We investigate relativistic spherically symmetric static perfect fluid models
in the framework of the theory of dynamical systems. The field equations are
recast into a regular dynamical system on a 3-dimensional compact state space,
thereby avoiding the non-regularity problems associated with the
Tolman-Oppenheimer-Volkoff equation. The global picture of the solution space
thus obtained is used to derive qualitative features and to prove theorems
about mass-radius properties. The perfect fluids we discuss are described by
barotropic equations of state that are asymptotically polytropic at low
pressures and, for certain applications, asymptotically linear at high
pressures. We employ dimensionless variables that are asymptotically homology
invariant in the low pressure regime, and thus we generalize standard work on
Newtonian polytropes to a relativistic setting and to a much larger class of
equations of state. Our dynamical systems framework is particularly suited for
numerical computations, as illustrated by several numerical examples, e.g., the
ideal neutron gas and examples that involve phase transitions.Comment: 23 pages, 25 figures (compressed), LaTe