164 research outputs found

    Homoclinic chaos and energy condition violation

    Get PDF
    In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be non-tilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0\rho>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0\rho<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass.In addition, we discuss more general models: for solutions that are not locally rotionally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general.Comment: 4 pages, RevTe

    Social factors and the prevalence of social isolation in a population-based adult cohort

    Get PDF
    Purpose: Social isolation has negative effects on physical and brain health across the lifespan. However, the prevalence of social isolation, specifically with regard to sociodemographic and socioeconomic factors, is not well known. Methods: Database was the Leipzig population-based study of adults (LIFE-Adult Study, n = 10,000). The short form of the Lubben Social Network Scale (LSNS-6) was used to assess social isolation (cutoff < 12 points). Sampling weights were applied to account for differences in sampling fractions. Results: Data were available for 9392 study participants; 51.6% were women, the mean age was 45.2 years (SD = 17.3). The prevalence of social isolation was 12.3% (95% CI 11.6-13.0) across ages 18-79 years. Social isolation was more prevalent in men (13.8%, 95% CI 12.8-14.8) compared to women (10.9%, 95% CI 10.0-11.8; [Formula: see text] (1) = 18.83, p < .001), and it showed an increase with increasing age from 5.4% (95% CI 4.7-6.0) in the youngest age group (18-39 years) to 21.7% (95% CI 19.5-24.0) in the oldest age group (70-79 years; [Formula: see text] (4) = 389.51, p < .001). Prevalence differed largely with regard to socioeconomic status (SES); showing lower prevalence in high SES (7.2%, 95% CI 6.0-8.4) and higher prevalence in low SES (18.6%, 95% CI 16.9-20.3; [Formula: see text] (2) = 115.78; p < .001). Conclusion: More than one in ten individuals in the adult population reported social isolation, and prevalence varied strongly with regard to sociodemographic and socioeconomic factors. Social isolation was particularly frequent in disadvantaged socioeconomic groups. From a public health perspective, effective prevention of and intervention against social isolation should be a desired target as social isolation leads to poor health. Countermeasures should especially take into account the socioeconomic determinants of social isolation, applying a life-course perspective

    Conformal regularization of Einstein's field equations

    Full text link
    To study asymptotic structures, we regularize Einstein's field equations by means of conformal transformations. The conformal factor is chosen so that it carries a dimensional scale that captures crucial asymptotic features. By choosing a conformal orthonormal frame we obtain a coupled system of differential equations for a set of dimensionless variables, associated with the conformal dimensionless metric, where the variables describe ratios with respect to the chosen asymptotic scale structure. As examples, we describe some explicit choices of conformal factors and coordinates appropriate for the situation of a timelike congruence approaching a singularity. One choice is shown to just slightly modify the so-called Hubble-normalized approach, and one leads to dimensionless first order symmetric hyperbolic equations. We also discuss differences and similarities with other conformal approaches in the literature, as regards, e.g., isotropic singularities.Comment: New title plus corrections and text added. To appear in CQ

    Asymptotic silence-breaking singularities

    Full text link
    We discuss three complementary aspects of scalar curvature singularities: asymptotic causal properties, asymptotic Ricci and Weyl curvature, and asymptotic spatial properties. We divide scalar curvature singularities into two classes: so-called asymptotically silent singularities and non-generic singularities that break asymptotic silence. The emphasis in this paper is on the latter class which have not been previously discussed. We illustrate the above aspects and concepts by describing the singularities of a number of representative explicit perfect fluid solutions.Comment: 25 pages, 6 figure

    Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger

    Get PDF
    The release of the genome sequences of two strains of Aspergillus niger has allowed systems-level investigations of this important microbial cell factory. To this end, tools for doing data integration of multi-ome data are necessary, and especially interesting in the context of metabolism. On the basis of an A. niger bibliome survey, we present the largest model reconstruction of a metabolic network reported for a fungal species. The reconstructed gapless metabolic network is based on the reportings of 371 articles and comprises 1190 biochemically unique reactions and 871 ORFs. Inclusion of isoenzymes increases the total number of reactions to 2240. A graphical map of the metabolic network is presented. All levels of the reconstruction process were based on manual curation. From the reconstructed metabolic network, a mathematical model was constructed and validated with data on yields, fluxes and transcription. The presented metabolic network and map are useful tools for examining systemwide data in a metabolic context. Results from the validated model show a great potential for expanding the use of A. niger as a high-yield production platform

    Spherically symmetric relativistic stellar structures

    Full text link
    We investigate relativistic spherically symmetric static perfect fluid models in the framework of the theory of dynamical systems. The field equations are recast into a regular dynamical system on a 3-dimensional compact state space, thereby avoiding the non-regularity problems associated with the Tolman-Oppenheimer-Volkoff equation. The global picture of the solution space thus obtained is used to derive qualitative features and to prove theorems about mass-radius properties. The perfect fluids we discuss are described by barotropic equations of state that are asymptotically polytropic at low pressures and, for certain applications, asymptotically linear at high pressures. We employ dimensionless variables that are asymptotically homology invariant in the low pressure regime, and thus we generalize standard work on Newtonian polytropes to a relativistic setting and to a much larger class of equations of state. Our dynamical systems framework is particularly suited for numerical computations, as illustrated by several numerical examples, e.g., the ideal neutron gas and examples that involve phase transitions.Comment: 23 pages, 25 figures (compressed), LaTe

    A metabolic obesity profile is associated with decreased gray matter volume in cognitively healthy older adults

    No full text
    Obesity is a risk factor for cognitive decline and gray matter volume loss in aging. Studies have shown that different metabolic factors, e.g., dysregulated glucose metabolism and systemic inflammation, might mediate this association. Yet, even though these risk factors tend to co-occur, they have mostly been investigated separately, making it difficult to establish their joint contribution to gray matter volume structure in aging. Here, we therefore aimed to determine a metabolic profile of obesity that takes into account different anthropometric and metabolic measures to explain differences in gray matter volume in aging. We included 748 elderly, cognitively healthy participants (age range: 60 – 79 years, BMI range: 17 – 42 kg/m2) of the LIFE-Adult Study. All participants had complete information on body mass index, waist-to-hip ratio, glycated hemoglobin, total blood cholesterol, high-density lipoprotein, interleukin-6, C-reactive protein, adiponectin and leptin. Voxelwise gray matter volume was extracted from T1-weighted images acquired on a 3T Siemens MRI scanner. We used partial least squares correlation to extract latent variables with maximal covariance between anthropometric, metabolic and gray matter volume and applied permutation/bootstrapping and cross-validation to test significance and reliability of the result. We further explored the association of the latent variables with cognitive performance. Permutation tests and cross-validation indicated that the first pair of latent variables was significant and reliable. The metabolic profile was driven by negative contributions from body mass index, waist-to-hip ratio, glycated hemoglobin, C-reactive protein and leptin and a positive contribution from adiponectin. It positively covaried with gray matter volume in temporal, frontal and occipital lobe as well as subcortical regions and cerebellum. This result shows that a metabolic profile characterized by high body fat, visceral adiposity and systemic inflammation is associated with reduced gray matter volume and potentially reduced executive function in older adults. We observed the highest contributions for body weight and fat mass, which indicates that factors underlying sustained energy imbalance, like sedentary lifestyle or intake of energy-dense food, might be important determinants of gray matter structure in aging

    Bianchi type I models with two tilted fluids

    Full text link
    In this paper we investigate expanding Bianchi type I models with two tilted fluids with linear equations of state. Individually the fluids have non-zero energy fluxes w.r.t. the symmetry surfaces, but these cancel each other because of the Codazzi constraint. Asymptotically toward the past the solutions approach Kasner states if the speeds of sound are less than that of light. If one of the fluids has a speed of sound that is less or equal to 1/3 of the speed of light (radiation) then the models isotropize toward the future, but if both fluids are stiffer than radiation then the final state is anisotropic with non-zero Hubble-normalized shear. The significance of these results is discussed in a broader context.Comment: 19 pages, 2 figure
    corecore