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Abstract We consider two variations of the discrete car parking problem where at every
vertex of Z cars (particles) independently arrive with rate one. The cars can park in two lines
according to the following parking (adsorption) rules. In both models a car which arrives at
a given vertex tries to park in the first line first. It parks (sticks) whenever the vertex and
all of its nearest neighbors are not occupied yet. A car that cannot park in the first line will
attempt to park in the second line. If it is obstructed in the second line as well, the attempt
is discarded.

In the screening model a) a car cannot pass through parked cars in the second line with
midpoints adjacent to its vertex of arrival.

In the model without screening b) cars park according to the same rules, but parking in
the first line cannot be obstructed by parked cars in the second line.

We show that both models are solvable in terms of finite-dimensional ODEs. We compare
numerically the limits of first- and second-line densities, with time going to infinity. While
it is not surprising that model a) exhibits an increase of the density in the second line from
the first line, more remarkably this is also true for model b), albeit in a less pronounced way.

Keywords Car parking problem · Random sequential adsorption · Sequential frequency
assignment process · Particle systems

1 Introduction

Car parking, first considered in a mathematical way by Rényi [10] in 1958, gives rise to
interesting models that in several variations have been applied in many fields of science. In
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the original car parking problem, unit length cars are appearing with constant rate in time
and with constant density in space on the line where they try to park. A new car is allowed to
park only in case there is no intersection with previously parked cars. Otherwise the attempt
is rejected. Rényi proved that the density of space covered by cars has the limit 0.7475 . . .,
the so-called parking constant. In the simplest discrete version of the car parking problem,
cars of length 2 try to park at their midpoints randomly on Z. This model has been solved
analytically as well [3] and, in particular, the density takes the value (1 − e−2)/2 in the
large-time limit.

This model belongs to a wider class of more complicated models of deposition with ex-
clusion interaction. Usually such models are not analytically solvable. In physical chemistry
“cars” become particles which are deposited in layers on a substrate, a process called random
sequential adsorption (RSA). A variety of related models are studied. For a review of recent
developments see [1]. Moreover, models with more complicated graphs e.g. (random) trees
have been investigated [2, 5, 6, 9]. Multilayer variations of the model have been proposed to
describe the sequential frequency assignment process [4] which appears in telecommunica-
tion. In that paper it is suggested that the density in higher layers increases up from the first
layer, but no proofs other than simulation results were given.

In this paper we treat two versions of the discrete two-line car-parking problem with cars
of length 2. First we describe the dynamics of the car parking process without screening
and also with screening. Then we provide the solutions of these models by reducing them to
closed finite-dimensional systems of ODEs for densities of local patterns, see Theorems 1
and 2. That it is possible to find a finite-dimensional dynamical description is quite remark-
able. It is not obvious, and in fact our method ceases to work for a three-line extension of the
model without screening where an infinite system of coupled differential equations appears.

A second remarkable fact is that, even without screening, the second line density is higher
than the first. Cars do not communicate or plan a common strategy and their arrival is ran-
dom, but they seem to use the resources in the second line more efficiently, once they have
been rejected in the first line. This behavior is reminiscent of the phenomenon of increas-
ing layer-coverage discovered in simulations for the particle adsorption model of [8] which
however has different adhesion rules than ours.

2 The Dynamics

We will define a Markov jump process on the (suitably coded) occupation numbers m =
(mi)i∈Z ∈ � = {0,1,2,3}Z.

Here the spin mi denotes the joint occupation numbers at vertex i at height 1 and 2. It
is useful for short notation to interpret the occupation numbers at various heights as binary
digits and write ordinary natural numbers. That is we write

mi =

⎧
⎪⎪⎨

⎪⎪⎩

0 if vertex i is vacant in the first and second line,
1 if vertex i is occupied in the first but not in the second line,
2 if vertex i is occupied in the second but not in the first line,
3 if vertex i is occupied in the first and in the second line

so that mi ∈ {0,1,2,3}. The dynamics of the process is defined in terms of the generator L
which is given by the expression

(Lf )(m) =
∑

k,s

[
f (ms,k) − f (m)

]
c(s;mk−1,mk,mk+1) (2.1)
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with

m
s,k
i =

{
mi if i �= k,
s if i = k

denoting the configuration which has been obtained by m by changing the configuration in
i to s.

Here f is a function which depends only on finitely many coordinates. By standard
theory (see e.g. Theorem B3 of [7]) this defines a Markov process m(t) of infinite volume
particle configurations with the property

d

dt
E

mf (m(t)) = (Lf )(m(t)). (2.2)

Here E
m denotes the expected value with respect to the process, started in the initial

configuration m = (mi)i∈Zd at t = 0.

2.1 Two-line Parking Rates

The rates are either equal to zero or one. They are 1 precisely in the following cases.

1. 0 �→ 1 Adding a car in the first line at site i. For the model without screening we have

c(1;0,0,0) = c(1;2,0,0) = c(1;0,0,2) = c(1;2,0,2) = 1. (2.3)

Indeed, this occurs when the site itself is empty on the first and second line and the
nearest neighbors are empty in the first line, see Fig. 1 for an example.

In the screening model, however, cars in the second line will obstruct cars from reach-
ing the first line. Therefore, in the screening model we have as the only nonvanishing rate

csc(1;0,0,0) = 1. (2.4)

2. 0 �→ 2 Adding a car in the second line at i while the first line was empty at the site

c(2;1,0,0) = c(2;0,0,1) = c(2;1,0,1) = 1. (2.5)

Indeed, this occurs when there was a supporting site i − 1 or i + 1 or both with one car
in the first line. This is true for both models.

3. 1 �→ 3 Adding a car in the second line while the first line was full at the site

c(3;0,1,0) = 1. (2.6)

Indeed, this occurs when there are no obstructing cars right and left at height 2. There
can be no obstructing cars right and left at height 1 because there could not be a car in
the first line at i otherwise. This is true for both models.

All other transitions are impossible.

Fig. 1 Configurations of vertices −1,0, and 1 that allow a transition from m0 = 0 to m0 = 1 in the model
without screening. In the model with screening only the leftmost configuration allows a transition to m0 = 1
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3 Results

We provide a closed system of differential equations for the densities of occupied sites,
involving densities of finitely many local patterns, in both models. First we need some de-
finitions. By Pt we denote the probability distribution of the Markov process started in the
all-empty initial configuration. Here and in the following we use for the densities at single
sites and triples of sites the notation

Dt(s) := Pt(m0 = s),
(3.1)

Dt(s−1, s0, s1) := Pt(m−1 = s−1,m0 = s0,m1 = s1).

Let us introduce also the process P̃t which is started in the all-empty initial configuration
also and coincides with Pt except that it does not contain particle arrivals at the site 0. It is
given in terms of the generator

(L̃f )(m) =
∑

k �=0,s

[
f (ms,k) − f (m)

]
c(s;mk−1,mk,mk+1). (3.2)

The dynamics with respect to this process decomposes into two independent parts right
and left from zero. Hence we will call expected values of occupation numbers with respect
to the measure P̃t “one-sided densities”. In particular we will need the following definitions

ft (s) := P̃t (m1 = s), for s = 0,1,2,
(3.3)

Rt := P̃t (m1 = 1,m2 = 0).

As our main result we show that the time-evolution of these densities gives rise to a
closed system of ODEs.

Theorem 1 (Two-line Parking without Screening) The time evolution of the probability
vector (Dt(0),Dt (1),Dt (2),Dt (3)) obeys the following system of differential equations.

d

dt
Dt(0) = −(ft (0) + ft (2))2e−t − (2ft (0)ft (1) + ft (1)2)e−t ,

d

dt
Dt(1) = (ft (0) + ft (2))2e−t − Dt(0,1,0),

(3.4)
d

dt
Dt(2) = (2ft (0)ft (1) + ft (1)2)e−t ,

d

dt
Dt(3) = Dt(0,1,0)

with initial conditions D0(s) = 1s=0, where the vector (ft (0), ft (1), ft (2),Rt ) obeys the
linear ODE

d

dt
ft (0) = −ft (0)e−t − ft (1)e−t − ft (2)e−t ,

d

dt
ft (1) = ft (0)e−t + ft (2)e−t − Rt,

(3.5)
d

dt
ft (2) = ft (1)e−t ,
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Fig. 2 Numerical solution of the densities in the first and second line. The right figure zooms in on the limits
of Dt (1) and Dt (2) to show they tend to different values

d

dt
Rt = ft (0)(e−t − te−2t ) − ft (1)te−2t − Rt

with initial conditions (f0(0), f0(1), f0(2),R0) = (1,0,0,0), and finally, Dt(0,1,0) obeys
the equation

d

dt
Dt(0,1,0) = ft (0)2e−t − Dt(0,1,0) − 2Rtft (0)e−t − 2Rtft (1)e−t (3.6)

with D0(0,1,0) = 0.

The system above can be solved numerically and the results are depicted in Fig. 2. As
can be seen in the right figure, surprisingly the value of Dt(2) has a slightly higher limit
than Dt(1). This clearly means that the second line has a higher limit density of cars than
the first line. This result is independently confirmed by simulations of the parking process
measuring the empirical densities.

A similar system of equations holds for the model with screening. Recall that in this
model cars are not allowed to pass cars on the second line to reach a void on the first line.
This results in less possibilities of filling voids of the first line than in the model treated
above. In fact we can derive the ODEs of this model by simply deleting those terms that
represent the possibility of “jumping” over a car in the second line to reach a void on the
first line. So, we get

Theorem 2 (Two-line Parking with Screening) The time evolution of the probability vector
(Dsc

t (0),Dsc
t (1),Dsc

t (2),Dsc
t (3)) obeys the following system of differential equations

d

dt
Dsc

t (0) = −(f sc
t (0) + f sc

t (1))2e−t ,

d

dt
Dsc

t (1) = f sc
t (0)2e−t − Dsc

t (0,1,0),

(3.7)
d

dt
Dsc

t (2) = (2f sc
t (0)f sc

t (1) + f sc
t (1)2)e−t ,

d

dt
Dsc

t (3) = Dsc
t (0,1,0)
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with initial conditions Dsc
0 (s) = 1s=0, where the vector (f sc

t (0), f sc
t (1), f sc

t (2),Rsc
t ) obeys

the linear ODE

d

dt
f sc

t (0) = −f sc
t (0)e−t − f sc

t (1)e−t ,

d

dt
f sc

t (1) = f sc
t (0)e−t − Rsc

t ,

(3.8)
d

dt
f sc

t (2) = f sc
t (1)e−t ,

d

dt
Rsc

t = f sc
t (0)(e−t − te−2t ) − f sc

t (1)te−2t − Rsc
t ,

with initial conditions (f sc
0 (0), f sc

0 (1), f sc
0 (2),Rsc

0 ) = (1,0,0,0), and finally, Dsc
t (0,1,0) is

obeying the equation

d

dt
Dsc

t (0,1,0) = f sc
t (0)2e−t − Dsc

t (0,1,0) − 2Rsc
t f sc

t (0)e−t − 2Rsc
t f sc

t (1)e−t (3.9)

with Dsc
0 (0,1,0) = 0.

4 Proofs of Theorem 1 and Theorem 2

We focus at first on the non-screening model whose treatment is more difficult since it allows
for more parking events. In a second step we will describe below the changes needed to treat
the screening model. Now, the following lemmas are used to prove Theorem 1.

Lemma 4.1 The probability vector (Dt(0),Dt (1),Dt (2),Dt (3)) obeys

d

dt
Dt(0) = −Dt(0,0,0) − 2Dt(2,0,0) − Dt(2,0,2) − 2Dt(1,0,0)

− Dt(1,0,1), (4.1)

d

dt
Dt(1) = Dt(0,0,0) + 2Dt(2,0,0) + Dt(2,0,2) − Dt(0,1,0), (4.2)

d

dt
Dt(2) = 2Dt(1,0,0) + Dt(1,0,1), (4.3)

d

dt
Dt(3) = Dt(0,1,0). (4.4)

Remark Summing over the four right hand sides we get zero, due to the fact that we have
summed a probability vector. It is also interesting to check that

d

dt
Dt(1) + d

dt
Dt(3) = Dt(0,0,0) + 2Dt(2,0,0) + Dt(2,0,2) (4.5)

recovers the ODE for the density in the first line.

Proof Fix an arbitrary vertex. Let us call this vertex 0. Starting from the dynamics (3.2) and
using symmetries we have

d

dt
Dt(0) = −Dt(0,0,0) − 2Dt(2,0,0) − Dt(2,0,2) − 2Dt(1,0,0)

− Dt(1,0,1). (4.6)
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Fig. 3 List of all occupancy configurations of vertices −1, 0 and 1 in the first and second line that (may)
contribute to a reduction of the proportion of Dt (0)

Indeed, the first three terms correspond to adding a car in the first line, the next two terms
correspond to adding a car in the second line, see Fig. 3.

The other three differential equations are derived in a similar way. �

Lemma 4.2 The triple-site densities Dt(s,0, s ′) and the one-sided densities, as defined in
(3.2) and (3.4) respectively, are related in the following way

Dt(s,0, s ′) = ft (s)ft (s
′)e−t (4.7)

for (s, s ′) ∈ {(0,0), (0,1), (1,0), (1,1), (0,2), (2,0), (2,2)}.

Proof We note that for the mentioned choices of (s, s ′) conditioning on non-arrival at zero
does not change the probability, that is

Dt(s,0, s ′) = Pt(m−1 = s,m0 = 0,m1 = s ′,N0(t) = 0)

= Pt(m−1 = s,m0 = 0,m1 = s ′|N0(t) = 0)e−t (4.8)

where Nj(t) denotes the Poisson counting process of events of car arrivals at site j .
In the next step we note that, conditional on the event that no car has arrived at the site 0,

the dynamics for the two sides that are emerging from 0 is independent. Consequently we
have

Pt(m−1 = s,m0 = 0,m1 = s ′|N0(t) = 0)

= Pt(m1 = s|N0(t) = 0)Pt (m1 = s ′|N0(t) = 0)

= ft (s)ft (s
′). (4.9)

This concludes the proof of the lemma. �

Next we look at the time-evolution of the “one-sided densities”.

Lemma 4.3 The vector (ft (0), ft (1), ft (2),Rt ) obeys the ODE

d

dt
ft (0) = −ft (0)e−t − ft (1)e−t − ft (2)e−t ,

d

dt
ft (1) = ft (0)e−t + ft (2)e−t − Rt,

(4.10)
d

dt
ft (2) = ft (1)e−t ,

d

dt
Rt = ft (0)(e−t − te−2t ) − ft (1)te−2t − Rt

with initial conditions f0(s) = 1s=0 and R0 = 0.
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Remark 1 Note that combining the equations of d
dt

ft (0) and d
dt

ft (2) readily gives

ft (0) + ft (2) = exp(e−t − 1) (4.11)

which is a known result for the first line in a semi-infinite chain [3].

Remark 2 Note also that because Rt := Pt(m1 = 1,m2 = 0|N0(t) = 0) we have in fact Rt =
d
dt

ft (3).

Proof To derive ODEs for these densities we employ the generator of the process, while
putting the term at the site 0 to sleep, and correspondingly the spin at zero to be the constant
m0 = 0. Using the generator L̃ for the one-sided process we compute

d

dt
ft (0) = d

dt
P̃t (m1 = 0)

= −P̃t (m1 = 0,m2 = 0) − P̃t (m1 = 0,m2 = 2) − P̃t (m1 = 0,m2 = 1). (4.12)

We take advantage of the particular form of the rates to write

P̃t (m1 = 0,m2 = 0) = P̃t (m1 = 0,m2 = 0,N1(t) = 0)

= P̃t (m1 = 0,m2 = 0|N1(t) = 0)e−t (4.13)

where N1(t) denotes the number of particles which have arrived in the process P̃t at site 1.
Indeed, to see the first equality note that on the event m2 = 0 having an empty site at 1
implies a non-arrival of a particle at 1. In the next step we use that under conditioning on
non-arrival at 1 we recover the process P̃t shifted by one lattice-unit and so we may write

P̃t (m1 = 0,m2 = 0|N1(t) = 0) = P̃t (m1 = 0). (4.14)

This gives us

d

dt
ft (0) = −P̃t (m1 = 0,m2 = 0|N1(t) = 0)e−t − P̃t (m1 = 0,m2 = 2|N1(t) = 0)e−t

− P̃t (m1 = 1)e−t

= −P̃t (m1 = 0)e−t − P̃t (m1 = 2)e−t − P̃t (m1 = 1)e−t

= −ft (0)e−t − ft (1)e−t − ft (2)e−t . (4.15)

Next we have

d

dt
ft (1) = d

dt
P̃t (m1 = 1)

= P̃t (m1 = 0,m2 = 0) + P̃t (m1 = 0,m2 = 2) − P̃t (m1 = 1,m2 = 0)

= ft (0)e−t + ft (2)e−t − Rt (4.16)

and

d

dt
ft (2) = d

dt
P̃t (m1 = 2) = P̃t (m1 = 0,m2 = 1) = P̃t (m1 = 1)e−t . (4.17)
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Finally, we get

d

dt
Rt = d

dt
P̃t (m1 = 1,m2 = 0)

= P̃t (m1 = 0,m2 = 0) − P̃t (m1 = 1,m2 = 0)

− P̃t (m1 = 1,m2 = 0,m3 = 0)

− P̃t (m1 = 1,m2 = 0,m3 = 1). (4.18)

Using conditioning on non-arrival again we get

d

dt
P̃t (m1 = 1,m2 = 0)

= P̃t (m1 = 0)e−t − P̃t (m1 = 1,m2 = 0)

− P̃t (m1 = 1|N2(t) = 0)P̃t (m1 = 0)e−t

− P̃t (m1 = 1|N2(t) = 0)P̃t (m1 = 1)e−t . (4.19)

Clearly we have

P̃t (m1 = 1|N2(t) = 0) = te−t (4.20)

because there is precisely one car at 1 if and only if precisely one car arrived conditioning
on no cars at 0 and 2. This shows that the last ODE is correct and concludes the proof of the
lemma. �

The only remaining term whose time-evolution we need to consider is Dt(0,1,0).

Lemma 4.4 Dt(0,1,0) is a solution of the differential equation

d

dt
Dt(0,1,0) = ft (0)2e−t − Dt(0,1,0) − 2Rtft (0)e−t − 2Rtft (1)e−t . (4.21)

Proof We note that

d

dt
Dt(0,1,0) = Dt(0,0,0) − Dt(0,1,0) − 2Dt(0,1,0,0) − 2Dt(0,1,0,1) (4.22)

with the analogous definition

Dt(s−1, s0, s1, s2) := Pt(m−1 = s−1,m0 = s0,m1 = s1,m2 = s2). (4.23)

The first term is for adding a car at the central site from the vacuum, the second one for
adding a car at the central site at height one. The last two terms are for adding a car to the
right of the central site. As we already know, we have

Dt(0,0,0) = P̃t (m1 = 0)2e−t . (4.24)

Using conditioning on non-arrival at the third site in the occupation vector (0,1,0,0) we
get, by reflection invariance
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Dt(0,1,0,0) = Pt(m−1 = 0,m0 = 1|N1(t) = 0)Pt (m2 = 0|N1(t) = 0)P (N1(t) = 0)

= Pt(m1 = 1,m2 = 0|N0(t) = 0)Pt (m1 = 0|N0(t) = 0)e−t

= Rtft (0)e−t . (4.25)

For the last term we get in the same way

Dt(0,1,0,1) = Pt(m1 = 1,m2 = 0|N0(t) = 0)Pt (m1 = 1|N0(t) = 0)e−t

= Rtft (1)e−t . (4.26)

�

Proof of Theorem 1 Combining the results of Lemmas 4.1, 4.2, 4.3 and 4.4 proves Theo-
rem 1. �

Proof of Theorem 2 The proof follows from Theorem 1 by deleting every term that rep-
resents the possibility of skipping a second-line car to reach a void in the first line. This
results in deleting ft (2)e−t from the first two equations of Lemma 4.3, and Dt(2,0,0) and
Dt(2,0,2) from (4.1) and (4.2). �

5 Conclusion

We introduced two extensions of the classic Parking Problem to a two-line model i.e. a
model with screening and a model without screening. For both models we derived closed
systems of finite-dimensional ODEs from which the time-evolution of the densities in the
first and second line can be obtained. Interestingly, the numerical solution of the ODE shows
that the final densities in the second line are higher than those in the first line, for both models
(see Fig. 4). The increase factor in the model without screening is approximately

I = lim
t→∞

Dt(2) + Dt(3)

Dt(1) + Dt(3)
≈ 0.434868

0.432332
≈ 1.006.

Fig. 4 Densities of the first and second line for both models
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It is known by analytical computations that Dt(1) + Dt(3) approaches (1 − e−2)/2 ≈
0.432332 for large t , which provides as a checkup for the numerics [3]. In the screening
model we find

Isc = lim
t→∞

Dsc
t (2) + Dsc

t (3)

Dsc
t (1) + Dsc

t (3)
≈ 0.433896

0.366475
≈ 1.184.

In other words, in both models the cars seem to exploit the resources in the second line
(slightly) more efficient than in the first line.
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