269 research outputs found

    Adoptive immunotherapy monitored by micro-MRI in experimental colorectal liver metastasis

    Get PDF
    In this study we used the colon carcinoma DHDK12 cell line and generated single metastasis after subcapsular injection in BDIX rats as an experimental tumor model. The aim of the work was to set up in vitro experimental conditions to prepare immune effector cells and in vivo conditions for monitoring the effects of such cells injected as adoptive immunotherapy. Dendritic cells can process tumor cell antigens, induce a T-cell response and be used ex vivo to prepare activated lymphocytes. Lymphocytes were harvested from mesenteric lymph nodes and cocultured with bone marrow-derived autologous dendritic cells previously loaded with irradiated tumor cells. In vitro, the coculture: 1) induced the proliferation of lymphocytes, 2) expanded a preferential subpopulation of T CD8 lymphocytes, and 3) was in favor of lymphocyte cytotoxic activity against the DHDK12 tumor cell line. Activated lymphocytes were injected in the tumor-bearing rat portal vein. Parameters could be set to monitor tumor volume by micro MRI. This monitoring before and after treatment and immunohistochemical examinations revealed that: 1) micro MRI is an appropriate tool to survey metastasis growth in rat, 2) injected lymphocytes increase lesional infiltration with T CD8 cells even 15 days after treatment, 3) a dose of 50 millions lymphocytes is not sufficient to act on the course of the tumor

    Is magnetic resonance imaging texture analysis a useful tool for cell therapy in vivo monitoring?

    Get PDF
    Assessment of anti-tumor treatment efficiency is usually done by measuring tumor size. Treatment may however induce changes in the tumor other than tumor size. Magnetic Resonance Imaging Texture Analysis (MRI-TA) is presently used to follow activated lymphocyte cell therapy. We used a 7T microimager to acquire high-resolution MR images of an experimental liver metastasis from colon carcinoma in rats treated (n = 4) or not (n = 3) with a cell therapy product. MRI-TA was then performed with Linear Discriminant Analysis and showed: i) a significant variation of tumor texture with tumor growth and ii) a significant modification in the texture of tumors treated with activated lymphocytes compared with untreated tumors. T2-weighted images or volume calculation did not evidence any difference. MRI-TA appears as a promising method for early detection and follow-up of response to cell therapy

    A highly stable atomic vector magnetometer based on free spin precession

    Full text link
    We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μ\muT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μ\murad for integration times from 10 s up to 2000 s

    An Improved Search for the Neutron Electric Dipole Moment

    Full text link
    A permanent electric dipole moment of fundamental spin-1/2 particles violates both parity (P) and time re- versal (T) symmetry, and hence, also charge-parity (CP) symmetry since there is no sign of CPT-violation. The search for a neutron electric dipole moment (nEDM) probes CP violation within and beyond the Stan- dard Model. The experiment, set up at the Paul Scherrer Institute (PSI), an improved, upgraded version of the apparatus which provided the current best experimental limit, dn < 2.9E-26 ecm (90% C.L.), by the RAL/Sussex/ILL collaboration: Baker et al., Phys. Rev. Lett. 97, 131801 (2006). In the next two years we aim to improve the sensitivity of the apparatus to sigma(dn) = 2.6E-27 ecm corresponding to an upper limit of dn < 5E-27 ecm (95% C.L.), in case for a null result. In parallel the collaboration works on the design of a new apparatus to further increase the sensitivity to sigma(dn) = 2.6E-28 ecm.Comment: APS Division for particles and fields, Conference Proceedings, Two figure

    Block copolymer-based magnetic mixed matrix membranes-effect of magnetic field on protein permeation and membrane fouling

    Get PDF
    In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2, 3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes

    Low temperature scattering with the R-matrix method: the Morse potential

    Get PDF
    Experiments are starting to probe collisions and chemical reactions between atoms and molecules at ultra-low temperatures. We have developed a new theoretical procedure for studying these collisions using the R-matrix method. Here this method is tested for the atom -- atom collisions described by a Morse potential. Analytic solutions for continuum states of the Morse potential are derived and compared with numerical results computed using an R-matrix method where the inner region wavefunctions are obtained using a standard nuclear motion algorithm. Results are given for eigenphases and scattering lengths. Excellent agreement is obtained in all cases. Progress in developing a general procedure for treating ultra-low energy reactive and non-reactive collisions is discussed.Comment: 18 pages, 6 figures, 3 tables, conferenc
    corecore