626 research outputs found

    Methylation landscape in the genome of higher plants of agronomical interest

    Full text link
    In eukaryotic cells the methylation of cytosines in DNA is an essential mechanism which is implied in the dynamic organization of the genome structure, in relation to genes expression. Plant genomes contain a significant proportion and variable according to the species, of sequences which are likely to be methylated during the life of the plant. It is known that the establishment and the maintenance of methylation profiles in both genomic areas and specific sequences constitute a crucial mediator in the modulation of genes expression during development. Recent studies have evidenced the implication of epimutations in the adaptation of plants to their environment particularly in response to biotic and abiotic stresses. Recently, the complete mapping of methylation in the genomes of Arabidopsis thaliana and rice provided invaluable information on the distribution of methylation within genes in relation to their expression. The impact of changes in the methylation profiles on the characters of agronomic importance has not been intensively studied yet, whereas this question takes a considerable importance in the context of an increasing food demand and foreseen global climate changes. The METHYLANDSCAPE project proposes to isolate genomic DNA sequences on the basis of their degree of methylation and to connect the variation of their methylation profiles with, on the one hand, the expression of the corresponding genes and, on the other hand, with environmental or developmental processes. Thus, it should be possible to identify genes which expression is differentially controlled by methylation during development and/or in situation of stress, and likely to have an influence on the agronomic value of the plant. The METHYLANDSCAPE partners thus propose to bring signification advances in plant genomics on four original species, by integrating DNA methylation mapping and the relationship between epigenome and transcriptome, up to the generation of methylation-sensitive markers linked with characters of agronomic importance. (Texte intégral

    Oxygen Ion Energization Observed At High Altitudes

    Get PDF
    We present a case study of significant heating (up to 8 keV) perpendicular to the geomagnetic field of outflowing oxygen ions at high altitude (12 RE) above the polar cap. The shape of the distribution functions indicates that most of the heating occurs locally (within 0.2–0.4 RE in altitude). This is a clear example of local ion energization at much higher altitude than usually reported. In contrast to many events at lower altitudes, it is not likely that the locally observed wave fields can cause the observed ion energization. Also, it is not likely that the ions have drifted from some nearby energization region to the point of observation. This suggests that additional fundamentally different ion energization mechanisms are present at high altitudes. One possibility is that the magnetic moment of the ions is not conserved, resulting in slower outflow velocities and longer time for ion energization

    Cluster observations of the midaltitude cusp under strong northward interplanetary magnetic field

    Get PDF
    We report on a multispacecraft cusp observation lasting more than 100 min. We determine the cusp boundary motion and reveal the effect on the cusp size of the interplanetary magnetic field (IMF) changing from southward to northward. The cusp shrinks at the beginning of the IMF rotation and it reexpands at the rate of 0.40° invariant latitude per hour under stable northward IMF. On the basis of plasma signatures inside the cusp, such as counterstreaming electrons with balanced fluxes, we propose that pulsed dual lobe reconnection operates during the time of interest. SC1 and SC4 observations suggest a long-term regular periodicity of the pulsed dual reconnection, which we estimate to be ~1–5 min. Further, the distances from the spacecraft to the reconnection site are estimated on the basis of observations from three satellites. The distance determined using SC1 and SC4 observations is ~15 RE and that determined from SC3 data is ~8 RE. The large-scale speed of the reconnection site sunward motion is ~16 km s-1. We observe also a fast motion of the reconnection site by SC1, which provides new information about the transitional phase after the IMF rotation. Finally, a statistical study of the dependency of plasma convection inside the cusp on the IMF clock angle is performed. The relationship between the cusp stagnation, the dual lobe reconnection process, and the IMF clock angle is discussed

    Multi-scale magnetic field intermittence in the plasma sheet

    Get PDF
    This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal based algorithm, which quantifies intermittence on the basis of the statistical distribution of the 'strength of burstiness', estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC) process.Comment: 18 pages, 7 figure

    Cluster observes formation of high-beta plasma blobs

    Get PDF
    Late in a sequence of four moderate substorms on 26 July 2001, Cluster observed periods of a few minutes durations of high-beta plasma events (<i>B</i><10nT, β=2-30), connected with dipolarizations of the magnetic field. Cluster was located near 02:45 MLT, at <i>R</i>=19<i>R<sub>E</sub></i> and at about 5°N GSM. These events began late in the recovery phase of the second and about 5min before onset of the third substorm and lasted for three hours, way beyond the recovery phase of the fourth substorm. The most remarkable observation is that the onset coincided with the arrival of energetic (<i>E</i>~7keV) O<sup>+</sup> ions and energetic electrons obviously from the ionosphere, which tended to dominate the plasma composition throughout the remaining time. The magnetic flux and plasma transport is continuously directed equatorward and earthward, with oscillatory east-west movements superposed. Periods of the order of 5-10min and strong correlations between the magnetic elevation angle and log β (correlation coefficient 0.78) are highly reminiscent of the high-beta plasma blobs discovered with Equator-S and Geotail between 9 and 11<i>R<sub>E</sub></i> in the late night/early morning sector (Haerendel et al., 1999). <P style="line-height: 20px;"> We conclude that Cluster observed the plasma blob formation in the tail plasma sheet, which seems to occur predominantly in the recovery and post-recovery phases of substorms. This is consistent with the finding of Equator-S and Geotail. The origin is a pulsed earthward plasma transport with velocity amplitudes of only several tens of km/s

    Cluster observations of structures at quasi-parallel bow shocks

    Get PDF
    International audienceCollisionless quasi-parallel shocks are thought to be composed of a patchwork of short, large-amplitude magnetic structures (SLAMS) which act to thermalise the plasma, giving rise to a spatially extended and time varying shock transition. With the launch of Cluster, new observations of the three-dimensional shape and size of shock structures are available. In this paper we present SLAMS observations made when the Cluster tetrahedron scale size was ~100km. The SLAMS magnetic field enhancement is typically well correlated between spacecraft on this scale, although small differences are observed. The statistical characteristics of these differences contain information on the typical gradients of magnetic field changes within the SLAM structure which, in the case studied here, occur on scales of 100-150km, comparable with the upstream ion inertial length

    Supermagnetosonic jets behind a collisionless quasi-parallel shock

    Full text link
    The downstream region of a collisionless quasi-parallel shock is structured containing bulk flows with high kinetic energy density from a previously unidentified source. We present Cluster multi-spacecraft measurements of this type of supermagnetosonic jet as well as of a weak secondary shock front within the sheath, that allow us to propose the following generation mechanism for the jets: The local curvature variations inherent to quasi-parallel shocks can create fast, deflected jets accompanied by density variations in the downstream region. If the speed of the jet is super(magneto)sonic in the reference frame of the obstacle, a second shock front forms in the sheath closer to the obstacle. Our results can be applied to collisionless quasi-parallel shocks in many plasma environments.Comment: accepted to Phys. Rev. Lett. (Nov 5, 2009

    Global and local disturbances in the magnetotail during reconnection

    Get PDF
    We examine Cluster observations of a reconnection event at <I>x</I><sub>GSM</sub>=−15.7 <I>R<sub>E</sub></I> in the magnetotail on 11 October 2001, when Cluster recorded the current sheet for an extended period including the entire duration of the reconnection event. The onset of reconnection is associated with a sudden orientation change of the ambient magnetic field, which is also observed simultaneously by Goes-8 at geostationary orbit. Current sheet oscillations are observed both before reconnection and during it. The speed of the flapping motions is found to increase when the current sheet undergoes the transition from quiet to active state, as suggested by an earlier statistical result and now confirmed within one single event. Within the diffusion region both the tailward and earthward parts of the quadrupolar magnetic Hall structure are recorded as an x-line passes Cluster. We report the first observations of the Hall structure conforming to the kinks in the current sheet. This results in relatively strong fluctuations in <I>B<sub>z</sub></I>, which are shown to be the Hall signature tilted in the <I>yz</I> plane with the current sheet

    Optimal reconstruction of magnetopause structures from Cluster data

    Get PDF
    The Grad-Shafranov (GS) reconstruction technique, a single-spacecraft based data analysis method for recovering approximately two-dimensional (2-D) magnetohydrostatic plasma/field structures in space, is improved to become a multi-spacecraft technique that produces a single field map by ingesting data from all four Cluster spacecraft into the calculation. The plasma pressure, required for the technique, is measured in high time resolution by only two of the spacecraft, C1 and C3, but, with the help of spacecraft potential measurements available from all four spacecraft, the pressure can be estimated at the other spacecraft as well via a relationship, established from C1 and C3 data, between the pressure and the electron density deduced from the potentials. Consequently, four independent field maps, one for each spacecraft, can be reconstructed and then merged into a single map. The resulting map appears more accurate than the individual single-spacecraft based ones, in the sense that agreement between magnetic field variations predicted from the map to occur at each of the four spacecraft and those actually measured is significantly better. Such a composite map does not satisfy the GS equation any more, but is optimal under the constraints that the structures are 2-D and time-independent. Based on the reconstruction results, we show that, even on a scale of a few thousand km, the magnetopause surface is usually not planar, but has significant curvature, often with intriguing meso-scale structures embedded in the current layer, and that the thickness of both the current layer and the boundary layer attached to its earthward side can occasionally be larger than 3000km

    Statistical study of the location and size of the electron edge of the Low-Latitude Boundary Layer as observed by Cluster at mid-altitudes

    Get PDF
    The nature of particle precipitations at dayside mid-altitudes can be interpreted in terms of the evolution of reconnected field lines. Due to the difference between electron and ion parallel velocities, two distinct boundary layers should be observed at mid-altitudes between the boundary between open and closed field lines and the injections in the cusp proper. At lowest latitudes, the electron-dominated boundary layer, named the "electron edge" of the Low-Latitude Boundary Layer (LLBL), contains soft-magnetosheath electrons but only high-energy ions of plasma sheet origin. A second layer, the LLBL proper, is a mixture of both ions and electrons with characteristic magnetosheath energies. The Cluster spacecraft frequently observe these two boundary layers. We present an illustrative example of a Cluster mid-altitude cusp crossing with an extended electron edge of the LLBL. This electron edge contains 10–200 eV, low-density, isotropic electrons, presumably originating from the solar wind halo population. These are occasionally observed with bursts of parallel and/or anti-parallel-directed electron beams with higher fluxes, which are possibly accelerated near the magnetopause X-line. We then use 3 years of data from mid-altitude cusp crossings (327 events) to carry out a statistical study of the location and size of the electron edge of the LLBL. We find that the equatorward boundary of the LLBL electron edge is observed at 10:00–17:00 magnetic local time (MLT) and is located typically between 68° and 80° invariant latitude (ILAT). The location of the electron edge shows a weak, but significant, dependence on some of the external parameters (solar wind pressure, and IMF <i>B<sub>Z</sub></i>- component), in agreement with expectations from previous studies of the cusp location. The latitudinal extent of the electron edge has been estimated using new multi-spacecraft techniques. The Cluster tetrahedron crosses the electron and ion boundaries of the LLBL/cusp with time delays of 1–40 min between spacecraft. We reconstruct the motion of the electron boundary between observations by different spacecraft to improve the accuracy of the estimation of the boundary layer size. In our study, the LLBL electron edge is distinctly observed in 87% of mid-altitude LLBL/cusp crossings with clear electron and ion equatorward boundaries equivalent to 35% of all LLBL/cusp crossings by Cluster. The size of this region varied between 0°–2° ILAT with a median value of 0.2° ILAT. Generally, the size of the LLBL electron edge depends on the combination of many parameters. However, we find an anti-correlation between the size of this region and the strength of the IMF, the absolute values of the IMF <i>B<sub>Y</sub></i>- and <i>B<sub>Z</sub></i>-components and the solar wind dynamic pressure, as is expected from a simple reconnection model for the origin of this region
    • 

    corecore