1,130 research outputs found

    M31N-2007-06B: A Nova in the M31 Globular Cluster Bol 111

    Get PDF
    We report spectroscopic observations of the nova M31N-2007-06b, which was found to be spatially coincident with the M31 globular cluster Bol 111. This nova is the first out of more than 700 discovered in M31 over the past century to be associated with one of the galaxy's globular clusters. A total of three spectra of the nova were obtained 3, 6, and 36 days after discovery. The data reveal broad (FWHM similar to 3000 km s(-1)) Balmer, N II, and N III emission lines and show that the nova belongs to the He/N spectroscopic class. The He/N class of novae are relatively rare, making up roughly 15% of the novae with measured spectra in M31 and roughly 20% - 25% of the Galactic novae for which spectroscopic data are available. The implications of a nova, particularly an He/N nova, occurring in a globular cluster are discussed.NSF AST-0607682Astronom

    SN2008am: A Super-Luminous Type IIn Supernova

    Get PDF
    We present observations and interpretation of the Type IIn supernova SN 2008am discovered by the ROTSE Supernova Verification Project (RSVP). SN 2008am peaked at approximately -22.3 mag at a redshift of z=0.2338, giving it a peak luminosity of 3 x 10^{44}erg/s and making it one of the most luminous supernovae ever observed. The total radiated energy is ~ 2 x 10^{51} erg. Photometric observations in the ultraviolet, optical and infrared bands (J,H,Ks) constrain the SED evolution. We obtained six optical spectra of the supernova, five on the early decline from maximum light and a sixth nearly a year later plus a very late-time spectrum (~2 yr) of the host galaxy. The spectra of SN 2008am show strong Balmer-line and He I lambda 5876A emission with intermediate widths (~25A) in the first ~40 days after optical maximum. We examine a variety of models for the line wings and conclude that multiple scattering is most likely, implying that our spectra contain no specific information on the bulk flow velocity. We examine a variety of models for the ROTSE light curve subject to the rise time and the nature of the spectra, including radioactive decay, shocks in optically-thick and optically-thin circumstellar media (CSM) and a magnetar. The most successful model is one for which the CSM is optically-thick and in which diffusion of forward shock-deposited luminosity gives rise to the observed light curve. Diffusion of the shock-deposited energy from the forward shock is found to be important to account for the rising part of the light curve. Although there are differences in detail, SN 2008am appears to be closely related to other super-luminous Type IIn supernovae, SN 2006gy, SN 2006tf and perhaps SN 2008iy, that may represent the deaths of very massive LBV-type progenitors and for which the luminosity is powered by the interaction of the ejecta with a dense circumstellar medium.Comment: 58 pages, 14 figure

    Luminous Supernovae

    Full text link
    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs of SLSN-II.Comment: This manuscript has been accepted for publication in Science (to appear August 24). This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org/. The manuscript may not be reproduced or used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of AAA

    PTF 10bzf (SN 2010ah): A Broad-Line Ic Supernova Discovered by the Palomar Transient Factory

    Get PDF
    We present the discovery and follow-up observations of a broad-line Type Ic supernova (SN), PTF 10bzf (SN 2010ah), detected by the Palomar Transient Factory (PTF) on 2010 February 23. The SN distance is ≅218 Mpc, greater than GRB 980425/SN 1998bw and GRB 060218/SN 2006aj, but smaller than the other SNe firmly associated with gamma-ray bursts (GRBs). We conducted a multi-wavelength follow-up campaign with Palomar 48 inch, Palomar 60 inch, Gemini-N, Keck, Wise, Swift, the Allen Telescope Array, Combined Array for Research in Millimeter-wave Astronomy, Westerbork Synthesis Radio Telescope, and Expanded Very Large Array. Here we compare the properties of PTF 10bzf with those of SN 1998bw and other broad-line SNe. The optical luminosity and spectral properties of PTF 10bzf suggest that this SN is intermediate, in kinetic energy and amount of ^(56)Ni, between non-GRB-associated SNe like 2002ap or 1997ef, and GRB-associated SNe like 1998bw. No X-ray or radio counterpart to PTF 10bzf was detected. X-ray upper limits allow us to exclude the presence of an underlying X-ray afterglow as luminous as that of other SN-associated GRBs such as GRB 030329 or GRB 031203. Early-time radio upper limits do not show evidence for mildly relativistic ejecta. Late-time radio upper limits rule out the presence of an underlying off-axis GRB, with energy and wind density similar to the SN-associated GRB 030329 and GRB 031203. Finally, by performing a search for a GRB in the time window and at the position of PTF 10bzf, we find that no GRB in the interplanetary network catalog could be associated with this SN

    A Spitzer Survey of Novae in M31

    Full text link
    We report the results of the first infrared survey of novae in the nearby spiral galaxy, M31. Both photometric and spectroscopic observations of a sample of 10 novae (M31N 2006-09c, 2006-10a, 2006-10b, 2006-11a, 2007-07f, 2007-08a, 2007-08d, 2007-10a, 2007-11d, and 2007-11e) were obtained with the Spitzer Space Telescope. Eight of the novae were observed with the IRAC (all but M31N 2007-11d and 2007-11e) and eight with the IRS (all but 2007-07f and 2007-08a), resulting in six in common between the two instruments. The observations, which were obtained between ~3 and ~7 months after discovery, revealed evidence for dust formation in two of the novae: M31N 2006-10a and (possibly) 2007-07f, and [Ne II] 12.8 micron line emission in a third (2007-11e). The Spitzer observations were supplemented with ground-based optical photometric and spectroscopic data that were used to determine the speed classes and spectroscopic types of the novae in our survey. After including data for dust-forming Galactic novae, we show that dust formation timescales are correlated with nova speed class in that dust typically forms earlier in faster novae. We conclude that our failure to detect the signature of dust formation in most of our M31 sample is likely a result of the relatively long delay between nova eruption and our Spitzer observations. Indeed, the two novae for which we found evidence of dust formation were the two "slowest" novae in our sample. Finally, as expected, we found that the majority of the novae in our sample belong to the Fe II spectroscopic class, with only one clear example of the He/N class (M31N 2006-10b). Typical of an He/N system, M31N 2006-10b was the fastest nova in our sample, not detected with the IRS, and just barely detected in three of the IRAC bands when it was observed ~4 months after eruption.Comment: 37 pages, 12 figures, accepted for publication in the Astrophysical Journa

    The Extreme Hosts of Extreme Supernovae

    Get PDF
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M_V 100 M_☉), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR

    Quantifying Spectral Features of Type Ia Supernovae

    Get PDF
    We introduce a new technique to quantify highly structured spectra for which the definition of continua or spectral features in the observed flux spectra is difficult. The method employs wavelet transformation which allows the decomposition of the observed spectra into different scales. A procedure is formulated to define the strength of spectral features so that the measured spectral indices are independent of the flux levels and are insensitive to the definition of continuum and also to reddening. This technique is applied to Type Ia supernovae spectra, where correlations are revealed between the luminosity and spectral features. The current technique may allow for luminosity corrections based on spectral features in the use of Type Ia supernovae as cosmological probe.Comment: 35 pages, 15 figure

    Discovery of the Ultra-Bright Type II-L Supernova 2008es

    Get PDF
    We report the discovery by the Robotic Optical Transient Experiment (ROTSE-IIIb) telescope of SN 2008es, an overluminous supernova (SN) at z=0.205 with a peak visual magnitude of -22.2. We present multiwavelength follow-up observations with the Swift satellite and several ground-based optical telescopes. The ROTSE-IIIb observations constrain the time of explosion to be 23+/-1 rest-frame days before maximum. The linear decay of the optical light curve, and the combination of a symmetric, broad H\alpha emission line profile with broad P Cygni H\beta and Na I \lambda5892 profiles, are properties reminiscent of the bright Type II-L SNe 1979C and 1980K, although SN 2008es is greater than 10 times more luminous. The host galaxy is undetected in pre-supernova Sloan Digital Sky Survey images, and similar to Type II-L SN 2005ap (the most luminous SN ever observed), the host is most likely a dwarf galaxy with M_r > -17. Swift Ultraviolet/Optical Telescope observations in combination with Palomar photometry measure the SED of the SN from 200 to 800 nm to be a blackbody that cools from a temperature of 14,000 K at the time of the optical peak to 6400 K 65 days later. The inferred blackbody radius is in good agreement with the radius expected for the expansion speed measured from the broad lines (10,000 km/s). The bolometric luminosity at the optical peak is 2.8 x 10^44 erg/s, with a total energy radiated over the next 65 days of 5.6 x 10^50 erg. We favor a model in which the exceptional peak luminosity is a consequence of the core-collapse explosion of a progenitor star with a low-mass extended hydrogen envelope and a stellar wind with a density close to the upper limit on the mass-loss rate measured from the lack of an X-ray detection by the Swift X-Ray Telescope. (Abridged).Comment: Accepted to ApJ, 14 pages, 7 figures, 3 tables, emulateapj, corrections from proofs adde
    corecore