779 research outputs found

    Case Study: Chronic Recurrent Multifocal Osteomyelitis in the Femoral Diaphysis of a Young Female

    Get PDF
    Chronic recurrent multifocal osteomyelitis (CRMO) is relatively uncommon. Even though the name suggests it is the result of infection, this is not likely the case. Instead it is more likely the result of genetic, autoimmune, or autoinflammatory causes. Although CRMO has a benign course and responds well to anti-inflammatory medications, it can have a very aggressive clinical and imaging presentation overlapping with infectious osteomyelitis and malignancy. Therefore, radiologists and clinicians need to be aware of its clinical and imaging presentation to avoid morbidity associated with more aggressive treatment. We present the case of a ten-year-old female with CRMO as a solitary expansile-mixed lytic and sclerotic lesion in the distal femoral diaphysis. The diaphyseal location and mixed lytic and sclerotic appearance are less common and have an aggressive imaging appearance. We also review the pathophysiology, imaging findings, and therapeutic approach to this uncommon but clinically important condition

    Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger

    Get PDF
    Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl-/HCO3- exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes.Methods: AE3-deficient (ae3-/-) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3-/- and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM.Results: ae3-/- mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3-/- cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3-/- mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3-/- cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3-/- cardiomyocytes.Conclusions: These data reveal the importance of AE3-mediated Cl-/HCO3- exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.Centro de Investigaciones Cardiovasculare

    Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    Get PDF
    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule predictability and suggested several key attributes that were necessary to make the concept successful. The goals and objectives of the planned ATD-2 sub-project will incorporate the results of this stakeholder feedback

    Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling

    Get PDF
    Glucose effectiveness is an important determinant of glucose tolerance that can be derived from minimal model analysis of an intravenous glucose tolerance test (IVGTT). However, recent evidence suggests that glucose effectiveness is overestimated by minimal model analysis. Here we compare a new model-independent estimate of glucose effectiveness with the minimal model estimate by reanalyzing published data in which insulin-dependent diabetic subjects were each given IVGTTs under two conditions (Quon, M. J., C. Cochran, S. I. Taylor, and R. C. Eastman. Diabetes 43: 890-896, 1994). In one case, a basal insulin level was maintained (BI-IVGTT). In the second case, a dynamic insulin response was recreated (DI-IVGTT). Our results show that minimal model glucose effectiveness is very similar to the model- independent measurement during a BI-IVGTT but is three times higher during a DI-IVGTT. To investigate the causes of minimal model overestimation in the presence of a dynamic insulin response, Monte Carlo simulation studies on a two-compartment model of glucose kinetics with various insulin response patterns were performed. Results suggest that minimal model overestimation is due to single-compartment representation of glucose kinetics that results in a critical oversimplification in the presence of increasingly dynamic insulin secretion patterns

    Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn

    Get PDF
    Green tea consumption is associated with reduced cardiovascular mortality in some epidemiological studies. Epigallocatechin gallate (EGCG), a bioactive polyphenol in green tea, mimics metabolic actions of insulin to inhibit gluconeogenesis in hepatocytes. Because signaling pathways regulating metabolic and vasodilator actions of insulin are shared in common, we hypothesized that EGCG may also have vasodilator actions to stimulate production of nitric oxide (NO) from endothelial cells. Acute intra-arterial administration of EGCG to mesenteric vascular beds isolated ex vivo from WKY rats caused dose-dependent vasorelaxation. This was inhibitable by L-NAME (NO synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), or PP2 (Src family kinase inhibitor). Treatment of bovine aortic endothelial cells (BAEC) with EGCG (50 microm) acutely stimulated production of NO (assessed with NO-specific fluorescent dye DAF-2) that was inhibitable by l-NAME, wortmannin, or PP2. Stimulation of BAEC with EGCG also resulted in dose- and time-dependent phosphorylation of eNOS that was inhibitable by wortmannin or PP2 (but not by MEK inhibitor PD98059). Specific knockdown of Fyn (but not Src) with small interfering RNA inhibited both EGCG-stimulated phosphorylation of Akt and eNOS as well as production of NO in BAEC. Treatment of BAEC with EGCG generated intracellular H(2)O(2) (assessed with H(2)O(2)-specific fluorescent dye CM-H(2)DCF-DA), whereas treatment with N-acetylcysteine inhibited EGCG-stimulated phosphorylation of Fyn, Akt, and eNOS. We conclude that EGCG has endothelial-dependent vasodilator actions mediated by intracellular signaling pathways requiring reactive oxygen species and Fyn that lead to activation of phosphatidylinositol 3-kinase, Akt, and eNOS. This mechanism may explain, in part, beneficial vascular and metabolic health effects of green tea consumption

    New Directions: NASA's Airspace Operations and Safety Program

    Get PDF
    Overview briefing of Airspace Operations and Safety Program (AOSP) and Airspace Technology Demonstration (ATD) project

    Airspace Technology Demonstration 2 (ATD-2) Project: Integrated Arrival/Departure/Surface Metroplex Traffic Management

    Get PDF
    Airspace Technology Demonstration 2, or ATD-2, is the integration of existing and emerging NASA, FAA, and industry technologies to significantly benefit arrival, departure, and surface operations. It provides solutions to several problems in the complicated, multi-airport metroplex environment

    Musical components important for the Mozart K448 effect in epilepsy

    Get PDF
    There is growing evidence for the efficacy of music, specifically Mozart’s Sonata for Two Pianos in D Major (K448), at reducing ictal and interictal epileptiform activity. Nonetheless, little is known about the mechanism underlying this beneficial “Mozart K448 effect” for persons with epilepsy. Here, we measured the influence that K448 had on intracranial interictal epileptiform discharges (IEDs) in sixteen subjects undergoing intracranial monitoring for refractory focal epilepsy. We found reduced IEDs during the original version of K448 after at least 30-s of exposure. Nonsignificant IED rate reductions were witnessed in all brain regions apart from the bilateral frontal cortices, where we observed increased frontal theta power during transitions from prolonged musical segments. All other presented musical stimuli were associated with nonsignificant IED alterations. These results suggest that the “Mozart K448 effect” is dependent on the duration of exposure and may preferentially modulate activity in frontal emotional networks, providing insight into the mechanism underlying this response. Our findings encourage the continued evaluation of Mozart’s K448 as a noninvasive, non-pharmacological intervention for refractory epilepsy

    Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger

    Get PDF
    Background: Cardiac hypertrophy is central to the etiology of heart failure. Understanding the molecular pathways promoting cardiac hypertrophy may identify new targets for therapeutic intervention. Sodium-proton exchanger (NHE1) activity and expression levels in the heart are elevated in many models of hypertrophy through protein kinase C (PKC)/MAPK/ERK/p90RSK pathway stimulation. Sustained NHE1 activity, however, requires an acid-loading pathway. Evidence suggests that the Cl-/HCO3- exchanger, AE3, provides this acid load. Here we explored the role of AE3 in the hypertrophic growth cascade of cardiomyocytes.Methods: AE3-deficient (ae3-/-) mice were compared to wildtype (WT) littermates to examine the role of AE3 protein in the development of cardiomyocyte hypertrophy. Mouse hearts were assessed by echocardiography. As well, responses of cultured cardiomyocytes to hypertrophic stimuli were measured. pH regulation capacity of ae3-/- and WT cardiomyocytes was assessed in cultured cells loaded with the pH-sensitive dye, BCECF-AM.Results: ae3-/- mice were indistinguishable from wild type (WT) mice in terms of cardiovascular performance. Stimulation of ae3-/- cardiomyocytes with hypertrophic agonists did not increase cardiac growth or reactivate the fetal gene program. ae3-/- mice are thus protected from pro-hypertrophic stimulation. Steady state intracellular pH (pHi) in ae3-/- cardiomyocytes was not significantly different from WT, but the rate of recovery of pHi from imposed alkalosis was significantly slower in ae3-/- cardiomyocytes.Conclusions: These data reveal the importance of AE3-mediated Cl-/HCO3- exchange in cardiovascular pH regulation and the development of cardiomyocyte hypertrophy. Pharmacological antagonism of AE3 is an attractive approach in the treatment of cardiac hypertrophy.Centro de Investigaciones Cardiovasculare

    A Prospective Observational Study of Antihemophilic Factor (Recombinant) Prophylaxis Related to Physical Activity Levels in Patients with Hemophilia A in the United States (SPACE)

    Get PDF
    Introduction: High collision-risk physical activity can increase bleeding risk in people with hemophilia A, as can increasing the time between factor VIII (FVIII) administration and physical activity. FVIII prophylaxis may be tailored to planned activities to prevent activity-related bleeding. Aim: To explore the relationship between physical activity levels, FVIII infusion timing, and occurrence of bleeding in patients with severe/moderately severe hemophilia A without FVIII inhibitors receiving antihemophilic factor (recombinant) (rAHF; ADVATE®; Baxalta US Inc., a Takeda company, Lexington, MA, USA). Methods: SPACE was a 6-month, prospective, multicenter, observational outcomes study (NCT02190149). Enrolled patients received an eDiary application and a wearable activity tracker, which recorded physical activity, rAHF infusion, and occurrence of bleeding. Physical activity risks were ranked using National Hemophilia Foundation criteria. Results: Fifty-four patients aged 11– 58 years (n = 47 prophylaxis, n = 7 on-demand) were included in the analysis. Patients had a mean (SD) 8.14 (10.94) annualized bleeding rate, and recorded 4980 intervals between an rAHF infusion and physical activity; 1759 (35.3%) of these intervals were ≤ 24 hours. Analysis of recorded eDiary data showed that the risk of activity-related bleeding did not significantly increase with time between last infusion and activity, but did increase with higher-risk physical activities. Analysis of activity tracker recorded data showed that the risk of bleeding reported by patients as spontaneous increased with prolonging time (≤ 24 to \u3e 24 hours) from last infusion to physical activity start (odds ratio 2.65, p \u3c 0.05). Joint health data collected at baseline were not included in the regression analysis because of small sample size; therefore the study could not assess whether patients with more joint disease at baseline were at higher risk of injury-related and reported spontaneous occurrence of bleeding. Conclusion: These results show that activities with a high risk of collision lead to an increased risk of bleeding. Further investigation is warranted to explore potential benefits of FVIII infusion timing to reduce the risks of activity-related occurrence of bleeding
    corecore