8,402 research outputs found

    Prediction of longitudinal shear resistance of composite slabs with profile sheeting to Eurocode 4

    Get PDF
    Composite slab incorporate profile sheeting is widely used for multi-storey buildings construction throughout the world. The profile sheeting not only providing the temporarily support to the wet concrete but also formed an integral part of the composite slabs, it provides the resistance to vertical separation and longitudinal slippage between the steel concrete interface. Longitudinal shear resistance of the composite slabs is difficult to predict theoretically and the Eurocode 4 method to predict the longitudinal resistance rely on experimental testing. The most common mode of failure of the composite slab is by longitudinal shear and loss of interlocking at the steel-concrete interface. This paper presents the testing of the composite slabs in accordance to the Eurocode 4

    A Review of Recycling Methods for Fibre Reinforced Polymer Composites

    Get PDF
    This paper presents a review of waste disposal methods for fibre reinforced polymer (FRP) ma-terials. The methods range from waste minimisation, repurposing, reusing, recycling, incinera-tion, and co-processing in a cement plant to dumping in a landfill. Their strength, limitations, and key points of attention are discussed. Both glass and carbon fibre reinforced polymer (GFRP and CFRP) waste management strategies are critically reviewed. The energy demand and cost of FRP waste disposal routes are also discussed. Landfill and co-incineration are the most common and cheapest techniques to discard FRP scrap. Three main recycling pathways, including mechanical, thermal, and chemical recycling, are reviewed. Chemical recycling is the most energy-intensive and costly route. Mechanical recycling is only suitable for GFRP waste, and it has actually been used at an industrial scale by GFRP manufacturers. Chemical and thermal recycling routes are more appropriate for reclaiming carbon fibres from CFRP, where the value of reclaimed fibres is more than the cost of the recycling process. Discarding FRP waste in a sustainable manner pre-sents a major challenge in a circular economy. With strict legislation on landfill and other envi-ronmental limits, recycling, reusing, and repurposing FRP composites will be at the forefront of sustainable waste-management strategies in the future

    A Review of Fibre Reinforced Polymer Bridges

    Get PDF
    Fibre reinforced polymer composites (FRP) offer various benefits for bridge construction. Light-weight, durability, design flexibility and fast erection in inaccessible areas are their unique selling points for bridge engineering. FRP are used in four bridge applications: (1) FRP rebars/tendons in concrete; (2) repair and strengthening of existing bridges; (3) new hybrid-FRP bridges with con-ventional materials and (4) all-FRP composite new bridges made entirely of FRP materials. This paper reviews FRP bridges, including all-FRP and hybrid-FRP bridges. FRP bridges’ history, ma-terials, processes and bridge components – deck, girder, truss, moulded parts and cables/rebars are considered. This paper does not discuss use of FRP as an architectural element and a strengthening system. While lack of design codes, material specifications and recycling are the major challenges, the high cost of FRPs still remains the most critical barrier to the progress of FRPs in bridges

    Fibre-Reinforced Polymer (FRP) in Civil Engineering

    Get PDF
    Construction produces a third of global carbon emissions. These emissions cause global warming and contribute to climate emergency. There is a need to encourage use of sustainable and eco-friendly materials to effectively deal with climate emergency. Fibre reinforced polymer (FRP) is an eco-friendly material with low carbon footprint. FRP composites in civil engineering are mainly used in three applications: (1) FRP profiles in new-build; (2) FRP reinforcing bar in concrete members and (3) FRP in repair and rehabilitation of existing structures. This chapter presents basic properties of constituent materials (fibres and polymer resins), mechanical properties of FRP bars, strengthening systems and profiles, manufacturing processes and civil engineering applications of FRP composites. Durability, sustainability and recycling of FRP composites are also discussed

    A Review of Fibre Reinforced Polymer Structures

    Get PDF
    This paper reviews Fibre Reinforced Polymer (FRP) composites in Civil Engineering applications. Three FRP types are used in Structural Engineering: FRP profiles for new construction, FRP rebars and FRP strengthening systems. Basic materials (fibres and resins), manufacturing processes and material properties are discussed. The focus of the paper is on all-FRP new-build structures and their joints. All-FRP structures use pultruded FRP profiles. Their connections and joints use bolting, bonding or a combination of both. For plate-to-pate connections, effects of geometry, fibre direction, type and rate of loading, bolt torque and bolt hole clearance, and washers on failure modes and strength are reviewed. FRP beam-columns joints are also reviewed. The joints are divided into five categories: web cleated, web and flange cleated, high strength, plate bolted and box profile joints. The effect of both static and cyclic loading on joints is studied. The joints’ failure modes are also discussed

    Behaviour of pultruded beam-to-column joints using steel web cleats

    Get PDF
    Response of pultruded Fibre Reinforced Polymer (FRP) beam-to-column joints with steel bolted web cleats is studied through physical testing. Two joint configurations are considered with either three or two bolts per cleat leg, as per drawings in a pultruder’s Design Manual. Moment-rotation curves, failure modes and potential performance gains from semi-rigid action are determined from two batches, each having six nominally identical joints. Results show that initial joint properties for stiffness and moment can possess, at 19 to 62%, an extremely high coefficient of variation. All joints failed by fracturing within the FRP column’s flange outstands. Because this failure mode has not been reported previously there is a need to establish how its existence influences joint design. As joint properties for the three- and two-bolted configurations are not significantly different, the middle (third) bolt is found to be redundant. Damage is shown to initiate within the column flange outstands when the mid-span deflection of a 5.08 m span beam, subjected to a uniformly distributed load, is span/500. This is half the serviceability vertical deflection limit recommended in the EUROCOMP Design Code and Handbook. The mean joint moment resistance for design is established to be 2.9 kNm and this is 1.5 times the moment for damage onset

    Pechukas-Yukawa approach to the evolution of the quantum state of a parametrically perturbed system

    Get PDF
    We consider the evolution of a quantum state of a Hamiltonian which is parametrically perturbed via a term proportional to the adiabatic parameter \lambda (t). Starting with the Pechukas-Yukawa mapping of the energy eigenvalues evolution on a generalised Calogero-Sutherland model of 1D classical gas, we consider the adiabatic approximation with two different expansions of the quantum state in powers of d\lambda/dt and compare them with a direct numerical simulation. We show that one of these expansions (Magnus series) is especially convenient for the description of non-adiabatic evolution of the system. Applying the expansion to the exact cover 3-satisfability problem, we obtain the occupation dynamics which provides insight on the population of states.Comment: 12 pages, 6 figure

    How genomic information is accessed in clinical practice: an electronic survey of UK general practitioners.

    Get PDF
    Genomic technologies are having an increasing impact across medicine, including primary care. To enable their wider adoption and realize their potential, education of primary health-care practitioners will be required. To enable the development of such resources, understanding where GPs currently access genomic information is needed. One-hundred fifty-nine UK GPs completed the survey in response to an open invitation, between September 2017 and September 2018. Questions were in response to 4 clinical genomic scenarios, with further questions exploring resources used for rare disease patients, direct-to-consumer genetic testing and collecting a family history. Respondents were most commonly GP principals (independent GPs who own their clinic) (64.8%), aged 35-49 years (54%), worked as a GP for more than 15 years (44%) and practiced within suburban locations (typically wealthier) (50.3%). The most popular 'just in time' education source for all clinical genomic scenarios were online primary care focussed resources with general Internet search engines also popular. For genomic continuous medical education, over 70% of respondents preferred online learning. Considering specific scenarios, local guidelines were a popular resource for the familial breast cancer scenario. A large proportion (41%) had not heard of Genomics England's 100,000 genome project. Few respondents (4%) would access rare disease specific Internet resources (Orphanet, OMIM). Twenty-five percent of respondents were unsure how to respond to a direct-to-consumer commercial genetic test query, with 41% forwarding such queries to local genetic services. GPs require concise, relevant, primary care focussed resources in trusted and familiar online repositories of information. Inadequate genetic education of GPs could increase burden on local genetic services
    • …
    corecore