8 research outputs found

    Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License.-- et al.[Background]: Genomic analysis of multi-focal renal cell carcinomas from an individual with a germline VHL mutation offers a unique opportunity to study tumor evolution. [Results]: We perform whole exome sequencing on four clear cell renal cell carcinomas removed from both kidneys of a patient with a germline VHL mutation. We report that tumors arising in this context are clonally independent and harbour distinct secondary events exemplified by loss of chromosome 3p, despite an identical genetic background and tissue microenvironment. We propose that divergent mutational and copy number anomalies are contingent upon the nature of 3p loss of heterozygosity occurring early in tumorigenesis. However, despite distinct 3p events, genomic, proteomic and immunohistochemical analyses reveal evidence for convergence upon the PI3K-AKT-mTOR signaling pathway. Four germline tumors in this young patient, and in a second, older patient with VHL syndrome demonstrate minimal intra-tumor heterogeneity and mutational burden, and evaluable tumors appear to follow a linear evolutionary route, compared to tumors from patients with sporadic clear cell renal cell carcinoma. [Conclusions]: In tumors developing from a germline VHL mutation, the evolutionary principles of contingency and convergence in tumor development are complementary. In this small set of patients with early stage VHL-associated tumors, there is reduced mutation burden and limited evidence of intra-tumor heterogeneity.RF and JL received funding from EU FP7 (PREDICT project), EB is a Rosetrees Trust fellow, NM received funding from the Rosetrees Trust, MG is funded by the UK Medical Research Council, IV is funded by Spanish Ministerio de Economía y Competitividad subprograma Ramón y Cajal, and CS is a senior Cancer Research UK clinical research fellow and is funded by Cancer Research UK, the Rosetrees Trust, EU FP7 (projects PREDICT and RESPONSIFY, ID:259303), the Prostate Cancer Foundation, and the Breast Cancer Research Foundation. This study was supported by researchers at the National Institute for Health Research Biomedical Research Centres at University College London Hospitals and at the Royal Marsden Hospital.Peer Reviewe

    Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy

    No full text
    Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell–mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN-α and IFN-β receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN–related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy

    Anticancer Activity of Some Boronic Acid Arylidene Heterocycles

    Get PDF
    This research was done in order to investigate the anticancer activity of boronic acid arylidene heterocycles. Boronic acid, heterocycles, and aryl compounds have all independently exhibited various anti-microbial properties and have shown potential to be used in pharmaceuticals for the treatment of viruses and cancers. Using a one-step protocol developed by Dr. Murray, several different arylheterocyclic compounds were combined with an arylboronic acid to synthesize novel compounds. These were then tested for their anti-cancer activity on glioblastoma brain cancer cells. Although varied in potency, all had some amount of anti-cellular effect on the cancer cells. This is only the start of analyzing these compounds and further research should be done in order to realize their full potential

    Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy

    No full text
    International audienceThe immune system is routinely confronted with cell death resulting from the physiological turnover of renewable tissues, as well as from pathological insults of several types. We hypothesize the existence of a mechanism that allows the immune system to discriminate between physiological and pathological instances of cell death, but the factors that determine whether cellular demise is perceived as a neutral, tolerogenic or immunogenic event remain unclear 1. Infectious insults are accompanied by so-called microbe-associated molecular patterns (MAMPs), i.e., viral or bacterial products that activate immune cells through a panel of pattern-recognition receptors (PRRs) 2. Moreover, intracellular pathogens generally trigger adaptive mechanisms aimed toward the re-establishment of homeosta-sis, including the unfolded protein response (UPR) and autophagy 3,4. In mammals, MAMPs coupled to the activation of stress responses Some of the anti-neoplastic effects of anthracyclines in mice originate from the induction of innate and T cell-mediated anticancer immune responses. Here we demonstrate that anthracyclines stimulate the rapid production of type I interferons (IFNs) by malignant cells after activation of the endosomal pattern recognition receptor Toll-like receptor 3 (TLR3). By binding to IFN- and IFN- receptors (IFNARs) on neoplastic cells, type I IFNs trigger autocrine and paracrine circuitries that result in the release of chemokine (C-X-C motif) ligand 10 (CXCL10). Tumors lacking Tlr3 or Ifnar failed to respond to chemotherapy unless type I IFN or Cxcl10, respectively, was artificially supplied. Moreover, a type I IFN-related signature predicted clinical responses to anthracycline-based chemotherapy in several independent cohorts of patients with breast carcinoma characterized by poor prognosis. Our data suggest that anthracycline-mediated immune responses mimic those induced by viral pathogens. We surmise that such 'viral mimicry' constitutes a hallmark of successful chemotherapy. np

    Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy

    No full text
    corecore