6 research outputs found

    Agata characterisation and pulse shape analysis

    No full text
    AbstractThe AGATA and GRETA spectrometers are large arrays of highly segmented HPGe detectors that use the technique of gamma ray tracking to reconstruct the scattering path of gamma rays interacting within the active material. A basic requirement is a precise reconstruction of the individual interaction locations within the detectors. This is possible through the use of pulse shape analysis which has to be conducted in real time due to the high data rates generated by the spectrometer. The methodologies that have been evaluated to perform this for AGATA are discussed along with the approaches used to calculate the pulse shape databases required by these algorithms. Finally, the performance and limitations of the existing approaches are reviewed.</jats:p

    Spectroscopic quadrupole moments in <math><mmultiscripts><mi>Xe</mi><mprescripts/><none/><mn>124</mn></mmultiscripts></math>

    Get PDF
    International audienceBackground: The Xe isotopic chain with four valence protons above the Z=50 shell closure is an ideal laboratory for the study of the evolution of nuclear deformation. At the N=82 shell closure, Xe136 presents all characteristics of a doubly closed shell nucleus with a spherical shape. In the very neutron-deficient isotopes close to N=50, the α-decay chain of Xe was investigated to probe the radioactive decay properties near the drip-line and the magicity of Sn100. Additionally, the Xe isotopes present higher order symmetries in the nuclear deformation such as the octupole degree of freedom near N=60 and N=90 or O(6) symmetry in stable isotopes.Purpose: The relevance of the O(6) symmetry has been investigated by measuring the spectroscopic quadrupole moment of the first excited states in Xe124. In the O(6) symmetry limit, the spectroscopic quadrupole moment of collective states is expected to be null.Method: A stable Xe124 beam with energies of 4.03A MeV and 4.11A MeV was used to bombard a natW target at the GANIL facility. Excited states were populated via the safe Coulomb excitation reaction. The collision of the heavy ions with a large Z at low energy make this reaction sensitive to the diagonal E2 matrix element of the excited states. The recoils were detected in the VAMOS++ magnetic spectrometer and the γ rays in the AGATA tracking array. The least squares fitting code gosia was used for the analysis to extract both E2 and M1 transitional and E2 diagonal matrix elements.Results: The rotational ground state band was populated up to the 81+ state as well as the 22+ and 42+ states. Using high precision spectroscopic data to constrain the gosia fit, the spectroscopic quadrupole moments of the 21+, 41+, and 61+ states were determined for the first time.Conclusions: The spectroscopic quadrupole moments were found to be negative, large, and constant in the ground state band underlining the prolate axially deformed ground state band of Xe124. The present experimental data confirm that the O(6) symmetry is substantially broken in Xe124

    Spectroscopic quadrupole moments in <math><mmultiscripts><mi>Xe</mi><mprescripts/><none/><mn>124</mn></mmultiscripts></math>

    No full text
    International audienceBackground: The Xe isotopic chain with four valence protons above the Z=50 shell closure is an ideal laboratory for the study of the evolution of nuclear deformation. At the N=82 shell closure, Xe136 presents all characteristics of a doubly closed shell nucleus with a spherical shape. In the very neutron-deficient isotopes close to N=50, the α-decay chain of Xe was investigated to probe the radioactive decay properties near the drip-line and the magicity of Sn100. Additionally, the Xe isotopes present higher order symmetries in the nuclear deformation such as the octupole degree of freedom near N=60 and N=90 or O(6) symmetry in stable isotopes.Purpose: The relevance of the O(6) symmetry has been investigated by measuring the spectroscopic quadrupole moment of the first excited states in Xe124. In the O(6) symmetry limit, the spectroscopic quadrupole moment of collective states is expected to be null.Method: A stable Xe124 beam with energies of 4.03A MeV and 4.11A MeV was used to bombard a natW target at the GANIL facility. Excited states were populated via the safe Coulomb excitation reaction. The collision of the heavy ions with a large Z at low energy make this reaction sensitive to the diagonal E2 matrix element of the excited states. The recoils were detected in the VAMOS++ magnetic spectrometer and the γ rays in the AGATA tracking array. The least squares fitting code gosia was used for the analysis to extract both E2 and M1 transitional and E2 diagonal matrix elements.Results: The rotational ground state band was populated up to the 81+ state as well as the 22+ and 42+ states. Using high precision spectroscopic data to constrain the gosia fit, the spectroscopic quadrupole moments of the 21+, 41+, and 61+ states were determined for the first time.Conclusions: The spectroscopic quadrupole moments were found to be negative, large, and constant in the ground state band underlining the prolate axially deformed ground state band of Xe124. The present experimental data confirm that the O(6) symmetry is substantially broken in Xe124

    Evidence of octupole-phonons at high spin in 207Pb

    No full text
    A lifetime measurement of the 19/2 state in Pb has been performed using the Recoil Distance Doppler-Shift (RDDS) method. The nuclei of interest were produced in multi-nucleon transfer reactions induced by a Pb beam impinging on a Mo enriched target. The beam-like nuclei were detected and identified in terms of their atomic mass number in the VAMOS++ spectrometer while the prompt γ rays were detected by the AGATA tracking array. The measured large reduced transition probability B(E3,19/2→13/2)=40(8) W.u. is the first indication of the octupole phonon at high spin in Pb. An analysis in terms of a particle-octupole-vibration coupling model indicates that the measured B(E3) value in Pb is compatible with the contributions from single-phonon and single particle E3 as well as E3 strength arising from the double-octupole-phonon 6 state, all adding coherently. A crucial aspect of the coupling model, namely the strong mixing between single-hole and the phonon-hole states, is confirmed in a realistic shell-model calculation.Peer Reviewe
    corecore