8 research outputs found

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    Characterization of the single FERONIA homolog in Marchantia polymorpha reveals an ancestral role of CrRLK1L receptor kinases in regulating cell expansion and morphological integrity

    Get PDF
    Plant cells are surrounded by a cell wall, a rigid structure rich in polysaccharides and glycoproteins. The cell wall is not only important for cell and organ shape, but crucial for intercellular communication, plant-microbe interactions, and as a barrier to the environment. In the flowering plant Arabidopsis thaliana, the 17 members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase subfamily are involved in a multitude of physiological and developmental processes involving the cell wall, including reproduction, hormone signaling, cell expansion, innate immunity, and various stress responses. Due to genetic redundancy and the fact that individual CrRLK1Ls can have distinct and sometimes opposing functions, it is difficult to assess the primary or ancestral function of CrRLK1Ls. To reduce genetic complexity, we characterized the single CrRLK1L gene of Marchantia polymorpha, MpFERONIA (MpFER). Plants with reduced MpFER levels show defects in vegetative development, i.e., rhizoid formation and cell expansion, but also affect male fertility. In contrast, Mpfer null mutants and overexpression lines severely affect cell integrity and morphogenesis of the gametophyte. Thus, the CrRLK1L gene family originated from a single gene with an ancestral function in cell expansion and the maintenance of cellular integrity. During land plant evolution, this ancestral gene diversified and was recruited to fulfil a multitude of specialized physiological and developmental and roles in the formation of both gametophytic and sporophytic structures essential to the life cycle of flowering plants

    Building on 150 Years of Knowledge: The Freshwater Isopod Asellus aquaticus as an Integrative Eco-Evolutionary Model System

    No full text
    Interactions between organisms and their environments are central to how biological diversity arises and how natural populations and ecosystems respond to environmental change. These interactions involve processes by which phenotypes are affected by or respond to external conditions (e.g., via phenotypic plasticity or natural selection) as well as processes by which organisms reciprocally interact with the environment (e.g., via eco-evolutionary feedbacks). Organism-environment interactions can be highly dynamic and operate on different hierarchical levels, from genes and phenotypes to populations, communities, and ecosystems. Therefore, the study of organism-environment interactions requires integrative approaches and model systems that are suitable for studies across different hierarchical levels. Here, we introduce the freshwater isopod Asellus aquaticus, a keystone species and an emerging invertebrate model system, as a prime candidate to address fundamental questions in ecology and evolution, and the interfaces therein. We review relevant fields of research that have used A. aquaticus and draft a set of specific scientific questions that can be answered using this species. Specifically, we propose that studies on A. aquaticus can help understanding (i) the influence of host-microbiome interactions on organismal and ecosystem function, (ii) the relevance of biotic interactions in ecosystem processes, and (iii) how ecological conditions and evolutionary forces facilitate phenotypic diversification.ISSN:2296-701

    Extensive epigenetic reprogramming during the life cycle of Marchantia polymorpha

    No full text
    Abstract Background In plants, the existence and possible role of epigenetic reprogramming has been questioned because of the occurrence of stably inherited epialleles. Evidence suggests that epigenetic reprogramming does occur during land plant reproduction, but there is little consensus on the generality and extent of epigenetic reprogramming in plants. We studied DNA methylation dynamics during the life cycle of the liverwort Marchantia polymorpha. We isolated thalli and meristems from male and female gametophytes, archegonia, antherozoids, as well as sporophytes at early and late developmental stages, and compared their DNA methylation profiles. Results Of all cytosines tested for differential DNA methylation, 42% vary significantly in their methylation pattern throughout the life cycle. However, the differences are limited to few comparisons between specific stages of the life cycle and suggest four major epigenetic states specific to sporophytes, vegetative gametophytes, antherozoids, and archegonia. Further analyses indicated clear differences in the mechanisms underlying reprogramming in the gametophytic and sporophytic generations, which are paralleled by differences in the expression of genes involved in DNA methylation. Differentially methylated cytosines with a gain in methylation in antherozoids and archegonia are enriched in the CG and CHG contexts, as well as in gene bodies and gene flanking regions. In contrast, gain of DNA methylation during sporophyte development is mostly limited to the CHH context, LTR retrotransposons, DNA transposons, and repeats. Conclusion We conclude that epigenetic reprogramming occurs at least twice during the life cycle of M. polymorpha and that the underlying mechanisms are likely different between the two events

    The single Marchantia polymorpha FERONIA homolog reveals an ancestral role in regulating cellular expansion and integrity

    Full text link
    Plant cells are surrounded by a cell wall, a rigid structure that is not only important for cell and organ shape, but is also crucial for intercellular communication and interactions with the environment. In the flowering plant Arabidopsis thaliana, the 17 members of the Catharanthus roseus RLK1-like (CrRLK1L) receptor kinase family are involved in a multitude of physiological and developmental processes, making it difficult to assess their primary or ancestral function. To reduce genetic complexity, we characterized the single CrRLK1L gene of Marchantia polymorpha, MpFERONIA (MpFER). Plants with reduced MpFER levels show defects in vegetative development, i.e. rhizoid formation and cell expansion, and have reduced male fertility. In contrast, cell integrity and morphogenesis of the gametophyte are severely affected in Mpfer null mutants and MpFER overexpression lines. Thus, we conclude that the CrRLK1L gene family originated from a single gene with an ancestral function in cell expansion and the maintenance of cellular integrity. During land plant evolution, this ancestral gene diversified to fulfill a multitude of specialized physiological and developmental roles in the formation of both gametophytic and sporophytic structures essential to the life cycle of flowering plants
    corecore