369 research outputs found

    Constraints on soluble aerosol iron flux to the Southern Ocean at the Last Glacial Maximum.

    Get PDF
    Relief of iron (Fe) limitation in the Southern Ocean during ice ages, with potentially increased carbon storage in the ocean, has been invoked as one driver of glacial-interglacial atmospheric CO2 cycles. Ice and marine sediment records demonstrate that atmospheric dust supply to the oceans increased by up to an order of magnitude during glacial intervals. However, poor constraints on soluble atmospheric Fe fluxes to the oceans limit assessment of the role of Fe in glacial-interglacial change. Here, using novel techniques, we present estimates of water- and seawater-soluble Fe solubility in Last Glacial Maximum (LGM) atmospheric dust from the European Project for Ice Coring in Antarctica (EPICA) Dome C and Berkner Island ice cores. Fe solubility was very variable (1-42%) during the interval, and frequently higher than typically assumed by models. Soluble aerosol Fe fluxes to Dome C at the LGM (0.01-0.84 mg m(-2) per year) suggest that soluble Fe deposition to the Southern Ocean would have been ≥10 × modern deposition, rivalling upwelling supply.This work is a contribution to the European Project for Ice Coring in Antarctica (EPICA), a joint European Science Foundation/European Commission (EC) scientific programme. This study was funded by a NERC studentship to T.M.C. and E.W.W. is funded by a Royal Society professorship.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms885

    The arctic circle boundary and the Airy process

    Full text link
    We prove that the, appropriately rescaled, boundary of the north polar region in the Aztec diamond converges to the Airy process. The proof uses certain determinantal point processes given by the extended Krawtchouk kernel. We also prove a version of Propp's conjecture concerning the structure of the tiling at the center of the Aztec diamond.Comment: Published at http://dx.doi.org/10.1214/009117904000000937 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    NO x reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR

    Get PDF
    A DeNO x demonstration system for a diesel engine used in construction machineries and mobile cranes was setup. In preliminary experiments various extruded and coated SCR catalysts were evaluated with and without oxidizing pre-catalyst. The data from stationary tests with two selected catalysts were used to establish various model-based control algorithms for the optimum dosage of urea in the ESC and ETC. A NO x conversion of >93% at <10ppm average ammonia slip could be achieved at a converter-to-swept volume ratio of <2.

    Molecular dynamics in shape space and femtosecond vibrational spectroscopy of metal clusters

    Full text link
    We introduce a method of molecular dynamics in shape space aimed at metal clusters. The ionic degrees of freedom are described via a dynamically deformable jellium with inertia parameters derived from an incompressible, irrotational flow. The shell correction method is used to calculate the electronic potential energy surface underlying the dynamics. Our finite temperature simulations of Ag_14 and its ions, following the negative to neutral to positive scheme, demonstrate the potential of pump and probe ultrashort laser pulses as a spectroscopy of cluster shape vibrations.Comment: Latex/Revtex, 4 pages with 3 Postscript figure

    Three-tangle for mixtures of generalized GHZ and generalized W states

    Get PDF
    We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized GHZ state, a|000>+b|111>, and a generalized W state, c|001>+d|010>+f|100>. Using the methods introduced by Lohmayer et al. we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state

    Millennial changes in North American wildfire and soil activity over the last glacial cycle

    Get PDF
    Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard-Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Incoherent dynamics in the toric code subject to disorder

    Full text link
    We numerically study the effects of two forms of quenched disorder on the anyons of the toric code. Firstly, a new class of codes based on random lattices of stabilizer operators is presented, and shown to be superior to the standard square lattice toric code for certain forms of biased noise. It is further argued that these codes are close to optimal, in that they tightly reach the upper bound of error thresholds beyond which no correctable CSS codes can exist. Additionally, we study the classical motion of anyons in toric codes with randomly distributed onsite potentials. In the presence of repulsive long-range interaction between the anyons, a surprising increase with disorder strength of the lifetime of encoded states is reported and explained by an entirely incoherent mechanism. Finally, the coherent transport of the anyons in the presence of both forms of disorder is investigated, and a significant suppression of the anyon motion is found.Comment: 13 pages, 12 figure

    Electronic-structure-induced deformations of liquid metal clusters

    Full text link
    Ab initio molecular dynamics is used to study deformations of sodium clusters at temperatures 500â‹Ż1100500\cdots 1100 K. Open-shell Na14_{14} cluster has two shape isomers, prolate and oblate, in the liquid state. The deformation is stabilized by opening a gap at the Fermi level. The closed-shell Na8_8 remains magic also at the liquid state.Comment: REVTex, 11 pages, no figures, figures (2) available upon request (e-mail to hakkinen at jyfl.jyu.fi), submitted to Phys. Rev.
    • …
    corecore