all entities eliminate the information gap at
distributed entities. To reduce the demand for communication, only the next few
time slots of a plan should be distributed, preferably using the Control Agent
as a publish-subscribe broker, inspired from our efficient handover signaling
mechanism.

e From a network operator’s point of view, transmission plans offer valuable in-
formation about the future resource demand of wireless access networks in
space-time dimension. It helps them to prepare their networks proactively for
the prospective demand without an expensive over-provisioning of resources in
the access and backhaul networks. Especially in future 5G networks with very
flexible resource allocation capabilities, this may be profitable, as unused re-
sources may even be traded between different operators or additional resources
can flexibly be acquired to satisfy the expected demand. Furthermore, operators
may offer dynamic pricing strategies for ensuring QoS requirement satisfaction
with a higher probability or as an incentive to use networks when allocated
resources are idle.

Our contributions on strategic data transmission using heterogeneous wireless
networks constitute the foundation for further research in the above-mentioned
directions.
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APPENDIX

A.1 COMPLEXITY ANALYSIS OF THE TRANSMISSION PLANNING PROBLEM

In the following, we analyze the complexity of transmission planning problem
and show that it is NP-hard due to the equivalence of a function component to
multiple-demand bounded multiple knapsack problem. Problem definition:

Given a transmission plan p, a set of networks N and a set of data flows F, is p a feasible
transmission plan and is p of minimal cost?

Firstly, the transmission rating model in Section 4.1 defines a polynomial-time
cost function c(p) in Equation 4.4 with polynomial-time constraints C1-C4. Accord-
ingly, the feasibility and cost value of a transmission plan p can be determined in
polynomial time, defining Lemma 1 (L1).

Secondly, we consider only a sub-problem. The cost of unscheduled tokens c}(p)
according to equation 4.9 takes effect independently from time and depends on
individual data flow parameters. Referring to the multiple-demand bounded mul-
tiple knapsack problem, tokens of different data flows with their individual cost
ci(p) represent multiple, different demands. Furthermore, tokens are indivisible
and their number is bounded. Thus, they and are equivalent to the bounded num-
ber of equal items. Limited knapsack sizes are represented by limited network
resources, whereby multiple networks with individual capacity exist. Hence, this
sub-problem of the transmission planning problem is equivalent to the specialized
knapsack problem, defining Lemma 2 (L2). According to this equivalence, it is not
possible to verify in polynomial time whether p is of minimal cost or not, given
P £ NP.

As transmission planning is not in NP (L1) and the knapsack problem is a sub-
problem of transmission planning that is NP-complete (L2), the transmission plan-
ning problem is NP-hard.

A.2 RANDOM TRANSMISSION PLANNING ALGORITHM

Transmission planning algorithms have to satisfy the constraints of the rating
model. Hence, constraint satisfaction is a basic requirement ensuring that the rat-
ing model, as defined in 4.1, is applicable and plans comply with the reality. For
example, they must not plan to use more network resources than available.

The following Random Transmission Planning Algorithm guarantees to satisfy
this requirement and tends to switch networks only if required. It sorts data flows
randomly for token assignment, ensured by the shuffle function in line 3. For each
time step in the time span between flow start time and deadline, it attempts to
assign tokens to a randomly chosen network. If token assignment fails, the al-
gorithm tries to assign the next randomly chosen network, excluding the ones
already checked in this time step. In the case of success, it retains the network
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selection for the next time slot with a probability of Pretqin. For evaluation, we
selected Pretqin = 0.9. This ensures, that network switches may happen without a
force but do not happen in each time slot, leading to exceptionally high network
migration cost.

Algorithm 4 RandomTransmissionPlanning

1: procedure TRANSMISSIONPLANNING(flows, networks)

2 plan < empty plan
3: flows < sHUFFLE(flows) > Shuffle data flows randomly
4 networks < SHUFFLE(networks) > Shuffle networks randomly
5: for flow in flows do
6: n<+0 > Index of network to assign to
7 for time in flow.starttime to flow.deadline do
8: plan_temp < plan
o: count < networks.size()
10: while count > 0 do > Stop if assignment failed for each network
11 network <— networks.get(n)
12: plan < AssiGNTOkENs(flow, time, network, plan)
13 if plan ! = plan_temp then
14: break > End the time slot if assignment was successful
15: > If no token assignment was possible, try next random network
16: n < (n+1)mod networks.size() > Increase index
17: if n= 0 or random < Pretqin then
18: networks < sHUFFLE(networks) > Shuffle networks randomly
19: count < count—1

A.3 DATA FLOW TYPES

For simulation of transmission planning algorithms, we categorize 4 data traffic cat-
egories: Interactive, Conversational, Bufferable and Background. Their share of the
overall data traffic follows the measured and predicted distribution of Cisco [140]
and Sandvine [187] for mobile Internet traffic with minor adaption for the con-
nected vehicle scenario. Vehicles will integrate more and more autonomous driv-
ing functions and driving efficiency features in the future [29, 118, 119]. Most of
these features profit from external information [35, 33]. For example, autonomous
driving profits from a highly detailed map, which covers details of the environ-
ment [102, 104]. Systems should continuously update this information and, as well,
push locally collected sensor data to servers to keep the remote map up-to-date
[36, 30, 146]. Hence, we increase the amount of background data from the Internet
traffic reports traffic by 10% for the connected vehicle scenario in comparison to the
reports above and prognoses on smartphones. In a real system, application data
flows may be classified, using methods inspired from [4, 189] The categories zero
to very high in Table 15 represent randomized integer values from truncated Gaus-
sian distributions, parameterized as shown in 16. In the following, we describe the



BIBLIOGRAPHY

characteristics of the default data flow template and the four data traffic categories
briefly.

A.3.1  Default Data Flow Template

We define a default data flow as a template which defines values for a minimum set
of configuration and requirements. The other data flows are defined differentially
to it, overwriting dedicated requirement definitions. The default data flow has no
data and medium importance to transmit data w". For scenario generation in our
evaluation, we set the user preference w™*¢" to the randomized value medium,
whereas in real systems, it should be initialized with a fixed value that can be
influenced by the user. The minimum throughput requirement is deactivated by
setting zero tokens to be transmitted within a maximum time window of the entire
scenario time span T and zero importance. The maximum throughput constraint is
deactivated as well, allowing to transmit all tokens of the data flow in a single time
slot. Latency and Jitter may be very high without a violation, weighted by zero.
Start time and deadline are set to zero (now), respectively beyond the planning
time horizon, both weighted with zero by default.

A.3.2 Interactive Data Flow

We set amount of data of interactive data flows to 5% of the overall scenario traffic
share [187] and define it as a series of short information requests with a small
data amount for which an instant response is expected, according to [122, 200].
Hence, we model it with very high priority to transmit data w,,, low minimum
throughput requirements with flow continuity requirements and a start time and
deadline with high importance, summarized in Table 15 .

A.3.3 Conversational Data Flow

Conversational data flows refer to speech and video telephony or other data trans-
fer with human interaction, covering 15% of the overall scenario traffic share [187].
We define its requirements according to Xu et al. [218] and Steinmetz [200, 201]
with high importance of allocating all data, very high importance to satisfy a con-
tinuous medium data rate, strong requirements for a low latency and jitter and
very high importance to transmit data between the desired start time and dead-
line.

A.3.4 Bufferable Data Flow

The bufferable data flow corresponds, e.g. to video-on-demand, music-on-demand
or other semi-soft continuous transmissions, defining the biggest share of 55% of
data traffic, which is still expected to increase [187]. We model its requirements
according to Staelens et al. [198] and Steinmetz et al. [200] with a medium impor-
tance to transmit all data, but a very strong minimum throughput requirement
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and allowed transmission in bursts, reflected by a very high minimum through-
put window size in the model. This corresponds to adaptive rate transmission, in
which the quality of the video is matched to the experienced network quality, like
DASH (Dynamic Adaptive Streaming over HTTP) [127, 135, 167, 1]. Hence, a cer-
tain minimum throughput should be satisfied, while transmission of additional
data, corresponding to only medium importance to transmit all data, increases the
quality of the video. A start time should approximately be satisfied [10] with high
importance while the deadline might be later, e.g. due to pauses [125].

A.3.5 Background Data Flow

For background data, we define two types, differing in the requirement if they have
a timely deadline to be finished. The first has a deadline far beyond the planning
time horizon and uses the default data flow definition, except low importance to
transmit data. It corresponds to non-urgent data transmissions, e.g. software up-
dates, cloud synchronization or map material update from non-local regions [102].
In our scenario reflects 50% of the background data traffic. The second type differs
from the default data flow definition due to a set start time and a deadline, keep-
ing the medium importance to transmit data and representing, e.g. data provision
for soon required map data [33] or sensor data transfers [32].
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Type Default Interactive Conversational Bufferable Background
Data Amount* 0.00 0.05 0.15 0.55 0.25
w" medium  very high high medium medium
whser medium?

min. Throughput Zero low medium high

min. Window? T very low very low very high

w'P Zero medium very high very high

max. Throughput all tokens medium

max. Window? one very low

req. Latency very high low low

w'ey Zero medium very high

req. Jitter very high low

witt zero very high

Start time Zero st st st st
wst Zero very high very high high low
Deadline T dl dl dl (dl
wdt Zero very high very high medium medium

1 multiplied by the overall number of tokens and normalized by the number of data flows of the
same type in the scenario
2 default user preference should be a fixed value in real systems, which might be modified by the

user 3

4.1.2.4

corresponds to the degree to which the transmission may be in bursts, detailed in Section

Table 15: Data flow parameter definition

Type Mean Minimum Maximum Standard deviation
Zero 0 0 0 0
very low 2 1 3 1
low 3 1 5 1
medium 6 3 9 2
high 10 6 14 2
very high 15 10 20 2

Table 16: Randomized integer parameter settings from truncated Gaussian distributions
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Table 17: NRS gains of JTP with varied parameter c1i,,, compared to default JTP

Clim 5 10 15 20

NRS gain over JTP 0.00045 0.00045 -0.012 -0.012

A.4 PARAMETER OPTIMIZATION OF JOINT TRANSMISSION PLANNING

In Section 4.3.3, we identified a parameter imbalance for Joint Transmission Plan-
ning. A Relative Detail Score (RDS) analysis revealed that the approach underrates
the cost from non-allocated tokens while it overrates monetary cost. The two corre-
late directly because allocating additional tokens causes additional monetary cost
for transmission. Thus, a parameter change could solve the identified imbalance.
The balance between attracting forces, which foster token allocation, and repelling
forces, e.g. monetary cost, in JTP is influenced from the parameter ciim. It is the
limit of which the heuristically approximated difference between attracting and re-
pelling forces is interpreted as sufficient to justify a token allocation. To investigate
if the revealed imbalance is curable, we increase the parameter cyir, to allocate
more tokens. We select ciim = {0,5, 10, 15,20}. Figure 55 shows the NRS and RDS
values of JTP with the named parameter options.

The mean gains of the parametrized options over default JTP are additionally
presented in Table 17 because they are barely noticeable. We observe a slight but
statistically insignificant improvement of the results of 0.00045 for ciim set to 5
and 10. However, for larger values of ciim, the result quality diminishes. More
interestingly, we can observe how the RDS of the transmission planner changes.
As desired, the score for unscheduled tokens falls for higher values of ciim and
the monetary cost score rises. The other parameters stay nearly unaffected. This
parameter optimization shows that RDS analyses indicate weaknesses of strategies
correctly. However, in this case, a parameter optimization brings no significant
positive effect. The defect must be in the strategy itself. As the positive effects
of this parameter optimization are statistically insignificant, we keep the initial
parameter ciim = 0 for evaluation.



175

BIBLIOGRAPHY

wn
g
o o =
- I e I (= - Pty = = — = = = = = -1&
- ! = - .. < nDuu..m -—
- .. (e} _- y o 1mod ] %
- UL P 1© o P YT/ S A 18 w53 o
) ’ N 5 L . N D 2 o /5 E >
(. ~~ \ lO .‘;. ! 10 m hr IS wm b
A ’ o »n i ' o W =5 L >3 o
- B B S 1 ¢ I e 4 1© o < 9 YNe)
'V : e = v :GEEQ
AT [ m A\ S m m 2 g+82 3
= ..h.]... \+-\\\~ -2 = = _I.Lln.. W 12 = = m u.h.a mR
] ! Lo ] [y Lo ] : ]
] 1 1 . ] 1
1 1 ’ ] 1
| L oA \%J | - \—P\\\ \A_.M_J
| | | |
N - < - N N — < — N
e ° T T ° ° T T
(SdLDSAY 21008 [1e1d(] dALERY (STdLDSAY 91008 Trejaq AT
I I [ [ [ [
(o} o) =
- i . 1 Bls) - A [ T ) = B e e e e | R -1
: \ < - w < ' \ =
/ 1 1 -— , O
oy ' ' oy
- | - . [ . Fr-—---+ ——— o ———=d Ble)
g SER o v &8 | : 8
S SR S L[
B g w | AV B g v | A VI . : 18
N - Q w......, .. - 9 ’ ’ —
/// M .. .. .. m .. ...~ ! @)
- 5m wm :““zlt \mJ - _..q.zlhl.m.twﬁwwwwL \WT - V\_HLllm -———- 1
BB P P P “ , \ T
EEEEE . R BEE
I i — - \%J - =] R \A_ﬂq_J B [ A - - \%
1 . 1
] : ]
I I | | L L
o 5 N © ~ = S = SR = S — ™
o (o) o o (=) o o o = (= (] 0
[ [ [ [
(SUN) 21005 Sunyey PIZI[EULION] (OT4LNSAY 91058 [re3a dAnE[RY (04 LNSAY 91055 [re3ad sanesy

Time Slots

Figure 55: NRS and RDS for Joint Transmission Planning with varied parameter ¢, over
number of time slots



176

BIBLIOGRAPHY

A.5 FURTHER TRANSMISSION PLAN EVALUATION RESULTS
A.5.1 Number of Networks

The execution time of the heuristic transmission planners rises about proportion-
ally with the number of networks. With maximum values below 0.1 seconds, they
show sufficient performance for real system use. There is no significant difference
between them. In contrast, the execution time of the optimal approach rises much
faster than the heuristic approaches. The results are shown in Figure 56.
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Figure 56: Execution duration over network number of networks
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A.5.2  Number of Data Flows

The Relative Detail Scores in Figure 58 show sinking cost for monetary cost and
widely stable values for the others. They cover the common characteristics, as dis-
cussed in the Strategic Transmission Planning evaluation in Section 4.3.

L : 4 @ 1 :

m !

Z, r RS T %

L o8 1@ 08 - .

R L ! hR ~O T a I I

[} S ~ ! pommm—— *~

5 0.6 R &o’ 0.6 TRRCR N

& - 3 | SRR

‘| 0.4 1= 04 R

§9] I - -

A a

.QZ) 0.2 1 e 0.2 2

T g=

— o] Frssssunannnnn hsssssssnsssss

g 0 E’j 0

02— 02—

Data flows Data flows
T T T T T T T

5 1 - 1~ time limits i

= | = min. throughput

a | F ool unscheduled tokens

o 0.8 1 A 038 .. :

) ; ) =~ latency jitter

% e ! L - - - monetary cost

5 0.6/ el .18 0.6 Ref Opt )

& | Tk | &

= 04 s " 04 2

I | | Se ©

L L | R A i

A 02 | - e 02f .

v ! I 2 4 N

,E L - aa Fresrranaaanas . T

[ . by F - = ; I

E 0 - g 0 = T _______ T

o

Data flows Data flows

Figure 58: Relative Detail Scores of NS, ONS and JTP over the number of data flows



BIBLIOGRAPHY

A.5.3 Monetary Cost Weight

The Relative Detail score over monetary cost weight confirms the finding from the
corresponding Section 4.3.7. The monetary cost RDS value for Network Selection
starts to explode for a medium and high weight. In contrast, it is still low for
Opportunistic Network Selection and Joint Transmission Planning. The reason for
this is, that both implement a heuristic to drop data or delay it beyond the planning
horizon. The effects are clearly visible in Network Selection’s unscheduled token
RDS value, which gets below zero for a high monetary cost weight.
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A.5.4 Adaptation Results with Relative Optimization Potential

As it can be seen from Figure 60, the Relative Optimization Potential (ROP), il-
lustrated as black dashed line, stays about constant with different error strengths.
Joint Transmission Planning (JTP) using perfect prediction (green), i.e. not consid-
ering the error on the x-axis, and Opportunistic Network Selection (ONS) in dottet
magenta frame the results of the Adaptation (solid black). A detailed discussion is

given in 5.3.
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A6 EXAMPLE OF APPLIED PREDICTION ERROR MODEL WITH SMAPE 0.5

(b) Network throughput with network error

(c) Network throughput with movement error

EMJMML

20 30 40 a0 RO 70 B0 an

(d) Network throughput with movement and network error

Figure 61: Throughput for two networks over time. Network and movement prediction
error examples with SMAPE strength o.5.

181



182 BIBLIOGRAPHY

(a) Transmission plan from prediction of data flows (each with own color)

(c) Executed transmission plan of data flows with combined prediction error of 0.5

Figure 62: Throughput for two networks over time. Network, movement and flow predic-
tion error examples with SMAPE strength o.5.
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