111 research outputs found

    Librarians Outside The Box: Waterford Institute Of Technology's Library based Virtual Learning Environment (VLE) Training & Development Programme

    Get PDF
    The article fits into the category of Case Study as defined by the Emerald Publishing Group : Describes actual interventions or experiences within organisations. May well be subjective and will not generally report on research. Purpose To outline the structure and development of a library based VLE training programme at WIT and to describe its origins, implementations and long-term goals. To explain why WIT Libraries was prepared to diversify from its traditional role and to take on the challenges involved in this project. Design / Methodology / Approach Case study report on the VLE training initiative as it has progressed at WIT. Describes WIT Libraries’ experience as the main instigator of the WebCT training programme at WIT and questions whether or not this has been an effective medium for the introduction of WebCT to WIT. Findings Concludes by stating that the Library Unit is capable of implementing a varied and diverse and successful VLE programme. Stresses the importance of the personnel involved to the success of the project to date. Research limitations / implications The project is still at an early stage of development. The study provides a short-term view of one small academic library service’s experience of implementing a VLE. No full-scale user survey has been conducted to date. Practical implications This account of WIT Libraries experience of working with a VLE is likely to be a useful source of practical information for libraries in similar positions, of similar scale, faced with similar challenges. Originality / value Offers practical solutions for libraries in similar positions. The successful diversification of the traditional library role is likely to be of interest to all members of the library profession. Keywords : VLE, WebCT, Academic libraries, Learning Support, User education, ELearnin

    A portrait of OLAS as a young information literacy tutorial

    Get PDF
    This article begins with an analysis of the Information Society, discussing its repercussions and defining the term, information literacy. It also describes the need for, as well as the creation and development of, an online information literacy tutorial, named OLAS* at Waterford Institute of Technology Libraries. OLAS follows international best practice and its overall framework is based on US, Australian and UK information literacy models, while its learning outcomes follow those produced both by CAUL and Peter Godwin, South Bank University, London. OLAS aims to introduce basic and advanced concepts of information literacy to the broadest possible range of learners both on-campus and remotely. Dewald’s (1999) characteristics of good library instruction form the basis of its pedagogy. OLAS is currently being piloted at WIT. It is freely available from WIT Libraries’ website, apart from the integrated commercial database product to which access is contractually limited to WIT students & staff. Further development is focussed on building an improved version of the course in the WebCT virtual learning environment. The WebCT version will include more richly interactive content, will facilitate credited assessment of WIT registered students, and will address outstanding accessibility issues

    On the catwalk: WIT Libraries learning support model

    Get PDF
    The need for Learning Support programmes in academic libraries is discussed. The development and progress of WIT Libraries programme, from its origin in 1996 to its present day initiatives, is documented. The service began on a small scale in a small library building in 1996. Today, seven years and a new library building later, the service is going from strength to strength. Advances have been made in line with learner needs and expectations and according to the goals of the Library Strategic Plan. The programme currently consists of a number of modules, including a specific programme for 1st years, one for 2nd to final years and tailored research sessions for postgraduates and staff. Furthermore, it incorporates a combination of modes of delivery. Face-face training is complemented by an evolved online element

    Duke Activity Status Index and Liver Frailty Index predict mortality in ambulatory patients with advanced chronic liver disease:A prospective, observational study

    Get PDF
    BACKGROUND: There remains a lack of consensus on how to assess functional exercise capacity and physical frailty in patients with advanced chronic liver disease (CLD) being assessed for liver transplantation (LT). Aim To investigate prospectively the utility of the Duke Activity Status Index (DASI) and Liver Frailty Index (LFI) in ambulatory patients with CLD.AIM: To investigate prospectively the utility of the Duke Activity Status Index (DASI) and Liver Frailty Index (LFI) in ambulatory patients with CLD.METHODS: We recruited patients from outpatient clinics at University Hospitals Birmingham, UK (2018-2019). We prospectively collated the DASI and LFI to identify the prevalence of, respectively, functional capacity and physical frailty, and to evaluate their accuracy in predicting overall and pre-LT mortality.RESULTS: We studied 307 patients (57% male; median age 54 years; UKELD 52). Median DASI score was 28.7 (IQR 16.2-50.2), mean LFI was 3.82 (SD = 0.72), and 81% were defined either 'pre-frail' or 'frail'. Female sex and hyponatraemia were significant independent predictors of both DASI and LFI. Age and encephalopathy were significant independent predictors of LFI, while BMI significantly predicted DASI. DASI and LFI were significantly related to overall (HR 0.97, p = 0.001 [DASI], HR 2.04, p = 0.001 [LFI]) and pre-LT mortality (HR 0.96, p = 0.02 [DASI], HR 1.94, p = 0.04 [LFI]).CONCLUSIONS: Poor functional exercise capacity and physical frailty are highly prevalent among ambulatory patients with CLD who are being assessed for LT. The DASI and LFI are simple, low-cost tools that predict overall and pre-LT mortality. Implementation of both should be considered in all outpatients with CLD to highlight those who may benefit from targeted nutritional and exercise interventions.</p

    Duke Activity Status Index and Liver Frailty Index predict mortality in ambulatory patients with advanced chronic liver disease:A prospective, observational study

    Get PDF
    BACKGROUND: There remains a lack of consensus on how to assess functional exercise capacity and physical frailty in patients with advanced chronic liver disease (CLD) being assessed for liver transplantation (LT). Aim To investigate prospectively the utility of the Duke Activity Status Index (DASI) and Liver Frailty Index (LFI) in ambulatory patients with CLD.AIM: To investigate prospectively the utility of the Duke Activity Status Index (DASI) and Liver Frailty Index (LFI) in ambulatory patients with CLD.METHODS: We recruited patients from outpatient clinics at University Hospitals Birmingham, UK (2018-2019). We prospectively collated the DASI and LFI to identify the prevalence of, respectively, functional capacity and physical frailty, and to evaluate their accuracy in predicting overall and pre-LT mortality.RESULTS: We studied 307 patients (57% male; median age 54 years; UKELD 52). Median DASI score was 28.7 (IQR 16.2-50.2), mean LFI was 3.82 (SD = 0.72), and 81% were defined either 'pre-frail' or 'frail'. Female sex and hyponatraemia were significant independent predictors of both DASI and LFI. Age and encephalopathy were significant independent predictors of LFI, while BMI significantly predicted DASI. DASI and LFI were significantly related to overall (HR 0.97, p = 0.001 [DASI], HR 2.04, p = 0.001 [LFI]) and pre-LT mortality (HR 0.96, p = 0.02 [DASI], HR 1.94, p = 0.04 [LFI]).CONCLUSIONS: Poor functional exercise capacity and physical frailty are highly prevalent among ambulatory patients with CLD who are being assessed for LT. The DASI and LFI are simple, low-cost tools that predict overall and pre-LT mortality. Implementation of both should be considered in all outpatients with CLD to highlight those who may benefit from targeted nutritional and exercise interventions.</p

    Tutorial and Critical Analysis of Phishing Websites Methods

    Get PDF
    The Internet has become an essential component of our everyday social and financial activities. Internet is not important for individual users only but also for organizations, because organizations that offer online trading can achieve a competitive edge by serving worldwide clients. Internet facilitates reaching customers all over the globe without any market place restrictions and with effective use of e-commerce. As a result, the number of customers who rely on the Internet to perform procurements is increasing dramatically. Hundreds of millions of dollars are transferred through the Internet every day. This amount of money was tempting the fraudsters to carry out their fraudulent operations. Hence, Internet users may be vulnerable to different types of web threats, which may cause financial damages, identity theft, loss of private information, brand reputation damage and loss of customers’ confidence in e-commerce and online banking. Therefore, suitability of the Internet for commercial transactions becomes doubtful. Phishing is considered a form of web threats that is defined as the art of impersonating a website of an honest enterprise aiming to obtain user’s confidential credentials such as usernames, passwords and social security numbers. In this article, the phishing phenomena will be discussed in detail. In addition, we present a survey of the state of the art research on such attack. Moreover, we aim to recognize the up-to-date developments in phishing and its precautionary measures and provide a comprehensive study and evaluation of these researches to realize the gap that is still predominating in this area. This research will mostly focus on the web based phishing detection methods rather than email based detection methods

    Crop Updates 2006 - Weeds

    Get PDF
    This session covers thirty seven papers from different authors: 1. ACKNOWLEDGEMENTS, Alexandra Douglas, CONVENOR – WEEDS DEPARTMENT OF AGRICULTURE SPRAY TECHNOLOGY 2. Meeting the variable application goals with new application technology, Thomas M. Wolf, Agriculture and Agri-Food Canada, Saskatoon Research Centre 3. Spray nozzles for grass weed control, Harm van Rees, BCG (Birchip Cropping Group) 4. Boom sprayer setups – achieving coarse droplets with different operating parameters, Bill Gordon, Bill Gordon Consulting 5. Complying with product label requirements, Bill Gordon, Bill Gordon Consulting 6. IWM a proven performer over 5 years in 33 focus paddocks, Peter Newman and Glenn Adam, Department of Agriculture 7. Crop topping of wild radish in lupins and barley, how long is a piece of string? Peter Newman and Glenn Adam, Department of Agriculture 8. Determining the right timing to maximise seed set control of wild radish, Aik Cheam and Siew Lee, Department of Agriculture 9. Why weed wiping varies in success rates in broadacre crops? Aik Cheam1, Katherine Hollaway2, Siew Lee1, Brad Rayner1 and John Peirce1,1Department of Agriculture, 2Department of Primary Industries, Victoria 10. Are WA growers successfully managing herbicide resistant annual ryegrass? Rick Llewellynabc, Frank D’Emdena, Mechelle Owenb and Stephen Powlesb aCRC Australian Weed Management, School of Agricultural and Resource Economics, University of Western Australia; bWA Herbicide Resistance Initiative, University of Western Australia. cCurrent address: CSIRO Sustainable Ecosystems 11. Do herbicide resistant wild radish populations look different? Michael Walsh, Western Australian Herbicide Resistance Initiative, University of Western Australia 12. Can glyphosate and paraquat annual ryegrass reduce crop topping efficacy? Emma Glasfurd, Michael Walsh and Kathryn Steadman, Western Australian Herbicide Resistance Initiative, University of Western Australia 13. Tetraploid ryegrass for WA. Productive pasture phase AND defeating herbicide resistant ryegrass, Stephen Powlesa, David Ferrisab and Bevan Addisonc, aWA Herbicide Resistance Initiative, University of Western Australia; bDepartment of Agriculture, and cElders Limited 14. Long-term management impact on seedbank of wild radish with multiple resistance to diflufenican and triazines, Aik Cheam, Siew Lee, Dave Nicholson and Ruben Vargas, Department of Agriculture 15. East-west crop row orientation improves wheat and barley yields, Dr Shahab Pathan, Dr Abul Hashem, Nerys Wilkins and Catherine Borger3, Department of Agriculture, 3WAHRI, The University ofWestern Australia 16. Competitiveness of different lupin cultivars with wild radish, Dr Shahab Pathan, Dr Bob French and Dr Abul Hashem, Department of Agriculture 17. Managing herbicide resistant weeds through farming systems, Kari-Lee Falconer, Martin Harries and Chris Matthews, Department of Agriculture 18. Lupins tolerate in-row herbicides well, Peter Newman and Martin Harries, Department of Agriculture 19. Summer weeds can reduce wheat grain yield and protein, Dr Abul Hashem1, Dr Shahab Pathan1 and Vikki Osten3, 1Department Agriculture, 3Senior Agronomist, CRC for Australian Weed Management, Queensland Department of Primary Industries and Fisheries 20. Diuron post-emergent in lupins, the full story, Peter Newman and Glenn Adam, Department of Agriculture 21. Double incorporation of trifluralin, Peter Newman and Glenn Adam, Department of Agriculture 22. Herbicide tolerance of narrow leafed and yellow lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 23. MIG narrow leaf lupin herbicide tolerance trial, Richard Quinlan, Planfarm Pty Ltd, Trials Coordinator MIG; Debbie Allen, Research Agronomist – MIG 24. Herbicide tolerance of new albus lupins, Harmohinder Dhammu, David Nicholson, Department of Agriculture 25. Field pea x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 26. Faba bean variety x herbicide tolerance, Mark Seymour and Harmohinder Dhammu, Research Officers, and Pam Burgess, Department of Agriculture 27. Herbicide tolerance of new Kabili chickpeas, Harmohinder Dhammu, Owen Coppen and Chris Roberts, Department of Agriculture 28. Timing of phenoxys application in EAG Eagle Rock, Harmohinder Dhammu, David Nicholson, Department of Agriculture 29. Herbicide tolerance of new wheat varieties, Harmohinder Dhammu, David Nicholson, Department of Agriculture 30. Lathyrus sativus x herbicide tolerance, Mark Seymour, Department of Agriculture 31. Tolerance of annual pasture species to herbicides and mixtures containing diuron, Christiaan Valentine and David Ferris, Department of Agriculture 32. The impact of herbicides on pasture legume species – a summary of scientific trial results across 8 years, Christiaan Valentine and David Ferris, Department of Agriculture 33. The impact of spraytopping on pasture legume seed set, Christiaan Valentine and David Ferris, Department of Agriculture 34. Ascochyta interaction with Broadstrike in chickpeas, H.S. Dhammu1, A.K. Basandrai2,3, W.J. MacLeod1, 3 and C. Roberts1, 1Department of Agriculture, 2CSKHPAU, Dhaulakuan, Sirmour (HP), India and 3CLIMA 35. Best management practices for atrazine in broadacre crops, John Moore, Department of Agriculture, Neil Rothnie, Chemistry Centre of WA, Russell Speed, Department of Agriculture, John Simons, Department of Agriculture, and Ted Spadek, Chemistry Centre of WA 36. Biology and management of red dodder (Cuscuta planiflolia) – a new threat to the grains industry, Abul Hashem, Daya Patabendige and Chris Roberts, Department Agriculture 37. Help the wizard stop the green invaders! Michael Renton, Sally Peltzer and Art Diggle, Department of Agricultur

    Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers.

    Get PDF
    Genetic studies of type 1 diabetes (T1D) have identified 50 susceptibility regions, finding major pathways contributing to risk, with some loci shared across immune disorders. To make genetic comparisons across autoimmune disorders as informative as possible, a dense genotyping array, the Immunochip, was developed, from which we identified four new T1D-associated regions (P < 5 Ă— 10(-8)). A comparative analysis with 15 immune diseases showed that T1D is more similar genetically to other autoantibody-positive diseases, significantly most similar to juvenile idiopathic arthritis and significantly least similar to ulcerative colitis, and provided support for three additional new T1D risk loci. Using a Bayesian approach, we defined credible sets for the T1D-associated SNPs. The associated SNPs localized to enhancer sequences active in thymus, T and B cells, and CD34(+) stem cells. Enhancer-promoter interactions can now be analyzed in these cell types to identify which particular genes and regulatory sequences are causal.This research uses resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Allergy and Infectious Diseases (NIAID), the National Human Genome Research Institute (NHGRI), the National Institute of Child Health and Human Development (NICHD) and JDRF and supported by grant U01 DK062418 from the US National Institutes of Health. Further support was provided by grants from the NIDDK (DK046635 and DK085678) to P.C. and by a joint JDRF and Wellcome Trust grant (WT061858/09115) to the Diabetes and Inflammation Laboratory at Cambridge University, which also received support from the NIHR Cambridge Biomedical Research Centre. ImmunoBase receives support from Eli Lilly and Company. C.W. and H.G. are funded by the Wellcome Trust (089989). The Cambridge Institute for Medical Research (CIMR) is in receipt of a Wellcome Trust Strategic Award (100140). We gratefully acknowledge the following groups and individuals who provided biological samples or data for this study. We obtained DNA samples from the British 1958 Birth Cohort collection, funded by the UK Medical Research Council and the Wellcome Trust. We acknowledge use of DNA samples from the NIHR Cambridge BioResource. We thank volunteers for their support and participation in the Cambridge BioResource and members of the Cambridge BioResource Scientific Advisory Board (SAB) and Management Committee for their support of our study. We acknowledge the NIHR Cambridge Biomedical Research Centre for funding. Access to Cambridge BioResource volunteers and to their data and samples are governed by the Cambridge BioResource SAB. Documents describing access arrangements and contact details are available at http://www.cambridgebioresource.org.uk/. We thank the Avon Longitudinal Study of Parents and Children laboratory in Bristol, UK, and the British 1958 Birth Cohort team, including S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton, for preparing and providing the control DNA samples. This study makes use of data generated by the Wellcome Trust Case Control Consortium, funded by Wellcome Trust award 076113; a full list of the investigators who contributed to the generation of the data is available from http://www.wtccc.org.uk/.This is the author accepted manuscript. The final version is available via NPG at http://www.nature.com/ng/journal/v47/n4/full/ng.3245.html
    • …
    corecore