25 research outputs found

    Comparative promoter region analysis powered by CORG

    Get PDF
    BACKGROUND: Promoters are key players in gene regulation. They receive signals from various sources (e.g. cell surface receptors) and control the level of transcription initiation, which largely determines gene expression. In vertebrates, transcription start sites and surrounding regulatory elements are often poorly defined. To support promoter analysis, we present CORG , a framework for studying upstream regions including untranslated exons (5' UTR). DESCRIPTION: The automated annotation of promoter regions integrates information of two kinds. First, statistically significant cross-species conservation within upstream regions of orthologous genes is detected. Pairwise as well as multiple sequence comparisons are computed. Second, binding site descriptions (position-weight matrices) are employed to predict conserved regulatory elements with a novel approach. Assembled EST sequences and verified transcription start sites are incorporated to distinguish exonic from other sequences. As of now, we have included 5 species in our analysis pipeline (man, mouse, rat, fugu and zebrafish). We characterized promoter regions of 16,127 groups of orthologous genes. All data are presented in an intuitive way via our web site. Users are free to export data for single genes or access larger data sets via our DAS server . The benefits of our framework are exemplarily shown in the context of phylogenetic profiling of transcription factor binding sites and detection of microRNAs close to transcription start sites of our gene set. CONCLUSION: The CORG platform is a versatile tool to support analyses of gene regulation in vertebrate promoter regions. Applications for CORG cover a broad range from studying evolution of DNA binding sites and promoter constitution to the discovery of new regulatory sequence elements (e.g. microRNAs and binding sites)

    A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Get PDF
    BACKGROUND: Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. RESULTS: We investigated genome-wide gene expression in colorectal carcinoma (CRC) and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes) are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. CONCLUSION: An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin) also have a substantial impact on the formation of co-expression islands in colorectal carcinoma

    Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview

    Get PDF
    The recent availability of thermoelectrically cooled pulsed and continuous wave quantum and inter-band cascade lasers in the mid-infrared spectral region has led to significant improvements and new developments in chemical sensing techniques using in-situ laser absorption spectroscopy for plasma diagnostic purposes. The aim of this article is therefore two-fold: (i) to summarize the challenges which arise in the application of quantum cascade lasers in such environments, and, (ii) to provide an overview of recent spectroscopic results (encompassing cavity enhanced methods) obtained in different kinds of plasma used in both research and industry

    Robuste Datenauswertung und Anwendungen von Oligonukleotid-Arrays in der Genexpressionsanalyse

    Get PDF
    Die Technologie der Oligonukleotid-Arrays erlaubt es, tausende von Genen parallel auf ihre Expression hin zu untersuchen. Die Firma metaGen, bei der diese Doktorarbeit entstand, setzt die Genexpressionsanalyse zur Identifikation von Targetmolekülen für die Therapie solider Tumoren ein. Im Zuge dieser Arbeit gelang die Entwicklung eines robusten Verfahrens zur Datenanalyse für Oligonukleotid-Arrays. Gerade für die Untersuchung humaner Proben ist die Robustheit von großem Interesse, da das Gewebematerial oft nur in sehr begrenzten Mengen und mit Qualitätsschwankungen behaftet vorliegt. Anhand eines eingeschränkten Sets an Kontrollversuchen konnte gezeigt werden, dass die vorgeschlagene Methode besser die Erwartungen an das System erfüllt als herkömmliche Verfahren. Ein weiterer Teil der Arbeit bestand im Aufbau einer relationalen Datenbank und in der schrittweisen Automatisierung der Auswertung. Stellvertretend für andere Krebserkrankungen wurde eine detaillierte Analyse zweier publizierter Expressionsdatensätze zum Bronchialkarzinom vorgenommen. Es konnten zwar in beiden Datensätzen zwischen Tumor- und Normalgewebe differenziell exprimierte Gene identifiziert werden, aber die Gegenüberstellung der Ergebnisse zeigte auch einen deutlichen Einfluss der unterschiedlichen Array-Technologien auf die gemessenen Intensitäten. Der spezielle Aufbau des verwendeten Oligonukleotid-Arrays gestattete die Entdeckung putativer Antisense-Transkripte. Die Koexpression einiger Sense- und Antisense-Sonden ließen sich durch Northern-Blot-Experimente bestätigen. Das unterstreicht das Anwendungspotenzial dieser Technologie für die Genomannotation. In einer Untersuchung der Transkriptome der Bäckerhefe und der Fruchtfliege konnte darüber hinaus ein Zusammenhang zwischen den Längen von Introns und Exons und der mittleren Expression von Genen hergestellt werden. Die Vielfalt der Anwendungen und die Ausbaumöglichkeiten verdeutlichen die Bedeutung und das Potenzial der Array-Technologie für die Genexpressionsanalyse. Eine wichtige Aufgabe bleibt deshalb die weitere Verbesserung der Qualitätskontrolle der Experimente und der Datenanalyse.Oligonucleotide arrays represent a modern technology for the investigation of the expression of thounsands of genes in parallel. The theses were worked out at the company metaGen that uses gene expression analysis for the identification of target molecules for the therapy of solid tumors. One major achievement was the developement of a robust method for oligonucleotide array data analysis. It turned out that for the investigation of human tissue samples the robustness is crutial because the material is often very limited and of variing quality. Using a restricted set of control experiments the superiority of the method over standard procedures could be demonstrated. A further important part of the work was the construction of a relational database and the automation of the analysis process. To demonstrate the applicability of the methods in cancer research two publicly available lung cancer data sets were analysed. A list of differentially expressed genes was identified. But the comparison also revealed that the expression signals are strongly distorted by technical factors. The special array used at metaGen allowed the discorvery of putative antisense transcripts. Three of the candidates had been validated by Northern-blot analysis. This clearly shows the applicability of the array technology to genome annotations. An analysis of the transcriptoms of the bakers yeast and the fruit fly revealed a relationship between the average gene expression and the lengths of introns and exons. The manifold applications and extentions illustrate the inportance and the potential of the array technology. So that the improvement of the technology and of the data analysis will remain a major concern

    Quantum cascade laser based chemical sensing using optically resonant cavities

    No full text
    Progress in the development of compact semiconductor-based mid-infrared light sources, more specifically of quantum cascade lasers (QCLs), has been astonishingly rapid in the 2 decades since their first realisation. Their performance makes them superior to conventional sources and has led to significant improvements and new developments in chemical sensing techniques encompassing cavity enhanced methods. The aim of this compilation is to provide an overview about useful combinations of QCLs with optical cavities and to highlight recent achievements thereby focussing on potential sensing applications

    Time-resolved study of a pulsed dc discharge using quantum cascade laser absorption spectroscopy : NO and gas temperature kinetics

    No full text
    In a pulsed dc discharge of an Ar–N2 mixture containing 0.91% of NO the kinetics of the destruction of NO has been studied under static and flowing conditions, i.e. in a closed and open discharge tube (p = 266 Pa). For this purpose quantum cascade laser absorption spectroscopy (QCLAS) in the infrared spectral range has been applied as a new approach for fast in situ plasma diagnostics which is capable of achieving a time resolution below 100 ns. The time decay of the NO concentration was measured in single discharge pulses of 1 ms duration. Additionally, the temporal behaviour of the electric field and the applied power was followed during the pulse. The comparison of the time evolution of the NO concentration under static and flowing conditions and simplified model calculations enabled an analysis of the dynamics of the plasma heating to be made. The temperature increase during the pulse is below 40 K, but has a strong influence on the line strength of the NO absorption line. The apparent decrease in the NO concentration in a single pulse of about 20% is due to the heating of the gas which in turn makes the line strength vary while the concentration remains constant for several successive pulses. Therefore the QCLAS measurements combined with model calculations are a powerful non-invasive temperature probe with a remarkable time resolution approaching the sub-microsecond time scale

    Kinetic and diagnostic studies of molecular plasmas using laser absorption techniques

    Get PDF
    Within the last decade mid infrared absorption spectroscopy between 3 and 20 µm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas, (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared

    Comparative promoter region analysis powered by CORG

    No full text
    Background Promoters are key players in gene regulation. They receive signals from various sources (e.g. cell surface receptors) and control the level of transcription initiation, which largely determines gene expression. In vertebrates, transcription start sites and surrounding regulatory elements are often poorly defined. To support promoter analysis, we present CORG http://corg.molgen.mpg.de, a framework for studying upstream regions including untranslated exons (5' UTR). Description The automated annotation of promoter regions integrates information of two kinds. First, statistically significant cross-species conservation within upstream regions of orthologous genes is detected. Pairwise as well as multiple sequence comparisons are computed. Second, binding site descriptions (position-weight matrices) are employed to predict conserved regulatory elements with a novel approach. Assembled EST sequences and verified transcription start sites are incorporated to distinguish exonic from other sequences. As of now, we have included 5 species in our analysis pipeline (man, mouse, rat, fugu and zebrafish). We characterized promoter regions of 16,127 groups of orthologous genes. All data are presented in an intuitive way via our web site. Users are free to export data for single genes or access larger data sets via our DAS server http://tomcat.molgen.mpg.de:8080/das. The benefits of our framework are exemplarily shown in the context of phylogenetic profiling of transcription factor binding sites and detection of microRNAs close to transcription start sites of our gene set. Conclusion The CORG platform is a versatile tool to support analyses of gene regulation in vertebrate promoter regions. Applications for CORG cover a broad range from studying evolution of DNA binding sites and promoter constitution to the discovery of new regulatory sequence elements (e.g. microRNAs and binding sites)
    corecore