12 research outputs found

    Early changes in rat diaphragm biology with mechanical ventilation

    Get PDF
    To better characterize the effects of 24-hour mechanical ventilation on diaphragm, the expression of myogenic transcription factors, myosin heavy chains, and sarcoplasmic/endoplasmic reticulum calcium-ATPase pumps was examined in rats. In the diaphragm of mechanically ventilated animals, the mRNA of MyoD, myosin heavy chain-2a and -2b, and sarcoplasmic/endoplasmic reticulum calcium-ATPase-1a decreased, whereas myogenin mRNA increased. In the diaphragm of anesthetized and spontaneously breathing rats, only the mRNA of MyoD and myosin heavy chain-2a decreased. MyoD and myogenin protein expression followed the changes at the mRNA, whereas the myosin heavy chain isoforms did not change. Parallel experiments involving the gastrocnemius were performed to assess the relative contribution of muscle shortening versus immobilization-induced deconditioning on muscle regulatory factor expression. Passive shortening produced no additional effects compared with immobilization-induced deconditioning. The overall changes followed a remarkably similar pattern except for MyoD protein expression, which increased in the gastrocnemius and decreased in the diaphragm while its mRNA diminished in both muscles. The early alterations in the expression of muscle protein and regulatory factors may serve as underlying molecular basis for the impaired diaphragm function seen after 24 hours of mechanical ventilation. Whether immobilization-induced deconditioning and/or passive shortening play a role in these alterations could not be fully unraveled

    The effect of indomethacin, myeloperoxidase, and certain steroid hormones on bactericidal activity: an ex vivo and in vivo experimental study.

    Get PDF
    BACKGROUND: The role of myeloperoxidase (MPO) is essential in the killing of phagocytosed bacteria. Certain steroid hormones increase MPO plasma concentration. Our aim was to test the effect of MPO, its inhibitor indomethacin, and certain steroid hormones on bactericidal activity. METHODS: Human polymorphonuclear leukocytes (PMN) were incubated with opsonised Escherichia coli and either MPO, indomethacin, estradiol, or hydrocortisone. Intracellular killing capacity was evaluated with UV microscopy after treatment with fluorescent dye. Next, an in vivo experiment was performed with nine groups of rats: in the first phase of the study indomethacin treatment and Pasteurella multocida infection (Ii), indomethacin treatment without infection (I0), untreated control with infection (Mi) and untreated control without infection (M0); in the second phase of the study rats with infection and testosterone treatment (NT), castration, infection and testosterone treatment (CT), castration, infection and estradiol treatment (CE), non-castrated infected control (N0), and castrated infected control (C0). After treatment bacteria were reisolated from the liver and heart blood on agar plates, and laboratory parameters were analyzed. For the comparison of laboratory results ANOVA or Kruskal-Wallis test and LSD post hoc test was used. RESULTS: Indomethacin did not have a remarkable effect on the bacterial killing of PMNs, while the other compounds increased bacterial killing to various degrees. In the animal model indomethacin and infection caused a poor clinical state, a great number of reisolated bacteria, elevated white blood cell (WBC) count, decreased C-reactive protein (CRP) and serum albumin levels. Testosterone treatment resulted in less bacterial colony numbers in group NT, but not in group CT compared to respective controls (N0, C0). Estradiol treatment (CE) decreased colony numbers compared to control (C0). Hormone administration resulted in lower WBC counts, and in group CE, a decreased CRP. CONCLUSIONS: MPO, estradiol, and hydrocortisone improve bacterial killing activity of PMNs. Indomethacin treatment and castration weaken immune responses and clinical state of infected rats, while testosterone and estradiol have a beneficial effect

    Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects

    No full text
    OBJECTIVE: Short-term mechanical ventilation has been proven to reduce diaphragm force and fiber dimensions. We hypothesized that intermittent spontaneous breathing during the course of mechanical ventilation would minimize the effects of mechanical ventilation on diaphragm force and expression levels of transcription factors (MyoD and myogenin). DESIGN: Randomized, controlled experiment. SETTING: Animal basic science laboratory. SUBJECTS: Male Wistar rats, weighing 350-500 g. INTERVENTIONS: Anesthetized and tracheotomized rats were submitted to either 24 hrs of spontaneous breathing (SB, n = 5), 24 hrs of continuous controlled mechanical ventilation (CMV, n = 7), or controlled mechanical ventilation with intermittent spontaneous breathing: 60 mins every 5 hrs of mechanical ventilation repeated four times (ISB60, n = 8) or 5 mins every 5 hrs 55 mins of mechanical ventilation repeated four times (SB5, n = 9). They were compared with control animals free from intervention (C, n = 5). MEASUREMENTS AND MAIN RESULTS: The profile of the diaphragm force-frequency curve of the controls and SB group was significantly different from that of the ISB and CMV groups; especially, the mean asymptotic force was less in the ISB and CMV compared with controls and SB. CMV resulted in a significant decrease in the diaphragm type I (-26%, p < .05 vs. C) and type IIx/b (-39%, p < .005 vs. C and SB) cross-sectional area, whereas this was not observed in the ISB groups. Diaphragm MyoD protein expression was significantly decreased after ISB60 (-35%, p < .0001 vs. C and SB) and even more after CMV (-73%, p < .0001 vs. others). The same pattern was observed with myogenin protein levels. Positive relationships between diaphragm MyoD and myogenin protein levels and diaphragm force were observed. CONCLUSIONS: The data demonstrated that intermittent spontaneous breathing during the course of mechanical ventilation may minimize the deleterious effect of controlled mechanical ventilation on diaphragm force, fiber dimensions, and expression of transcription factors.status: publishe

    Global impact of COVID-19 on newborn screening programmes

    No full text
    Introduction The global COVID-19 pandemic has presented extraordinary disruption to healthcare services and exposed them to numerous challenges. Newborn screening (NBS) programmes were also affected; however, scarce data exist on the impact of COVID-19 on NBS. Methods We conducted an international survey to assess the global impact of COVID-19 on NBS, with the main aim of gathering the experiences of the COVID-19 pandemic from a large and representative number of NBS centres worldwide. Results The results of our study showed that COVID-19 impacted the NBS programmes, at least partially, in 29 out of 38 responding countries. Majority of the screening centres experienced a broad spectrum of difficulties and most were affected more in the second wave of the pandemic. Delays and unreliability with the postal service as well as flight cancellations caused delays in samples arriving to screening centres and with the provision of laboratory equipment and reagents. The availability of laboratory staff was sometimes reduced due to infection, quarantine or reassignment within the healthcare facility. Sample collection at home, second-tier tests and follow-up were also affected. Social restrictions and interruptions in public transport added to these difficulties. Only a limited number of centres managed to retain a fully functioning NBS programme. Conclusion As the pandemic might continue or could recur in future years, it would be useful to develop guidelines to protect these valuable services
    corecore