496 research outputs found

    Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems

    Full text link
    We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the Stochastic Series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hardcore bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.Comment: 5+1 pages, 4+1 figure

    Flow networks: A characterization of geophysical fluid transport

    Get PDF
    We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with little fluid interchange between them.Comment: 16 pages, 15 figures. v2: published versio

    Entanglement, Purity, and Information Entropies in Continuous Variable Systems

    Full text link
    Quantum entanglement of pure states of a bipartite system is defined as the amount of local or marginal ({\em i.e.}referring to the subsystems) entropy. For mixed states this identification vanishes, since the global loss of information about the state makes it impossible to distinguish between quantum and classical correlations. Here we show how the joint knowledge of the global and marginal degrees of information of a quantum state, quantified by the purities or in general by information entropies, provides an accurate characterization of its entanglement. In particular, for Gaussian states of continuous variable systems, we classify the entanglement of two--mode states according to their degree of total and partial mixedness, comparing the different roles played by the purity and the generalized pp-entropies in quantifying the mixedness and bounding the entanglement. We prove the existence of strict upper and lower bounds on the entanglement and the existence of extremally (maximally and minimally) entangled states at fixed global and marginal degrees of information. This results allow for a powerful, operative method to measure mixed-state entanglement without the full tomographic reconstruction of the state. Finally, we briefly discuss the ongoing extension of our analysis to the quantification of multipartite entanglement in highly symmetric Gaussian states of arbitrary 1×N1 \times N-mode partitions.Comment: 16 pages, 5 low-res figures, OSID style. Presented at the International Conference ``Entanglement, Information and Noise'', Krzyzowa, Poland, June 14--20, 200

    Entanglement-assisted local operations and classical communications conversion in the quantum critical systems

    Full text link
    Conversions between the ground states in quantum critical systems via entanglement-assisted local operations and classical communications (eLOCC) are studied. We propose a new method to reveal the different convertibility by local operations when a quantum phase transition occurs. We have studied the ground state local convertibility in the one dimensional transverse field Ising model, XY model and XXZ model. It is found that the eLOCC convertibility sudden changes at the phase transition points. In transverse field Ising model the eLOCC convertibility between the first excited state and the ground state are also distinct for different phases. The relation between the order of quantum phase transitions and the local convertibility is discussed.Comment: 7 pages, 5 figures, 5 table

    A transform of complementary aspects with applications to entropic uncertainty relations

    Get PDF
    Even though mutually unbiased bases and entropic uncertainty relations play an important role in quantum cryptographic protocols they remain ill understood. Here, we construct special sets of up to 2n+1 mutually unbiased bases (MUBs) in dimension d=2^n which have particularly beautiful symmetry properties derived from the Clifford algebra. More precisely, we show that there exists a unitary transformation that cyclically permutes such bases. This unitary can be understood as a generalization of the Fourier transform, which exchanges two MUBs, to multiple complementary aspects. We proceed to prove a lower bound for min-entropic entropic uncertainty relations for any set of MUBs, and show that symmetry plays a central role in obtaining tight bounds. For example, we obtain for the first time a tight bound for four MUBs in dimension d=4, which is attained by an eigenstate of our complementarity transform. Finally, we discuss the relation to other symmetries obtained by transformations in discrete phase space, and note that the extrema of discrete Wigner functions are directly related to min-entropic uncertainty relations for MUBs.Comment: 16 pages, 2 figures, v2: published version, clarified ref [30

    Exact Matrix Product States for Quantum Hall Wave Functions

    Get PDF
    We show that the model wave functions used to describe the fractional quantum Hall effect have exact representations as matrix product states (MPS). These MPS can be implemented numerically in the orbital basis of both finite and infinite cylinders, which provides an efficient way of calculating arbitrary observables. We extend this approach to the charged excitations and numerically compute their Berry phases. Finally, we present an algorithm for numerically computing the real-space entanglement spectrum starting from an arbitrary orbital basis MPS, which allows us to study the scaling properties of the real-space entanglement spectra on infinite cylinders. The real-space entanglement spectrum obeys a scaling form dictated by the edge conformal field theory, allowing us to accurately extract the two entanglement velocities of the Moore-Read state. In contrast, the orbital space spectrum is observed to scale according to a complex set of power laws that rule out a similar collapse.Comment: 10 pages and Appendix, v3 published versio

    Morphology of Fine-Particle Monolayers Deposited on Nanopatterned Substrates

    Full text link
    We study the effect of the presence of a regular substrate pattern on the irreversible adsorption of nanosized and colloid particles. Deposition of disks of radius r0r_0 is considered, with the allowed regions for their center attachment at the planar surface consisting of square cells arranged in a square lattice pattern. We study the jammed state properties of a generalized version of the random sequential adsorption model for different values of the cell size, aa, and cell-cell separation, bb. The model shows a surprisingly rich behavior in the space of the two dimensionless parameters α=a/2r0\alpha=a/2r_0 and β=b/2r0\beta=b/2r_0. Extensive Monte Carlo simulations for system sizes of 500×500500\times500 square lattice unit cells were performed by utilizing an efficient algorithm, to characterize the jammed state morphology.Comment: 11 pages, 10 figures, 3 table

    Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics

    Full text link
    A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which entropies and power-law distributions follow: these distributions could be relevant in many anomalous systems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and some one parameter generalized entropies already known belong to this class. These entropies and their distribution functions are compared, and the corresponding deformed algebras are discussed.Comment: Version to appear in PRE: about 20% shorter, references updated, 13 PRE pages, 3 figure

    A second row Parking Paradox

    Get PDF
    We consider two variations of the discrete car parking problem where at every vertex of the integers a car arrives with rate one, now allowing for parking in two lines. a) The car parks in the first line whenever the vertex and all of its nearest neighbors are not occupied yet. It can reach the first line if it is not obstructed by cars already parked in the second line (screening). b) The car parks according to the same rules, but parking in the first line can not be obstructed by parked cars in the second line (no screening). In both models, a car that can not park in the first line will attempt to park in the second line. If it is obstructed in the second line as well, the attempt is discarded. We show that both models are solvable in terms of finite-dimensional ODEs. We compare numerically the limits of first and second line densities, with time going to infinity. While it is not surprising that model a) exhibits an increase of the density in the second line from the first line, more remarkably this is also true for model b), albeit in a less pronounced way.Comment: 11 pages, 4 figure

    Unique additive information measures - Boltzmann-Gibbs-Shannon, Fisher and beyond

    Full text link
    It is proved that the only additive and isotropic information measure that can depend on the probability distribution and also on its first derivative is a linear combination of the Boltzmann-Gibbs-Shannon and Fisher information measures. Power law equilibrium distributions are found as a result of the interaction of the two terms. The case of second order derivative dependence is investigated and a corresponding additive information measure is given.Comment: 10 pages, 1 figures, shortene
    corecore