7 research outputs found

    OTX2 stimulates adult retinal ganglion cell regeneration

    No full text
    International audienceRetinal ganglion cell (RGC) axons provide the only link between the light sensitive and photon transducing neural retina and visual centers of the brain. RGC axon degeneration occurs in a number of blinding diseases and the ability to stimulate axon regeneration from surviving ganglion cells could provide the anatomic substrate for restoration of vision. OTX2 is a homeoprotein transcription factor expressed in the retina and previous studies showed that, in response to stress, exogenous OTX2 increases the in vitro and in vivo survival of RGCs. Here we examined and quantified the effects of OTX2 on adult RGC axon regeneration in vitro and in vivo. The results show that exogenous OTX2 stimulates the regrowth of axons from RGCs in cultures of dissociated adult retinal cells and from explants of adult retinal tissue and that RGCs respond directly to OTX2 as regrowth is observed in cultures of purified adult rat RGCs. Importantly, after nerve crush in vivo, we observed a positive effect of OTX2 on the number of regenerating axons up to the optic chiasm within 14 days post crush and a very modest level of acuity absent in control mice. The effect of OTX2 on RGC survival and regeneration is of potential interest for degenerative diseases affecting this cell type. All animal procedures were approved by the local "ComiĂ© d'Ă©Îčthique en expĂ©rimentation animale n°59" and authorization n° 00702.01 delivered March 28, 2014 by the French "MinistĂ©re de l'enseignement supĂ©rieur et de la recherche"

    Astroglial connexin 43 regulates synaptic vesicle release at hippocampal synapses

    No full text
    Connexin 43, an astroglial gap junction protein, is enriched in perisynaptic astroglial processes and plays major roles in synaptic transmission. We have previously found that astroglial Cx43 controls synaptic glutamate levels and allows for activity-dependent glutamine release to sustain physiological synaptic transmissions and cognitiogns. However, whether Cx43 is important for the release of synaptic vesicles, which is a critical component of synaptic efficacy, remains unanswered. Here, using transgenic mice with a glial conditional knockout of Cx43 (Cx43−/−), we investigate whether and how astrocytes regulate the release of synaptic vesicles from hippocampal synapses. We report that CA1 pyramidal neurons and their synapses develop normally in the absence of astroglial Cx43. However, a significant impairment in synaptic vesicle distribution and release dynamics were observed. In particular, the FM1-43 assays performed using two-photon live imaging and combined with multi-electrode array stimulation in acute hippocampal slices, revealed a slower rate of synaptic vesicle release in Cx43−/− mice. Furthermore, paired-pulse recordings showed that synaptic vesicle release probability was also reduced and is dependent on glutamine supply via Cx43 hemichannel (HC). Taken together, we have uncovered a role for Cx43 in regulating presynaptic functions by controlling the rate and probability of synaptic vesicle release. Our findings further highlight the significance of astroglial Cx43 in synaptic transmission and efficacy

    The SMC-like RecN protein is at the crossroads of several genotoxic stress responses in Escherichia coli

    No full text
    International audienceIntroduction DNA damage repair (DDR) is an essential process for living organisms and contributes to genome maintenance and evolution. DDR involves different pathways including Homologous recombination (HR), Nucleotide Excision Repair (NER) and Base excision repair (BER) for example. The activity of each pathway is revealed with particular drug inducing lesions, but the repair of most DNA lesions depends on concomitant or subsequent action of the multiple pathways. Methods In the present study, we used two genotoxic antibiotics, mitomycin C (MMC) and Bleomycin (BLM), to decipher the interplays between these different pathways in E. coli . We combined genomic methods (TIS and Hi-SC2) and imaging assays with genetic dissections. Results We demonstrate that only a small set of DDR proteins are common to the repair of the lesions induced by these two drugs. Among them, RecN, an SMC-like protein, plays an important role by controlling sister chromatids dynamics and genome morphology at different steps of the repair processes. We further demonstrate that RecN influence on sister chromatids dynamics is not equivalent during the processing of the lesions induced by the two drugs. We observed that RecN activity and stability requires a pre-processing of the MMC-induced lesions by the NER but not for BLM-induced lesions. Discussion Those results show that RecN plays a major role in rescuing toxic intermediates generated by the BER pathway in addition to its well-known importance to the repair of double strand breaks by HR

    The Crohn’s disease-related AIEC strain LF82 assembles a biofilm-like matrix to protect intracellular microcolonies from phagolysosomal attack

    No full text
    Patients with Crohn’s disease exhibit abnormal colonization of the intestine by proteobacteria, and among these bacteria, the adherent invasive E. coli (AIEC) family. They are predominant in the mucus, adhere to epithelial cells, colonize them and survive inside macrophages. We recently demonstrated that the acclimation of the AIEC strain LF82 to phagolysosomal stress requires stringent and SOS responses. Such adaptation involves a long lag phase in which many LF82 cells become antibiotic tolerant. Later during infection, they proliferate in vacuoles and form colonies harboring dozens of LF82 bacteria. In the present work, we investigated the mechanism sustaining this phase of growth. We found that intracellular LF82 produced an extrabacterial matrix composed of exopolysaccharides and amyloid fibers that surrounded each individual LF82 cell. This matrix acts as a biofilm and controls the formation of LF82 intracellular bacterial communities (IBCs) inside phagolysosomes for several days post infection. Using genomics assays, we characterized the gene set involved in IBCs formation and revealed the crucial role played by a pathogenicity island presents in the genome of most AIEC strains in this process. Iron capture, by the yersiniabactin system encoded by this pathogenicity island, is essential to form IBC and LF82 survival within macrophages. These results demonstrate that AIEC have developed a sophisticated strategy to establish their replicative niche within macrophages, which might have implications for envisioning future antibacterial strategies for Crohn’s disease

    The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack

    No full text
    International audiencePatients with Crohn’s disease exhibit abnormal colonization of the intestine by adherent invasive E. coli (AIEC). They adhere to epithelial cells, colonize them and survive inside macrophages. It appeared recently that AIEC LF82 adaptation to phagolysosomal stress involves a long lag phase in which many LF82 cells become antibiotic tolerant. Later during infection, they proliferate in vacuoles and form colonies harboring dozens of LF82 bacteria. In the present work, we investigated the mechanism sustaining this phase of growth. We found that intracellular LF82 produced an extrabacterial matrix that acts as a biofilm and controls the formation of LF82 intracellular bacterial communities (IBCs) for several days post infection. We revealed the crucial role played by the pathogenicity island encoding the yersiniabactin iron capture system to form IBCs and for optimal LF82 survival. These results illustrate that AIECs use original strategies to establish their replicative niche within macrophages

    ipaA triggers vinculin oligomerization to strengthen cell adhesion during Shigella invasion

    No full text
    The Shigella effector IpaA co-opts the focal adhesion protein vinculin to promote bacterial invasion. Here, we show that IpaA triggers an unreported mode of vinculin activation through the cooperative binding of its three vinculin-binding sites (VBSs) leading to vinculin oligomerization via its D1 and D2 head subdomains and highly stable adhesions resisting actin relaxing drugs. Using cross-linking mass spectrometry, we found that while IpaA VBSs1-2 bound to D1, IpaA VBS3 interacted with D2, a subdomain masked to other known VBSs. Structural modeling indicated that as opposed to canonical activation linked to interaction with D1, these combined VBSs interactions triggered major allosteric changes leading to D1D2 oligomerization. A cysteine-clamp preventing these changes and D1D2 oligomerization impaired growth of vinculin microclusters and cell adhesion. We propose that D1D2-mediated vinculin oligomerization occurs during the maturation of adhesion structures to enable the scaffolding of high-order vinculin complexes, and is triggered by Shigella IpaA to promote bacterial invasion in the absence of mechanotransduction

    Shigella IpaA mediates actin bundling through diffusible vinculin oligomers with activation imprint

    No full text
    Summary: Upon activation, vinculin reinforces cytoskeletal anchorage during cell adhesion. Activating ligands classically disrupt intramolecular interactions between the vinculin head and tail domains that bind to actin filaments. Here, we show that Shigella IpaA triggers major allosteric changes in the head domain, leading to vinculin homo-oligomerization. Through the cooperative binding of its three vinculin-binding sites (VBSs), IpaA induces a striking reorientation of the D1 and D2 head subdomains associated with vinculin oligomerization. IpaA thus acts as a catalyst producing vinculin clusters that bundle actin at a distance from the activation site and trigger the formation of highly stable adhesions resisting the action of actin relaxing drugs. Unlike canonical activation, vinculin homo-oligomers induced by IpaA appear to keep a persistent imprint of the activated state in addition to their bundling activity, accounting for stable cell adhesion independent of force transduction and relevant to bacterial invasion
    corecore