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Abstract Numerical Earth System Models are generic tools used to extrapolate present climate
conditions into a warming future and to explore geoengineering options. Most of the current-generation
models feature a simple pelagic biogeochemical model component that is embedded into a
three-dimensional ocean general circulation model. The dynamics of these biogeochemical model
components is essentially controlled by so-called model parameters most of which are poorly known.
Here we explore the feasibility to estimate these parameters in a full-fledged three-dimensional Earth
System Model by minimizing the misfit to noisy observations. The focus is on parameter identifiability.
Based on earlier studies, we illustrate problems in determining a unique estimate of those parameters
that prescribe the limiting effect of nutrient- and light-depleted conditions on carbon assimilation by
autotrophic phytoplankton. Our results showcase that for typical models and evaluation metrics no
meaningful “best” unique parameter set exists. We find very different parameter sets which are, on the
one hand, equally consistent with our (synthetic) historical observations while, on the other hand, they
propose strikingly differing projections into a warming climate.

1. Introduction

In a warming world, our limited ability to reduce emissions of climate-relevant species to the atmosphere
becomes a societal concern. To-date several so-called geoengineering options have been suggested to allevi-
ate the effects of ever increasing greenhouse gas emissions [e.g., Govindasamy and Caldeira, 2000; Keller et al.,
2014; Tuana et al., 2012; Vaughan and Lenton, 2011]. Some of these options may, or may not, come along with
unanticipated side effects on local to global scales. One way to identify and quantify these side effects is to
test the respective options in numerical Earth System Models. These models comprise, as far as we know, the
most important components (and processes) impinging on our climate such as the atmosphere, the ocean,
ocean biogeochemistry, sea ice, land-ice, and land vegetation. Even so, their projections into a warming future
are associated with a considerable degree of uncertainty.

Relatively straightforward is the exploration of the uncertainty that is associated with the anthropogenic emis-
sion scenarios. In this context, it is common to pragmatically test through a suite of scenarios that envelope
anticipated global economic growth [e.g., Moss et al., 2010]. But apart from the uncertainties associated to
these boundary conditions, the models themselves may be inherently deficient. Of particular concern are the
biogeochemical processes, because (1) their mathematical description is not derived from first principles
and the precise choice of description has a strong impact on the model’s sensitivity [e.g., Jones et al., 2003;
Löptien, 2011; Taucher and Oschlies, 2011, and many more to follow] and (2) associated model parameters,
which—along with the mathematical equations—determine the sensitivity, are poorly constrained [e.g., Kriest
et al., 2010; Löptien and Dietze, 2015]. The need to address the latter issue is reflected in an increasing number
of studies that set out to estimate or constrain such model parameters, by minimizing a metric that measures
the misfit to observational data [e.g., Fan and Lv, 2009; Friedrichs et al., 2006; Rückelt et al., 2010; Schartau et al.,
2001; Schartau, 2005; Spitz et al., 1998; Tjiputra et al., 2007; Hemmings and Challenor, 2012; Matear, 1995; Ward
et al., 2010; Xiao and Friedrichs, 2014a, 2014b, among others]. Common to many of these efforts is the failure
to identify the optimal parameter set [Ward et al., 2010; Schartau et al., 2001; Rückelt et al., 2010]. Among the
reasons for failure discussed so far are that the respective equations may not represent underlying processes
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adequately [Fasham et al., 1995; Fennel et al., 2001] and overfitting, i.e., the attempt to extract more informa-
tion than is inherent to the respective data [Matear, 1995]. A recent study of Löptien and Dietze [2015], based
on a slab ocean model, supports the early findings of Matear [1995] in that it illustrates that even drastic
changes to key model parameters can compensate one another. Further, Löptien and Dietze [2015] show that
model parameter sets that yield almost identical model solutions (i.e., solutions that are equally consistent
with observations) can strongly diverge once the boundary conditions change. Unfortunately, a large fraction
of this diverging behavior turned out to be attributed to those parameters which are used to describe light
and nutrient limitation of phytoplankton growth. It is unfortunate because the magnitude of these parame-
ters is poorly known while they, at the same time, largely control the sensitivity of the biogeochemical system
to ever changing environmental controls.

In summary, a number of studies showed that biogeochemical model parameters are difficult to estimate
based on observations in one-dimensional (with the one dimension referring to depth) or slab ocean frame-
works. This is problematic, as seemingly equivalent solutions can diverge under anticipated future changes.
If this also applies to state-of-the-art three-dimensional model frameworks (with the three dimensions refer-
ring to longitude, latitude, and depth), such implications would be disconcerting because the implication
would be that a model’s forecast skill (or reliability in general) is not necessarily associated with goodness-of-fit
to historical observations. The discussion to what extent results from one-dimensional models are indicative
for the behavior of full-fledged three-dimensional coupled global ocean general circulation biogeochemical
models is ongoing. One may argue that there is no conceptional difference between one-dimensional and
three-dimensional frameworks other than that one-dimensional frameworks are based on the assumption of
horizontal homogeneity of all relevant environmental variables. Clearly, this assumption does not hold for the
real ocean. Currents, the angle of the sunlight penetrating into the surface ocean, temperature, stratification,
nutrients, and other variables, which exert control on marine biota and associated biogeochemical cycling,
do vary strongly in space. But then, three-dimensional model frameworks do also—intrinsically—depend to
a certain degree on horizontal averaging or homogeneity, since ocean models commonly rely on a spatial dis-
cretization which assumes the environmental variables to be homogenous within a certain area. For global
models the horizontal discretization can be rather coarse—typically of the order of hundreds of kilometers.
Hence, one may argue that the conceptional differences between one- and three-dimensional approaches
are rather small and inferences can be made from one to another.

In the present study we set out to put the above argument to the test. Based on a predefined and common
model-data misfit function, we will determine several parameter sets which fit observational data equally
well. In a second step, we test the sensitivity of these equivalent model solutions by projecting the differing
model versions into the future. Note that the determination of the respective parameter sets requires an
automatized optimization procedure, which just recently has become feasible by advancements in computer
technology. So far few pioneering studies have been able to estimate a limited number of parameters in a fully
spun-up model [e.g., Kriest et al., 2017]. Our study adds to the emerging field in that our focus is on the fea-
sibility to determine a unique solution and, specifically, on the relation between goodness-of-fit to historical
observations and reliability (or robustness) of projections into a warming world. Our approach is based on twin
experiments where we define an arbitrarily chosen parameter set as the “true” one. From the respective simu-
lation, which we refer to as genuine truth in the following, we subsequently sample “synthetic observations.”
These synthetic observations are distorted by noise in order to mimic realistic conditions. Among the advan-
tages of the twin experiment approach (applied also by, e.g., Friedrichs [2001], Gunson et al. [1999], Lawson
et al. [1996], Schartau et al. [2001], and Spitz et al. [1998]) is full control over the “observations.” We are not
limited by data availability and can specify the noise level at will. Another advantage of our twin experiment
approach is that our equivalent model solutions differ only in terms of their underlying parameter values while
they apply the same biogeochemical and physical model formulations.

The following section 2 describes the Earth System Model and the experimental setup. In section 3 we present
our model results and compare different setups under historical and anticipated future greenhouse gas
emissions. A discussion follows in section 4. The paper closes with summary and conclusions (section 5).

2. Methods

Our twin experiment approach is based on the University of Victoria Earth System Climate Model (UVic)
[Weaver et al., 2001]. We pick an arbitrary parameter set and define the respective simulation as “the”
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Table 1. Model Parameters, Occurring in Equations (1)–(5)a

Parameter Description Unit

a Maximum growth rate at 0∘C day−1

Tb e-folding temperature dependence ∘C

KP
Fe Half-saturation constant for Fe uptake mmol Fe m−3

𝛼 Initial slope of the P-I curve (W m−2)−1 d−1

KN Half-saturation constant for NO3 uptake mmol N m−3

KP Half-saturation constant for PO4 uptake mmol P m−3

aThe respective notation matches the one in Keller et al. [2012].

genuine truth. The genuine truth is distorted by noise. This noisy model output is defined as synthetic observa-
tions. Additional experiments, so-called twins, are conducted with the same model that underlies the genuine
truth. These experiments are twins because they use the exact same configuration—except for the choice of
some of the model parameters of the pelagic biogeochemical component. By using an automized optimiza-
tion process, as outlined in Appendix A, we determine several parameter sets that lead to equally good fits
between the respective simulations and the synthetic observations. Finally, we will use these parameter sets to
make model-based projections into a warming future. A comparison between these projections will provide a
link between the model’s forecast skill (or reliability in general) and goodness-of-fit to historical observations.

In the following section 2.1 we describe our modeling framework, the University of Victoria (UVic) Earth
System Climate Model. The synthetic observations that are based on the genuine truth simulation are
described in section 2.2. In section 2.3 we define measures of goodness-of-fit to observations (also referred
to as metrics or cost) that quantify the difference or consistency between a simulation and the synthetic
observations. Section 2.4 describes the spin-up procedure and the boundary conditions used to project into
a warming future.

2.1. The Earth System Model
Our study is based on the University of Victoria (UVic) Earth System Climate model (version 2.9) which is of
intermediate complexity. The model has been applied to explore geoengeneering options in a number of
studies [e.g., Keller et al., 2014; Oschlies et al., 2010; Matthews et al., 2009; Reith et al., 2016; Weaver et al., 2007].
Our configuration is identical to the one in Keller et al. [2012] which is also referred to as “the reference simu-
lation” in Getzlaff and Dietze [2013] and Getzlaff et al. [2016]. Note that porting from one computer hardware
to another results in (minor) differences, i.e., bit-precise reproducibility is impeded. This holds especially for
properties at the sea ice edges.

All model components use a horizontal resolution of 1.8∘ in latitude and 3.6∘ in longitude. The UVic model
comprises a single-level atmospheric energy-moisture balance model (with prescribed surface winds), a
dynamic-thermodynamic sea ice model, a simple land ice model, and an active terrestrial vegetation com-
ponent [Weaver et al., 2001]. Further, UVic’s ocean is based on a three-dimensional primitive-equation model
[Pacanowski, 1995]. The vertical discretization comprises 19 levels. The vertical resolution starts with 50 m
near the surface and gradually increases to 500 m at depth. A marine pelagic ecosystem model is coupled
to the ocean general circulation component. As in the setup of Keller et al. [2012] phytoplankton growth (JD)
depends on photosynthetically active radiation (PAR), nitrate (NO3), phosphate (PO4), iron (Fe), and tempera-
ture (T). An overview of the respective model parameters is provided in Table 1. The specific ecosystem model
formulation is as follows:

JD ∶= a JFe min(JOI, JNO3
, JPO4

). (1)

Here a determines the maximum phytoplankton growth and JFe mimics iron limitation and temperature
dependence:

JFe ∶= Fe
Fe + KP

Fe

⋅ exp(T∕Tb). (2)

The parameter KP
Fe is the so-called half-saturation constant for iron limitation and Tb the e-folding temperature

dependence of biological rates.
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The light limitation is expressed as follows:

JOI ∶=
𝛼 PAR

((𝛼 PAR)2 + (JFe)2)(1∕2) . (3)

The parameter 𝛼 determines the sensitivity toward the incoming photosynthetically active radiation (initial
slope of the P-I curve).

Growth limitations due to nitrate (NO3) and phosphate (PO4) deficiency are expressed by the so-called
Michaelis-Menten (MM) formulations. The sensitivity toward the availability of these nutrients is determined
by the half-saturation constants KN and KP , respectively (which are related via the Redfield ratio RN∶P=1/16; i.e.,
KP=RN∶P KN):

JNO3
∶=

NO3

NO3 + KN
(4)

and

JPO4
∶=

PO4

PO4 + KP
. (5)

In the present study we focus on those parameters that (1) determine the control of light (i.e., parameter
𝛼 in equation (3)) and nutrients (i.e., the parameters Kp

Fe, KN, KP in equations (2), (4), and (5), respectively)
on phytoplankton growth and (2) prescribe the maximum growth of phytoplankton (i.e., parameter a in
equation (1)).

The ratio behind this choice is that these parameters occur in formulations which are common to most
biogeochemical models. Also, it has been suggested earlier that these parameters can be difficult to esti-
mate unambiguously while they can, at the same time, impact the model’s sensitivity decisively [Löptien and
Dietze, 2015].

2.2. The Synthetic Observations
As outlined at the beginning of this section, we use synthetic data instead of real-world observations. We
define the equilibrated preindustrial spin-up simulation integrated with the reference configuration of Keller
et al. [2012], Getzlaff and Dietze [2013], and Getzlaff et al. [2016] as the genuine truth. We assume that surface
concentrations of phytoplankton and macronutrients are best suited to estimate the considered parameters,
because our focus is on model parameters that determine the growth of phytoplankton in the sunlit surface
ocean. We do not consider data from deeper parts of the water column where the absence of sunlight
forestalls autotrophic growth.

Based on this genuine truth, we distort 5-daily samples with noise. These noisy data are defined as synthetic
observations. The added noise is meant to account for all unresolved processes that can cause deviations
between a real-world observation and a model-based estimate. Among these processes are (1) measurement
accuracy; (2) misalignment between observations and model estimate in space and/or time; (3) unit conver-
sion; e.g., models typically carry nutrient-contained-by-phytoplankton as a prognostic variable, rather than
the often observed chlorophyll a content; the conversion from one to another is not straightforward because
it is intrinsically dependent on local environmental conditions (that are often unknown); and (4) model biases
as a consequence of a model structure that is inconsistent or imprecise compared to real-world dynamics.
A problem associated with the construction of the noise is that there is so little information on the mag-
nitude, coherence, and probability density functions of the combined effects of the processes listed above.
As for the measurement accuracy it is probably prudent to assume that the noise is uncorrelated or “white”
[Rückelt et al., 2010; Schartau et al., 2001]. As for misalignment in space and time the resulting noise is prob-
ably correlated, or “red” because ocean dynamics typically feature red rather than white spectra in time
[cf. Hasselmann, 1976]. As for the conversion from chlorophyll a to the nutrient content of phytoplankton there
are large biases, strongly correlated in space and time [e.g., Banse, 1977]. As for the effects of model biases,
the fact that models are typically rather coarsely resolved in space and driven by forcing less detailed than the
real-world environment suggests that the resulting noise structure is rather red than white. When it comes to
the precise definition of noise, we are, however, pressed to make assumptions.
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Figure 1. (a) Standard deviation of the noise added to the genuine truth surface nitrate in units mmol N m−3. (b) Annual standard error (i.e., the standard
deviation of the mean) of nitrate concentrations in the World Ocean Atlas [Garcia et al., 2009].

In this study, we construct noise based on the assumption that (1) the power spectrum of its temporal vari-
ability is rather red than white and (2) the absolute amplitude of the noise is correlated with major patterns of
variability in the biogeochemical model variables. Specifically, we produce a low-frequent noise time series by
superimposing four autoregressive processes (AR(3)), each featuring a standard deviation of 0.25 in its under-
lying white noise process [cf. Löptien and Dietze, 2015]. The time series are then multiplied by the absolute
values of the first four leading empirical orthogonal functions (EOFs) [Von Storch and Zwiers, 2001] of mod-
eled surface phytoplankton and nitrate concentrations. (Note that these first four EOFs, based on the genuine
truth, explain 73.23 % of the total variance for phytoplankton and 94.32 % for surface nitrate.) By adding the
respective noise to our genuine truth we construct our synthetic observations. Resulting negative values in
the prognostic variables are truncated and set to zero.

The resulting noise patterns in our synthetic surface nitrate (Figure 1) resembles successfully the “standard
errors” (i.e., the standard deviation of the mean) provided by the World Ocean Atlas [Garcia et al., 2009]. The
comparison with World Ocean Atlas data further reveals that our synthetic nitrate observations feature less
noise (i.e., overall lower noise amplitudes) than typical real-world data. A similar argumentation holds for the
noise structure in our synthetic phytoplankton observations (Figure 2). According to a study from Volpe et al.
[2007] covering the Mediterranean, satellite chlorophyll data may well carry noise amplitudes correspond-
ing to 100% when compared with in situ measurements. For the Argentinean Patagonian continental shelf,
Dogliotti et al. [2009] report somewhat lower numbers around 20–40%. Note that noise associated to unit con-
versions, model/data misalignment in space and/or time, and model bias is not included in these numbers but
has to be added. We apply noise corresponding to much less than 100% over most of the ocean and suggest
that this level is less than actual levels to be expected in real-world applications based on satellite data.

2.3. Metrics of Misfit/Cost
As outlined in the beginning of section 2, we set out to compare and rate model-data misfits of various
long-term simulations based on differing parameter sets (cf. Table 2). Such a comparison necessitates the def-
inition of a metric that quantitatively describes the difference (or misfit) between the synthetic observations
and a model solution. In the literature, such misfit metrics are also referred to as objective functions or cost
functions, and various approaches exist [e.g., Stow et al., 2009]. Clearly, the result of a parameter optimization
depends on the definition of the underlying cost function [cf. Evans, 2003]. The present study does not aim
to make inferences for all definitions of misfit metrics ever proposed so far, nor for all of those that will ever
be proposed. For pragmatic reasons we use two exemplary approaches only. Both are generic in that they are
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Figure 2. (a) Standard deviation of the noise added to the genuine truth surface phytoplankton in units mmol N m−3. (b) Like in Figure 2a but relative to the
local temporal mean phytoplankton concentration in relative units.

based on the sum of the weighted squared differences (RMSE) between model output and observations [cf.
Ward et al., 2010; Schartau et al., 2001; Rückelt et al., 2010]:

RMSE =

√√√√(
1
M

M∑
m=1

W2
m

1
Nm

Nm∑
j=1

(
aj − âj

)2

)
, (6)

M denotes the number of prognostic variables, Nm the number of (synthetic) observations for each prognostic
variable, aj stands for a observation at time j, and âj the corresponding model result. Wm determines the
weight that each data-model pair contributes to the overall cost (RMSE).

Our first metric of misfit, COST1, is based on the common approach to consider phytoplankton observations
only [as in, e.g., Gregg, 2008; Gunson et al., 1999]. It is motivated by the fact that satellite observations of
chlorophyll a provide unrivalled coverage in time on a near-global scale. The COST1 is calculated as RMSE in
equation (6) based on 5-daily synthetic observations throughout one seasonal cycle of surface phytoplankton
between 65∘S and 65∘N. For simplicity we assume equal weights (i.e., Wm = 1). The synthetic observa-
tions consist of simulated phytoplankton concentrations distorted by noise as described in section 2.2. The
sensitivity of COST1 is biased toward misfits occurring in the higher latitudes, particularly, because there,
the phytoplankton variability (in absolute values as considered by equation (6)) is higher than in the more
oligotrophic lower latitudes.

Our second metric of misfit, COST2, serves as an example of more complex cost functions. The point we want
to make by defining COST2 is that misfit metrics are adjustable at will and can be shaped to enhance or
reduce their sensitivity toward particular processes. In COST2, we average 5-daily synthetic surface observa-
tions of phytoplankton and nitrate and the respective model results over three regions, the tropics/subtropics
(27∘S–27∘N) and the higher latitudes (27∘ to 65∘) in both hemispheres. The latter feature, in contrast to the
tropics, a high seasonality. In total we therewith use six time series, covering a full year, from the model simu-
lations and the synthetic observations (nitrate averaged over the three regions and phytoplankton averaged
over the three regions) to calculate the term

(
aj − âj

)2
in equation (6). As for the respective weights, all mean

Table 2. Naming of Parameter Sets Leading to Equivalent Model Solutions

Name Underlying Phytoplankton Growth Parameter Set

Genuine truth Parameter set underlying the genuine truth simulation from which we draw synthetic observations

OPTI1 Parameter set obtained by minimizing COST1 (cf. section 2.3)

OPTI2 Parameter set obtained by minimizing COST2 (cf. section 2.3)
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Table 3. Misfit to Synthetic Observations (Calculated From the Last Year of the
Respective 3000 Yearlong Spin-ups)a

Parameter Set of Underlying Simulation COST1 COST2

(mmol N m−3) (mmol N m−3)

Genuine truth 0.3186 0.2824

OPTI1 0.3141 0.2586

OPTI2 0.3319 0.1825
aThe table reads as follows: a simulation with the parameters underlying

the genuine truth yields 0.3186 and 0.2824 in terms of COST1 and COST2,
respectively. A simulation with parameters OPTI1 undercuts these misfits (i.e.,
it is closer to the observations) both in terms of COST1 and COST2.

squares calculated with nitrate (phytoplankton) data are normalized with the overall standard deviation of
nitrate (phytoplankton) data. (Note that for the calculation of both standard deviations data from oligotrophic
regions defined as hosting nitrate surface concentrations of less than 0.5 mmol N m−3 are omitted). The
ratio behind this approach is as follows: (1) By using spatial averages of observations and model output in
equation (6), problems associated to the potential misalignment between observations and model estimates
in space can be reduced in real-world applications. (2) The partitioning into regions that feature a high sea-
sonality and those that are severely depleted in macronutrient or micronutrient concentrations gives control
on the strength with which (model) processes affect the misfit. (3) By weighting with the respective standard
deviation of the prognostic variables, we assume (and want to ensure) that phytoplankton observation carry
as much relevant information into the misfit as the nitrate concentrations.

2.3.1. The Concept of Equivalent Solutions
Key to this study is the concept of equivalent solutions. As described in section 2.2, we use a twin experiment
approach where we define a model simulation as the genuine truth. From this “truth,” we sample our syn-
thetic observations which we distort by noise to mimic real-world conditions. Thus, even the genuine truth
deviates from the observations in that it yields a cost higher than zero because of the noise in the synthetic
observations. We name in the following all of those model solutions as “equally consistent” with the observa-
tions that yield the same or a lower model-data misfit than the genuine truth does, relative to the synthetic
observations. To test for equivalence, we compare model solutions in equilibrium, after 3000 years of simula-
tion time (starting from steady state for the genuine truth). Note that this definition of equivalence depends
on the underlying cost function and different cost functions may identify differing solutions as equivalent:
cf. Table 3.

2.4. Spin-up Procedure and Future Projections
Using the systematic optimization procedure outlined in Appendix A, we find parameter sets (cf. section 3)
that yield model solutions that are, under the given preindustrial boundary conditions, equivalent with

Figure 3. Schematics of the integration procedure. For each of the three parameter sets, a 3000 year long spin-up
starting from the equilibrated reference run of Keller et al. [2012] is integrated. These spun-up states are compared with
synthetic observations, and their equivalence (cf. section 2.3.1) in terms of respective cost (cf. section 2.3) is confirmed.
Thereafter (cf. section 2.4), drift runs of 1000 year duration are followed by another 50 year long transition phase
(denoted by the perpendicular lines). Subsequently, we run RCP 8.5 emission scenarios with each of the three
parameters sets through the period 1850–2100.
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respect to the observations (i.e., the respective cost is equal or lower than the cost associated to the param-
eter set underlying the genuine truth simulation). In a set of scenario runs, we explore how differences in
parameter sets underlying these (historically) equivalent model solutions map to differences in model-based
projections into a warming future. Following Keller et al. [2014], all projections are integrated starting from
their respective spin-ups of 3000 years with so-called 1000 year long drift runs where the atmospheric CO2

content is no longer prescribed but allowed to vary in response to preindustrial emissions. After this switch
to von Neumann boundary conditions, another transition phase of 50 year duration is annexed. From now on,
virtual air-sea fluxes of biogeochemical species are turned on [i.e., changes in DIC due to evaporation, pre-
cipitation and runoff - Weaver et al., 2007]. Finally, we run the emission scenario RCP 8.5 [Riahi et al., 2011],
covering the period 1850–2100. A schematic of this integration procedure is provided in Figure 3.

3. Results
3.1. Equivalent Model Solutions
As a first step, we examine a set of equivalent model solutions. Table 3 shows that for each of our two cost
functions (defined in section 2.3), we find one parameter set that fits the synthetic observations better than
parameter set underlying the genuine truth simulation (and the synthetic observations). The two respective
parameter sets are named OPTI1 and OPTI2. Remarkably, the long-term simulation based on OPTI1 features
less misfit to the observations both in terms of COST1 and COST2. Following our definitions in section 2.3.1,
we conclude that long-term model simulations based on the parameter sets OPTI1 and OPTI2 are equally con-
sistent with our synthetic observations because they yield (according to both cost functions in the case of the
former, and according to COST2 in the case of the latter) solutions that are equivalent to the genuine truth.
This equivalence is also associated to a high visual agreement in, e.g., simulated annual mean surface concen-
trations of nitrate and phytoplankton (Figures 4 and 5, respectively)—even though some of the underlying
parameters differ from each other by more than 100% (Table 4).

3.2. Diverging Model Projections Into a Warming Future
As described in the previous section, both parameter sets OPTI1 and OPTI2 yield model solutions that are
equivalent to the historical steady state of the genuine truth model configuration (according to the respective
misfit functions). We will now showcase both—robust patterns and high uncertainties, where the suppos-
edly equivalent configurations diverge from one another, when running all three model configurations into
a warming future (RCP 8.5 scenario).

Among the robust patterns are the global effects of increasing water column stratification on diffusive ver-
tical nutrient supply. As the surface waters warm and stratification increases, turbulent mixing is suppressed
because vertical mixing requires more energy to work against the more stable stratification by mixing dense
(heavy) waters upward and push lighter (buoyant) waters to depth. On a global scale the reduced vertical mix-
ing results in less nutrients being transported from depth to the sunlit surface. Less upward transport results
in overall decreasing surface nutrient concentrations (Figure 6) that generally sustain a decreasing phyto-
plankton standing stock at the surface (Figure 7). Although this pattern is rather robust, there are substantial
exceptions, with differences occurring both regionally and among the configurations. In this regard, the
Arctic and the eastern equatorial Pacific are most prominent given that first, they do not follow the latter rule
(less vertical mixing resulting in less nutrients and phytoplankton at the surface) and, second, the responses
among the configurations differ considerably. In the following, we will elaborate on the differing model
projections in these regions.

1. In the Arctic, the combination of retreating sea ice and increasing stratification (decreasing surface mixed
layer depths) results in increasing light levels experienced by phytoplankton. The configurations respond
differently to this: close to the North Pole, the genuine truth simulation features none or only weak changes
in both surface nutrient and phytoplankton concentrations (Figures 6 and 7). In contrast, both OPTI1 and
OPTI2, which both feature a sixfold higher initial slope of the P-I curve (Table 4), respond with a substantial
increase in phytoplankton (Figure 7) and a related drawdown of surface nutrients (Figure 6).

2. In the eastern equatorial Pacific light-triggered changes, such as found in the Arctic, are of minor impor-
tance. Instead, the complex interplay between macronutrient limitation, micronutrient limitation, and
nonlinear controls and responses of zooplankton dynamics shape the different sensitivities to environmen-
tal changes. Among the main drivers affecting biogeochemical cycles in the eastern equatorial Pacific is the
wind-driven upwelling of nutrient-replete waters to the sunlit surface. The associated upward transport of
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Figure 4. Simulated surface nitrate concentrations in units mmol N m−3 at the end of the spin-up (annual mean of year
3000). (top) The genuine truth; (middle and bottom) the simulation based on the parameter sets OPTI1 and OPTI2.
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Figure 5. Simulated surface phytoplankton concentrations in units mmol N m−3 at the end of the spin-up (annual mean
of year 3000). (a) The genuine truth; (b and c) the simulation based on the parameter sets OPTI1 and OPTI2.
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Table 4. The Considered Parameters for the Different Model Versionsa

Parameter Description Reference Value (Genuine Truth) OPTI1 OPTI2 Unit

KN Half-saturation constant for NO3 uptake 0.7 1.7 1.7 mmol N m−3

KP Half-saturation constant for PO4 uptake 0.044 0.11 0.11 mmol P m−3

𝛼 Initial slope of the P-I curve 0.1 0.6 0.6 (W m−2)−1 d−1

a Maximum phytoplankton growth rate at 0∘C 0.6 0.41 0.435 day−1

KP
Fe Half-saturation constant for Fe uptake 0.1 0.046 0.46 mmol Fe m−3

aThe respective notation is identical to the one in Keller et al. [2012].

nutrients is increasing in a warming world where, as explained above, the diffusive upward transport is
hampered and, consequently, deep nutrient concentrations increase such that the upwelling taps into
a deep pool of increasing nutrient concentrations. The increased nutrient fluxes fuel an increasing phy-
toplankton concentration in the vicinity of the major equatorial upwelling sites in all of our simulations
(Figure 7). Somewhat counter to intuition is that at the same time, all configurations propose decreasing
surface nutrient concentrations (Figure 6). This effect can be explained by the model’s representation of zoo-
plankton dynamics where the increased nutrient fluxes trigger an increased phytoplankton growth which,
again, feeds a growing zooplankton population. At some stage heavily nonlinear behavior kicks in (partly
because the zooplankton grazes also on itself—determined by the underlying Hollinger Type II functional
response). This reduces the grazing pressure on phytoplankton in relative terms. As a result, the phytoplank-
ton outgrows the top-down control by zooplankton and can then draw down surface nutrient concentra-
tions in the fertile equatorial upwelling regions. (Please note that, apparently, the zooplankton top-down
control used to be so strong in earlier versions of the model, such as used in, e.g., Schmittner et al. [2008], that
the simulated surface macronutrient concentrations in the HNLC (high-nutrient-low-chlorophyll) region in
the equatorial Pacific were realistic—even though the model lacked a representation of the limiting effect
of iron.) In other words, the extra pulse of nutrients pushes the model out of its comfort zone and results
in massive drawdown of macronutrients in the HNLC region. While the main mechanisms hold for all three
configurations, they come in different flavors and have different consequences: In OPTI1 the response is
strongest, with larger nutrient drawdown and larger phytoplankton increase than in OPTI2 and the genuine
truth. Analyzing the differences between the setups, OPTI1 is the least iron limited (i.e., its KP

Fe is lowest) and
has the slowest maximum growth rate of phytoplankton (Table 4). The latter results in a relatively stronger
top-down control by zooplankton. As a consequence, OPTI1 features the strongest nonlinear response to
the upwelling of waters with increasing macronutrient concentrations: the phytoplankton outgrows the
control exerted by the zooplankton, surface macronutrient concentrations are depleted, and more organic
material is exported to depth. The associated remineralization of organic material leads to a local increase
in oxygen consumption. In the projection based on OPTI1, this triggers an increase in that fraction of the
tropical Pacific hosting dissolved oxygen concentrations of less than 5 mmol m3 (Figure 8a). This increase
of the suboxic volume is accompanied with an upward shift (Figure 8b) such that more organic material
is remineralized under suboxic conditions (basically because the remineralization profile (or Martin Curve)
decays highly nonlinearly with depth) and, in turn, triggers an increase in denitrification rates of 48 Tg Nyr−1

by the end of 2100.
Figure 8 also highlights that differences in iron limitation or top-down control can trigger subtle differences
in local export of organic matter to depth that amplify to massively different projections of the suboxic vol-
ume. In addition to local changes in the export of organic matter, increased stratification (which is locally
especially pronounced in the projections based on the genuine truth and OPTI1) is among the factors
that can trigger the simulated shallowing oxygen minimum zones depicted in Figure 8b. Consequently,
the affected oxygen minimum zones can catch more export. These complex processes that determine the
dynamics of oxygen deficits eventually trigger substantial changes to global pelagic denitrification rates,
corresponding to a decrease of 4.4 Tg Nyr−1 and an increase of 6.4 Tg Nyr−1 by the end of 2100 in OPTI2 and
the genuine truth, respectively.

In summary, we conclude that the supposedly equivalent (i.e., the biological pump scoring comparable fits
to historical observations) model configurations feature substantially different sensitivities to the RCP 8.5

LÖEPTIEN AND DIETZE PARAMETER INDETERMINACY IN BGC MODELS 1165



Global Biogeochemical Cycles 10.1002/2017GB005690

Figure 6. Simulated changes in surface nitrate concentrations as a consequence of rising CO2 concentrations (emission
scenario RCP 8.5) calculated as the annual mean concentration difference between the years 2100–1850; the unit is
mmol N m−3. (a) The genuine truth; (b and c) the simulation based on the parameter sets OPTI1 and OPTI2.
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Figure 7. Simulated changes in surface phytoplankton concentrations as a consequence of rising CO2 concentrations
(emission scenario RCP 8.5) calculated as the annual mean concentration difference between the years 2100–1850; the
unit is mmol N m−3. (a) The genuine truth; (b and c) the simulation based on the parameter sets OPTI1 and OPTI2.
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Figure 8. (a) Simulated temporal evolution of the volume of suboxic waters in the tropical Pacific in response to rising
CO2 concentrations (emission scenario RCP 8.5). The black line denotes the genuine truth. The red and green lines refer
to simulations based on the parameter sets OPTI1 and OPTI2, respectively. The light gray line marks denote 2016, the
date of this study. (b) Changes of the minimum depth of the suboxic volume in the tropical Pacific in meters for the
genuine truth (black line), OPTI1 (red line), and OPTI2 (green line). The given values are linearly interpolated from the
model grid.

emission scenario, both locally and globally. We find substantial uncertainties associated with projections of

surface nutrients, phytoplankton abundance, suboxic volume, denitrification, and, as Figure 9 shows, even

oceanic carbon uptake, which is related to differences in the export of organic matter (i.e., the biological

pump). The uptake projected by OPTI2 is very similar to the genuine truth projection. In OPTI1, however, the

oceanic carbon uptake accelerates faster. Integrated over the period 1850 to 2100 the respective difference

adds up to 60 Pg C.

Figure 9. Simulated carbon uptake of the ocean in response to rising CO2 concentrations (emission scenario RCP 8.5).
The black line denotes the genuine truth. The red and green lines refer to simulations based on the parameter sets
OPTI1 and OPTI2, respectively.
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4. Discussion

Numerical pelagic biogeochemical models rely on parameters that are not known per se but that are typi-
cally chosen such that the models fit a set of present-day or historical observations in an “optimal way.” This
approach is problematic for a number of reasons. For one, the definition of the optimal way inevitably contains
a subjective element, i.e., the respective measure of misfit or cost function is adjustable at will. An additional
problem is imperfect observations and models: we showed in section 3.1 that for a typical combination of a
three-dimensional coupled ocean circulation biogeochemical model, noisy observations, and cost functions,
the existence of a meaningful, unique global minimum in the model-data misfits is not guaranteed.

Rather, we find a set of model configurations (i.e., model parameter sets) that fit noisy observations equally
well. There have been indications of this indeterminacy early on [Matear, 1995], and a detailed analysis and
the implications have been illustrated in a slab ocean model framework already [Löptien and Dietze, 2015].
The present study, rendered feasible by recent advances in computational efficiency, adds to the discus-
sion in that it illustrates the problem with a full-fledged three-dimensional coupled general ocean circulation
biogeochemical model—a module found in all state-of-the-art Earth System Models.

The indeterminacy of a meaningful, unique and globally optimal parameter set would not necessarily be
problematic—if the respective equally well fitting parameter sets would always yield model solutions that
are similar enough for the purpose at hand. This, however, is not the case because, consistent with the slab
ocean results from Löptien and Dietze [2015], we find that the indeterminacy does also apply to the so-called
Michaelis-Menten parameters. These parameters determine the model’s sensitivity to nutrients and light in
the sunlit surface ocean and, as such, are paramount as concerns the model’s response to changing conditions
such as anticipated in a warming climate. Specifically, we find that supposedly equally consistent parameter
sets yield substantially different model projections into a warming climate, driven by the emission scenario
RCP 8.5. Depending on the projected variable of interest the differences involve both the magnitude and the
sign. The oceanic carbon uptake and oxygen minimum zone dynamics provide good examples of this problem
(Figures 8 and 9).

As for carbon we find that projections with model configurations that are “equally consistent” with a set of
synthetic observations yield differences in oceanic carbon uptake that add up to 60 Pg C until 2100 even
though the respective synthetic observations are superior to typical real-world observations in terms of (1)
noise, (2) spatial/temporal coverage, and (3) model bias. This 60 Pg C difference is substantial given that it
corresponds to 6 years worth of today’s anthropogenic carbon emissions.

As for the suboxic volume hosted by the eastern tropical Pacific, we find that model configurations fitting
the synthetic observations equally well yield forecasts with differing signs ranging from a decrease of 0.65
× 1015m3 to an increase of 0.32 × 1015 m3 until year 2100. This uncertainty is of importance because suboxia
triggers denitrification, a process that controls the standing stock of nitrogen in the ocean that is available for
marine biota. Accordingly, we find, e.g., for the tropical Pacific, that projections, based on model version that
fit present-day observations equally well, do not even agree in the sign of pelagic denitrification rate changes
that are to be expected in the decades to come.

5. Summary and Conclusions

We set out to link parameter indeterminacy in pelagic biogeochemical modules of Earth System Models with
uncertainties of their projections into the future. We illustrate pitfalls of a standard approach to estimate the
parameters of biogeochemical pelagic models with (noisy) historical observations. The illustration is based
on UVic 2.9, an Earth System Model of intermediate complexity [Weaver et al., 2001]. Specifically, we focus
on model parameters that imprint the limiting effects of nutrients and sunlight on carbon assimilation by
autotrophic phytoplankton.

Our approach is based on twin experiments: we construct our own synthetic observations by (1) choosing
one arbitrary model parameter set to be the true one, (2) run a simulation with this parameter set which
we define as the genuine truth, and (3) add noise to the respective model output. Here the noise is meant
to cover all kinds of potential errors that are prone to occur when comparing a biogeochemical model to
observations (e.g., measurement accuracy, misalignment between observations and model estimate in space
and/or time, and unit conversion). The level of noise added is less than in typical real-world applications. In a
second step, we run simulations with different sets of model parameters (the so-called twins to the genuine
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truth simulation), which fit the synthetic observations equally well. The determination of these parame-
ters relies on automatized optimization procedure outlined in Appendix A. Note that such a systematic
optimization procedure just recently has become feasible by advancements in computer technology.

Our results indicate that for typical noise levels inherent to observations, various parameter sets might
exist that are equally consistent with the observations and yield strikingly similar solutions for present-day
climate—even though respective parameter values may differ by manyfold from one another. Further, our
results showcase that the solutions’ similarity breaks once the simulations are forced with increasing CO2

emissions (emission scenario RCP 8.5). This applies especially for near-surface properties, such as projected
concentrations of nitrate and phytoplankton at the surface in the tropical Pacific and the Arctic Ocean. These
differences also trigger differences farther down in the water column. For instance, projections of the suboxic
volume in the eastern tropical Pacific differ substantially, ranging from strongly decreasing to strongly increas-
ing volumes in the decades to come. Consequently, also the projections of that pelagic denitrification that is
hosted in the suboxic tropical Pacific do not even agree on the sign of the changes to come. Drastic differ-
ences among the supposedly similar model projections were also found in the projections of oceanic carbon.
Integrated from the start of the Anthropocene to year 2100 the differences peaked at 60 GT C corresponding
to 6 years worth of today’s anthropogenic carbon emissions to the atmosphere.

We conclude that the indeterminacy of parameter estimates of pelagic biogeochemical modules of the cur-
rent generation of Earth System Models, related to the noise inherent to typical observations, may well explain
a significant fraction of intermodel differences of projections into a warming future reported by Friedlingstein
et al. [2006]. Further, we see strong parallels to a recently started discussion in atmospheric and climate sci-
ence where (1) exercises of Mauritsen et al. [2012] revealed that “the tuning process” of a climate model does
not necessarily lead to a single, unique parameter set and (2) Notz [2015] stated that “… The usefulness of a
climate-model simulation cannot be inferred solely from its degree of agreement with observations....”

Forthcoming research will show if and to what extent the definition of new model-observations misfit metrics
can reduce the respective uncertainties reported in this study.

Appendix A: Optimization

After a 5000 year spin-up of the genuine truth configuration, we perform two sets of numerical experiments
where we assume that the true parameters were unknown and strive to find a parameter set for the maximum
phytoplankton growth, the Michaelis-Menten parameters, and the initial slope of the P-I curve (a, K p

Fe, KN, KP ,
and 𝛼, respectively) that minimizes the misfit between the model and the synthetic observations. The two
sets of experiments differ only in terms of the definition of the misfit, as outlined in section 2.3. During the
optimization, we use prescribed preindustrial atmospheric CO2 concentrations.

The major problem with optimization of parameters in full Earth System Models is their high computational
demand. Therefore, we optimize only a few parameters rather than the entire set. The goal is to retrieve the
parameters which underlie the genuine truth (acting as if these were unknown). The study of Löptien and
Dietze [2015], however, illustrates in a slab ocean model that it can be impossible to identify a unique, optimal
parameter set of those parameters that prescribe the limiting effect of nutrient- and light-depleted condi-
tions on carbon assimilation by autotrophic phytoplankton based on noisy observations. One of the major
aims of the present study is to examine whether the same problems associated to parameter identifiabil-
ity are endemic also to full-fledged Earth System Models. We thus chose some arbitrary extreme values for
the half-saturation constant for nitrate (KN) and phosphate (KP) and the slope of the P-I curve 𝛼, which differ
strongly from the true ones. In a second step, we search for the model solution that is as close as possible
to the synthetic observations by systematically adjusting the remaining phytoplankton growth parameters
(i.e., maximum phytoplankton growth rate a and the half-saturation constant for Fe uptake K P

Fe) until the
model-data misfit is minimal. Based on Löptien and Dietze [2015], we expect that solutions with a lower cost
than the genuine truth exist. To emphasize the problems related to the phytoplankton growth parameters, we
assume that all other model parameters were known. For the parameter adjustment, or minimization of the
misfit, we use an automized numerical optimization algorithm, the heuristic downhill simplex method known
as Nelder-Mead Simplex Method [Lagarias et al., 1998]. We start from an arbitrary initial guess of KP

Fe = 0.07
and a = 0.48.

To reduce the computational costs even further, we follow the ideas presented by Prieß et al. [2013]. These
authors propose to use a so-called surrogate (i.e., a less costly approximation of the full model). In our case
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we, utilize very short 5 year simulations, starting from the true state, as surrogate. This surrogate is used at the
beginning of respective automatized searches for the optimum. By this technique we can limit the amount
of necessary full model simulations to a low number. Note that we do not apply the response correction sug-
gested by Prieß et al. [2013], since we focus on surface parameters only. Another advantage of focusing on the
phytoplankton growth parameters is that the surface processes are relatively fast and we are close to steady
state already after 100 years of simulation time. By this optimization procedure we find two parameter sets
with lower costs relative to the synthetic observations than the genuine truth, when regarding the final year
of the 100 year simulations. This relatively short period of 100 years proves sufficient for optimization as the
cost functions for the optimal solutions remain lower than the respective costs for the genuine truth plus
noise even after 3000 years of simulation time.
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