633 research outputs found

    Returning Citizens? The Path from Prison to Politics Among the Formerly Incarcerated

    Get PDF
    This project examines the experiences of a group of formerly incarcerated persons involved in community organizing efforts for felon empowerment. Scholarly works often focus on what is being done on behalf of the formerly incarcerated, this work highlights how men and women with records advocate for themselves. Drawing on 18 months of participant observation and 18 in-depth interviews with a Chicago based group called FORCE (Fighting to Overcome Records and Create Equality) I found that meanings of redemption were essential to advocacy and operated as an imperative. The redemption imperative both constrained and enabled advocacy. It constrained advocacy in its narrow formulation of redemption. In this formulation the redeemed were those who were able to demonstrate qualities such as being educated, persons of faith, and who made the decision to “turn their lives around.” However, FORCE members, through redemption were empowered to engage politically. This engagement sometimes led to expanded rights by exposing discrimination. Redemption also had its limits as a resource for political engagement. FORCE members were not always able to convince legislators, and community members of their redeemed status. These findings call into question the perpetual nature of proving redemption in the lives of the formerly incarcerated, and the irony of its limitations as a resource for empowerment

    Protein kinase Cε: an oncogene and emerging tumor biomarker

    Get PDF
    Members of the protein kinase C (PKC) family have long been studied for their contributions to oncogenesis. Among the ten different isoforms of this family of serine/threonine kinases, protein kinase Cε (PKCε) is one of the best understood for its role as a transforming oncogene. In vitro, overexpression of PKCε has been demonstrated to increase proliferation, motility, and invasion of fibroblasts or immortalized epithelial cells. In addition, xenograft and transgenic animal models have clearly shown that overexpression of PKCε is tumorigenic resulting in metastatic disease. Perhaps most important in implicating the epsilon isoform in oncogenesis, PKCε has been found to be overexpressed in tumor-derived cell lines and histopathological tumor specimens from various organ sites. Combined, this body of work provides substantial evidence implicating PKCε as a transforming oncogene that plays a crucial role in establishing an aggressive metastatic phenotype. Reviewed here is the literature that has led to the current understanding of PKCε as an oncogene. Moreover, this review focuses on the PKCε-mediated signaling network for cell motility and explores the interaction of PKCε with three major PKCε signaling nodes: RhoA/C, Stat3 and Akt. Lastly, the emerging role of PKCε as a tumor biomarker is discussed

    Unconventional order-disorder phase transition in improper ferroelectric hexagonal manganites

    Full text link
    The improper ferroelectricity in YMnO3_3 and other related multiferroic hexagonal manganites are known to cause topologically protected ferroelectric domains that give rise to rich and diverse physical phenomena. The local structure and structural coherence across the ferroelectric transition, however, were previously not well understood. Here we reveal the evolution of the local structure with temperature in YMnO3_3 using neutron total scattering techniques, and interpret them with the help of first-principles calculations. The results show that, at room temperature, the local and average structures are consistent with the established ferroelectric P63cmP6_3cm symmetry. On heating, both local and average structural analyses show striking anomalies from 800\sim 800 K up to the Curie temperature consistent with increasing fluctuations of the order parameter angle. These fluctuations result in an unusual local symmetry lowering into a \textit{continuum of structures} on heating. This local symmetry breaking persists into the high-symmetry non-polar phase, constituting an unconventional type of order-disorder transition.Comment: 10 pages, 5 figure

    Theoretical investigation of twin boundaries in WO3_3: Structure, properties and implications for superconductivity

    Full text link
    We present a theoretical study of the structure and functionality of ferroelastic domain walls in tungsten trioxide, WO3_3. WO3_3 has a rich structural phase diagram, with the stability and properties of the various structural phases strongly affected both by temperature and by electron doping. The existence of superconductivity is of particular interest, with the underlying mechanism as of now not well understood. In addition, reports of enhanced superconductivity at structural domain walls are particularly intriguing. Focusing specifically on the orthorhombic β\beta phase, we calculate the structure and properties of the domain walls both with and without electron doping. We use two theoretical approaches: Landau-Ginzburg theory, with free energies constructed from symmetry considerations and parameters extracted from our first-principles density functional calculations, and direct calculation using large-scale, GPU-enabled density functional theory. We find that the structure of the β\beta-phase domain walls resembles that of the bulk tetragonal α1\alpha_1 phase, and that the electronic charge tends to accumulate at the walls. Motivated by this finding, we perform ab initio computations of electron-phonon coupling in the bulk α1\alpha_1 structure and extract the superconducting critical temperatures , TcT_c, within Bardeen-Cooper-Schrieffer theory. Our results provide insight into the experimentally observed unusual trend of decreasing Tc with increasing electronic charge carrier concentration.Comment: 19 pages, 15 figure

    Plasticity of fetal cartilaginous cells.

    Get PDF
    Tissue-specific stem cells found in adult tissues can participate in the repair process following injury. However, adult tissues, such as articular cartilage and intervertebral disc, have low regeneration capacity, whereas fetal tissues, such as articular cartilage, show high regeneration ability. The presence of fetal stem cells in fetal cartilaginous tissues and their involvement in the regeneration of fetal cartilage is unknown. The aim of the study was to assess the chondrogenic differentiation and the plasticity of fetal cartilaginous cells. We compared the TGF-β3-induced chondrogenic differentiation of human fetal cells isolated from spine and cartilage tissues to that of human bone marrow stromal cells (BMSC). Stem cell surface markers and adipogenic and osteogenic plasticity of the two fetal cell types were also assessed. TGF-β3 stimulation of fetal cells cultured in high cell density led to the production of aggrecan, type I and II collagens, and variable levels of type X collagen. Although fetal cells showed the same pattern of surface stem cell markers as BMSCs, both type of fetal cells had lower adipogenic and osteogenic differentiation capacity than BMSCs. Fetal cells from femoral head showed higher adipogenic differentiation than fetal cells from spine. These results show that fetal cells are already differentiated cells and may be a good compromise between stem cells and adult tissue cells for a cell-based therapy

    Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors

    Get PDF
    Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (“Fungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practices” [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD

    Tidal disruption events and quasi periodic eruptions

    Full text link
    Tidal disruption events (TDEs) occur when a star passes close to a massive black hole, so that the tidal forces of the black hole exceed the binding energy of a star and cause it to be ripped apart. Part of the matter will fall onto the black hole, causing a strong increase in the luminosity. Such events are often seen in the optical or the X-ray (or both) or even at other wavelengths such as in the radio, where the diversity of observed emission is still poorly understood. The XMM-Newton catalogue of approximately a million X-ray detections covering 12832^2 degrees of sky contains a number of these events. Here I will show the diverse nature of a number of TDEs discovered in the catalogue and discuss their relationship with quasi periodic eruptions.Comment: 7 pages, 1 figure, accepted version for the proceedings of the 'Black Hole Accretion Under the X-ray Microscope' Meeting held at ESAC in June 2022. Publisher : Astronomische Nachrichte
    corecore