214 research outputs found

    Predicting terrestrial dispersal corridors of the invasive African clawed frog Xenopus laevis in Portugal

    Get PDF
    Invasive species, such as the mainly aquatic African clawed frog Xenopus laevis, are a main threat to global biodiversity. The identification of dispersal corridors is necessary to restrict further expansion of these species and help to elaborate management plans for their control and eradication. Here we use remote sensing derived resistance surfaces, based on the normalised difference vegetation index (NDVI) and the normalised difference water index (NDWI) accounting for behavioural and physiological dispersal limitations of the species, in combination with elevation layers, to determine fine scale dispersal patterns of invasive populations of X. laevis in Portugal, where the frog had established populations in two rivers. We reconstruct past dispersal routes between these two invaded rivers and highlight high risk areas for future expansion. Our models suggest terrestrial dispersal corridors that connect both invaded rivers and identify artificial water bodies as stepping stones for overland movement of X. laevis. Additionally, we found several potential stepping stones into novel areas and provide concrete information for invasive species management.info:eu-repo/semantics/publishedVersio

    Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied?

    Get PDF
    BACKGROUND: Species Distribution Models (SDMs) aim on the characterization of a species' ecological niche and project it into geographic space. The result is a map of the species' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor. PRINCIPAL FINDINGS: In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species' physiological limits depicts the target species' worldwide potential distribution better than any of the other approaches. CONCLUSION: These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs) while "comprehensive" or "standard" sets of ecological predictors may be of limited use

    From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly <it>Melanargia galathea</it>. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon <it>M. lachesis </it>were analysed using allozyme electrophoresis.</p> <p>Results</p> <p>We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the Günz ice age starting with an initial split between the <it>galathea </it>group in North Africa and the <it>lachesis </it>group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models.</p> <p>Conclusions</p> <p>Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.</p

    Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    Get PDF
    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species

    Enriching Business Process Models with Decision Rules

    Get PDF
    Making the right decisions in time is one of the key tasks in every business. In this context, decision theory fosters decision-making based on well-defined decision rules. The latter evaluate a given set of input parameters and utilize evidenced data in order to determine an optimal alternative out of a given set of choices. In particular, decision rules are relevant in the context business processes as well. Contemporary process modeling languages, however, have not incorporated decision theory yet, but mainly consider rather simple, guard-based decisions that refer to process-relevant data. To remedy this drawback, this paper introduces an approach that allows embedding decision problems in business process models and applying decision rules to deal with them. As a major benefit, it becomes possible to automatically determine optimal execution paths during run time

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    Is Chytridiomycosis an Emerging Infectious Disease in Asia?

    Get PDF
    The disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused dramatic amphibian population declines and extinctions in Australia, Central and North America, and Europe. Bd is associated with >200 species extinctions of amphibians, but not all species that become infected are susceptible to the disease. Specifically, Bd has rapidly emerged in some areas of the world, such as in Australia, USA, and throughout Central and South America, causing population and species collapse. The mechanism behind the rapid global emergence of the disease is poorly understood, in part due to an incomplete picture of the global distribution of Bd. At present, there is a considerable amount of geographic bias in survey effort for Bd, with Asia being the most neglected continent. To date, Bd surveys have been published for few Asian countries, and infected amphibians have been reported only from Indonesia, South Korea, China and Japan. Thus far, there have been no substantiated reports of enigmatic or suspected disease-caused population declines of the kind that has been attributed to Bd in other areas. In order to gain a more detailed picture of the distribution of Bd in Asia, we undertook a widespread, opportunistic survey of over 3,000 amphibians for Bd throughout Asia and adjoining Papua New Guinea. Survey sites spanned 15 countries, approximately 36° latitude, 111° longitude, and over 2000 m in elevation. Bd prevalence was very low throughout our survey area (2.35% overall) and infected animals were not clumped as would be expected in epizootic events. This suggests that Bd is either newly emerging in Asia, endemic at low prevalence, or that some other ecological factor is preventing Bd from fully invading Asian amphibians. The current observed pattern in Asia differs from that in many other parts of the world

    Batrachochytrium dendrobatidis Shows High Genetic Diversity and Ecological Niche Specificity among Haplotypes in the Maya Mountains of Belize

    Get PDF
    The amphibian pathogen Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR) and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd
    corecore