46 research outputs found

    On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids

    Get PDF
    Cell-derived membrane vesicles that are released in biofluids, like blood or saliva, are emerging as potential non-invasive biomarkers for diseases, such as cancer. Techniques capable of measuring the size and concentration of membrane vesicles directly in biofluids are urgently needed. Fluorescence single particle tracking microscopy has the potential of doing exactly that by labelling the membrane vesicles with a fluorescent label and analysing their Brownian motion in the biofluid. However, an unbound dye in the biofluid can cause high background intensity that strongly biases the fluorescence single particle tracking size and concentration measurements. While such background intensity can be avoided with light sheet illumination, current set-ups require specialty sample holders that are not compatible with high-throughput diagnostics. Here, a microfluidic chip with integrated light sheet illumination is reported, and accurate fluorescence single particle tracking size and concentration measurements of membrane vesicles in cell culture medium and in interstitial fluid collected from primary human breast tumours are demonstrated

    Frontal sinuses and human evolution

    Get PDF
    The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species? holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species. Variation in frontal sinus shape and dimensions has high potential for phylogenetic discussion when studying human evolution

    Phosphorescent Energy Downshifting for Diminishing Surface Recombination in Silicon Nanowire Solar Cells

    Get PDF
    Molecularly engineered Ir(III) complexes can transfer energy from short-wavelength photons (lambda < 450 nm) to photons of longer wavelength (lambda > 500 nm), which can enhance the otherwise low internal quantum efficiency (IQE) of crystalline Si (c-Si) nanowire solar cells (NWSCs) in the shortwavelength region. Herein, we demonstrate a phosphorescent energy downshifting system using Ir(III) complexes at short wavelengths (300-450 nm) to diminish the severe surface recombination that occurs in c-Si NWSCs. The developed Ir(III) complexes can be considered promising energy converters because they exhibit superior intrinsic properties such as a high quantum yield, a large Stokes shift, a long exciton diffusion length in crystalline film, and a reproducible synthetic procedure. Using the developed 1011) complexes, highly crystalline energy downshifting layers were fabricated by ultrasonic spray deposition to enhance the photoluminescence efficiency by increasing the radiative decay. With the optimized energy downshifting layer, our 1cm(2) c-Si NWSCs with Ir(III) complexes exhibited a higher IQE value for short-wavelength light (300-450 nm) compared with that of bare Si NWSCs without Ir(III) complexes, resulting in a notable increase in the short-circuit current density (from 34.4 mA.cm(-2) to 36.5 mA.cm(-2) )

    Frontal sinuses and human evolution.

    Get PDF
    The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species' holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of 'Homo erectus'. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species

    Frontal sinuses and human evolution

    Get PDF
    The frontal sinuses are cavities inside the frontal bone located at the junction between the face and the cranial vault and close to the brain. Despite a long history of study, understanding of their origin and variation through evolution is limited. This work compares most hominin species’ holotypes and other key individuals with extant hominids. It provides a unique and valuable perspective of the variation in sinuses position, shape, and dimensions based on a simple and reproducible methodology. We also observed a covariation between the size and shape of the sinuses and the underlying frontal lobes in hominin species from at least the appearance of Homo erectus. Our results additionally undermine hypotheses stating that hominin frontal sinuses were directly affected by biomechanical constraints resulting from either chewing or adaptation to climate. Last, we demonstrate their substantial potential for discussions of the evolutionary relationships between hominin species

    Hand grip strength is associated with forced expiratory volume in 1 second among subjects with COPD: report from a population-based cohort study

    No full text
    Viktor Johansson Strandkvist,1,2 Helena Backman,2 Jenny Röding,1 Caroline Stridsman,3 Anne Lindberg4 1Division of Health and Rehabilitation, Department of Health Science, Luleå University of Technology, Luleå, 2Division of Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, The Obstructive Lung disease in Northern Sweden Unit, Umeå University, Umeå, 3Division of Nursing, Department of Health Science, Luleå University of Technology, Luleå, 4Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden Background: Cardiovascular diseases and skeletal muscle dysfunction are common comorbidities in COPD. Hand grip strength (HGS) is related to general muscle strength and is associated with cardiovascular disease and all-cause mortality, while the results from small selected COPD populations are contradictory. The aim of this population-based study was to compare HGS among the subjects with and without COPD, to evaluate HGS in relation to COPD severity, and to evaluate the impact of heart disease.Subjects and methods: Data were collected from the Obstructive Lung disease in Northern Sweden COPD study, where the subjects with and without COPD have been invited to annual examinations since 2005. In 2009–2010, 441 subjects with COPD (postbronchodilator forced expiratory volume in 1 second [FEV1]/ vital capacity <0.70) and 570 without COPD participated in structured interviews, spirometry, and measurements of HGS.Results: The mean HGS was similar when comparing subjects with and without COPD, but those with heart disease had lower HGS than those without. When compared by Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades, the subjects with GOLD 3–4 had lower HGS than those without COPD in both sexes (females 21.4 kg vs 26.9 kg, P=0.010; males 41.5 kg vs 46.3 kg, P=0.038), and the difference persisted also when adjusted for confounders. Among the subjects with COPD, HGS was associated with FEV1% of predicted value but not heart disease when adjusted for height, age, sex, and smoking habits, and the pattern was similar among males and females.Conclusion: In this population-based study, the subjects with GOLD 3–4 had lower HGS than the subjects without COPD. Among those with COPD, HGS was associated with FEV1% of predicted value but not heart disease, and the pattern was similar in both sexes. Keywords: muscle strength, muscle strength dynamometer, pulmonary disease, COPD, heart diseases, epidemiolog

    Learning with Simulations - Teaching the Rectal Exam with Standardised Patients

    No full text

    Three‐dimensional reconstruction of porous polymer films from FIB‐SEM nanotomography data using random forests

    No full text
    Combined focused ion beam and scanning electron microscope (FIB-SEM) tomography is a well-established technique for high resolution imaging and reconstruction of the microstructure of a wide range of materials. Segmentation of FIB-SEM data is complicated due to a number of factors; the most prominent is that for porous materials, the scanning electron microscope image slices contain information not only from the planar cross-section of the material but also from underlying, exposed subsurface pores. In this work, we develop a segmentation method for FIB-SEM data from ethyl cellulose porous films made from ethyl cellulose and hydroxypropyl cellulose (EC/HPC) polymer blends. These materials are used for coating pharmaceutical oral dosage forms (tablets or pellets) to control drug release. We study three samples of ethyl cellulose and hydroxypropyl cellulose with different volume fractions where the hydroxypropyl cellulose phase has been leached out, resulting in a porous material. The data are segmented using scale-space features and a random forest classifier. We demonstrate good agreement with manual segmentations. The method enables quantitative characterization and subsequent optimization of material structure for controlled release applications. Although the methodology is demonstrated on porous polymer films, it is applicable to other soft porous materials imaged by FIB-SEM. We make the data and software used publicly available to facilitate further development of FIB-SEM segmentation methods. Lay Description For imaging of very fine structures in materials, the resolution limits of, e.g. X-ray computed tomography quickly become a bottleneck. Scanning electron microscopy (SEM) provides a way out, but it is essentially a two-dimensional imaging technique. One manner in which to extend it to three dimensions is to use a focused ion beam (FIB) combined with a scanning electron microscopy and acquire tomography data. In FIB-SEM tomography, ions are used to perform serial sectioning and the electron beam is used to image the cross section surface. This is a well-established method for a wide range of materials. However, image analysis of FIB-SEM data is complicated for a variety of reasons, in particular for porous media. In this work, we analyse FIB-SEM data from ethyl cellulose porous films made from ethyl cellulose and hydroxypropyl cellulose (EC/HPC) polymer blends. These films are used as coatings for controlled drug release. The aim is to perform image segmentation, i.e. to identify which parts of the image data constitute the pores and the solid, respectively. Manual segmentation, i.e. when a trained operator manually identifies areas constituting pores and solid, is too time-consuming to do in full for our very large data sets. However, by performing manual segmentation on a set of small, random regions of the data, we can train a machine learning algorithm to perform automatic segmentation on the entire data sets. The method yields good agreement with the manual segmentations and yields porosities of the entire data sets in very good agreement with expected values. The method facilitates understanding and quantitative characterization of the geometrical structure of the materials, and ultimately understanding of how to tailor the drug release

    Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia

    No full text
    Two fossilized human crania (Apidima 1 and Apidima 2) from Apidima Cave, southern Greece, were discovered in the late 1970s but have remained enigmatic owing to their incomplete nature, taphonomic distortion and lack of archaeological context and chronology. Here we virtually reconstruct both crania, provide detailed comparative descriptions and analyses, and date them using U-series radiometric methods. Apidima 2 dates to more than 170 thousand years ago and has a Neanderthal-like morphological pattern. By contrast, Apidima 1 dates to more than 210 thousand years ago and presents a mixture of modern human and primitive features. These results suggest that two late Middle Pleistocene human groups were present at this site—an early Homo sapiens population, followed by a Neanderthal population. Our findings support multiple dispersals of early modern humans out of Africa, and highlight the complex demographic processes that characterized Pleistocene human evolution and modern human presence in southeast Europe. © 2019, The Author(s), under exclusive licence to Springer Nature Limited
    corecore