69 research outputs found

    Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics

    Get PDF
    The anthozoan sub-class Octocorallia includes over 3500 nominal species of soft corals and gorgonian sea fans, many of which serve as critical foundation species in benthic marine ecosystems in shallow waters to the deep sea. Despite their familiarity and ecological impor-tance, the diversity and taxonomy of octocorals remain poorly known. All of the orders, subordinal groups, and a majority of families have been recognized to be poly- or paraphyletic, but poor resolution of the deeper nodes in mitochondrial or single-locus nuclear gene trees have hindered formal revision of the higher-level taxonomy of the group. We used sequence data from target-capture of 739 ultraconserved and exon loci to reconstruct a fully resolved phylogeny for 185 octocoral taxa represent-ing 55 of 63 currently recognized families. We use this phylogeny, sup-plemented with a gene tree for mitochondrial mtMutS for an additional 107 taxa, to guide a revision of the families and orders of Octocorallia. We (1) elevate the anthozoan sub-classes Octocorallia and Hexacorallia to the rank of Class; (2) replace the three currently recognized orders of Octocorallia (Alcyonacea, Pennatulacea, Helioporacea) with two new orders reflecting reciprocally monophyletic major clades; and (3) revise all families with the exception of the 15 recognized families of sea pens, which we accommodate within a new superfamily. The revised classifi-cation of Octocorallia thus comprises 79 families, including 18 that are newly described and three that have been reinstated or elevated in rank. In addition, two new genera are described and another three reinstated. We leave the family assignment of 46 of 413 genera as incertae sedis until further molecular or morphological data can be obtained to confirm their phylogenetic affinities

    Anguilliform larvae collected off North Carolina

    Get PDF
    The distinctive larval stage of eels (leptocephalus) facilitates dispersal through prolonged life in the open ocean. Leptocephali are abundant and diverse off North Carolina, yet data on distributions and biology are lacking. The water column (from surface to 1,293 m) was sampled in or near the Gulf Stream off Cape Hatteras, Cape Lookout, and Cape Fear, North Carolina during summer through fall of 1999–2005, and leptocephali were collected by neuston net, plankton net, Tucker trawl, and dip net. Additional samples were collected nearly monthly from a transect across southern Onslow Bay, North Carolina (from surface to 91 m) from April 2000 to December 2001 by bongo and neuston nets, Methot frame trawl, and Tucker trawl. Overall, 584 tows were completed, and 224 of these yielded larval eels. The 1,295 eel leptocephali collected (combining all methods and areas) represented at least 63 species (nine families). Thirteen species were not known previously from the area. Dominant families for all areas were Congridae (44% of individuals, 11 species), Ophichthidae (30% of individuals, 27 species), and Muraenidae (22% of individuals, ten species). Nine taxa accounted for 70% of the overall leptocephalus catches (in order of decreasing abundance): Paraconger caudilimbatus (Poey), Gymnothorax ocellatus Agassiz complex, Ariosoma balearicum (Delaroche), Ophichthus gomesii (Castelnau), Callechelys muraena Jordan and Evermann, Letharchus aliculatus McCosker, Rhynchoconger flavus (Goode and Bean), Ophichthus cruentifer (Goode and Bean), Rhynchoconger gracilior (Ginsburg). The top three species represented 52% of the total eel larvae collected. Most leptocephali were collected at night (79%) and at depths \u3e 45 m. Eighty percent of the eels collected in discrete depth Tucker trawls at night ranged from mean depths of 59–353 m. A substantial number (38% of discrete depth sample total) of larval eels were also collected at the surface (neuston net) at night. Daytime leptocephalus distributions were less clear partly due to low catches and lower Tucker trawl sampling effort. While net avoidance may account for some of the low daytime catches, an alternative explanation is that many species of larval eels occur during the day at depths \u3e 350 m. Larvae of 21 taxa of typically shallow water eels were collected at depths \u3e 350 m, but additional discrete depth diel sampling is needed to resolve leptocephalus vertical distributions. The North Carolina adult eel fauna (estuary to at least 2,000 m) consists of 51 species, 41% of which were represented in these collections. Many species of leptocephali collected are not yet known to have juveniles or adults established in the South Atlantic Bight or north of Cape Hatteras. Despite Gulf Stream transport and a prolonged larval stage, many of these eel leptocephali may not contribute to their respective populations

    Discovery of a Distinctive Spotted Color Pattern in the Cuskeel Neobythites unicolor (Teleostei, Ophidiidae) Based on Underwater-Vehicle Dives, with New Records from the Southern and Eastern Caribbean

    Get PDF
    In situ images and/or collection of seven specimens by underwater-vehicle dives at 269–609 m depth off Curaçao, Dominica, and Puerto Rico (S, E, and NE Caribbean) revealed new records and a previously unknown, distinctive color pattern for the cuskeel Neobythites unicolor (Ophidiidae). Species identification was based on detailed comparisons with earlier studied type and non-type material using morphometric, meristic, and otolith-form characters. A revised color description is provided based on images of live specimens in situ in their habitat, shortly after capture, and after preservation. Live and fresh specimens of Neobythites unicolor show a large number of distinctive, dark, rounded or irregularly shaped spots distributed dorsally on head, dorsal portion of body, and on the dorsal fin. This color pattern fades when fish are frozen, and it is completely lost during preservation over several years. The available images of fresh color patterns indicate an increase in spot size with fish size. In addition, some of the quantitatively examined morphometric and otolith characters of museum specimens show positive allometry. No geographic variation in color patterns could be detected. Although the Curaçao population is separated from all other known populations of N. unicolor by at least 650 km, the only population difference found was a slightly lower pectoral-fin ray count for the four specimens collected off Curaçao. An updated distribution map is provided correcting for an erroneous record in the inner Gulf of Mexico from which N. unicolor appears to be completely absent. While the spotted color pattern described here is unique among the 54 species of Neobythites, a similar pattern occurs in two other genera of the subfamily Neobythitinae, Sirembo and Spottobrotula. Further requirements to more fully understand the color diversity and related biology, ecology, and evolution in the species-rich genus Neobythites are emphasized.publishedVersio

    Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean

    Get PDF
    © The Author(s), 2017. This is the author's version of the work and is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 123 (2017): 90–104, doi:10.1016/j.dsr.2017.03.009.Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.Funding was provided by NOAA-OER for the 2014 E/V Nautilus cruise and by the USGS Environments and Hazards Program and Ocean Exploration Trust for the 2013 E/V Nautilus 807 cruise.2019-03-1

    Further Evidence for the Invasion and Establishment of Pterois volitans (Teleostei: Scorpaenidae) Along the Atlantic Coast of the United States

    Get PDF
    We document the continues population expansion of red lionfish, Pterois volitans, the first documented successful introduction of an invasive marine fish species from the western Pacific to Atlantic coastal water of the United States. Red lionfish are indigenous to the Indo-Pacific and have apparently established one or more breeding population on reefs off the southeastern United States. Fifty-nine specimens, most presumably adult red lionfish, were documented or collected on live-bottom reefs North Carolina, South Caroline, and Florida, and on a manmade structure off Georgia. Observation/collection depths and bottom water temperatures for these fish ranged from 4-99 m and 13.8-24.4 o c, respectively. Eleven juvenile lionfish, believed to be expatriated from southeastern waters, were collected in estuaries along the coast of Long Island, NY, at depths of 0-5 m and water temperatures ranging from 13.8-16.5 oC. Twelve of the total 70 specimens collected or observed were positively identified as red lionfish. Based on histological assessment of gonad tissue, two reproductively-active males and one immature female were collected. The life history of red lionfish, especially their reproductive biology and food habits, should be investigated along the east coast of the US to determine the potential impacts of the species on ecosystems they have invaded

    Description of a new species of black coral in the family Aphanipathidae (Anthozoa, Antipatharia) from Puerto Rico

    Get PDF
    Black corals (Anthozoa: Antipatharia) are an anthozoan lineage in the class Hexacorallia that occur across a wide range of habitats from the tropics to the poles and from surface waters to depths deeper than 8000 m. A new species of black coral, Aphanipathes puertoricoensis sp. nov., collected with a remotely operated vehicle 357 m deep off Puerto Rico is recognized in the family Aphanipathidae. The new species is characterized by very long and loosely coiled primary branches and up to 0.5 mm tall spines with as many as 40 or more small conical tubercles. A phylogeny composed of 13 taxa that are closely related to the new species was reconstructed from 793 nuclear loci to show their systematic relationships. Our study integrated morphological and genomic data to show that this new species is distinct from other species in the genus Aphanipathes. Furthermore, our results add to the growing knowledge of black coral diversity, while further demonstrating the need for exploration in deep waters of the Caribbean Sea

    A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex

    Get PDF
    Molecular phylogenetics has fundamentally altered our understanding of the taxonomy, systematics and biogeography of corals. Recently developed phylogenomic techniques have started to resolve species-level relationships in the diverse and ecologically important genus Acropora, providing a path to resolve the taxonomy of this notoriously problematic group. We used a targeted capture dataset (2032 loci) to investigate systematic relationships within an Acropora clade containing the putatively widespread species Acropora tenuis and its relatives. Using maximum likelihood phylogenies and genetic clustering of single nucleotide polymorphisms from specimens, including topotypes, collected across the Indo-Pacific, we show ≥ 11 distinct lineages in the clade, only four of which correspond to currently accepted species. Based on molecular, morphological and geographical evidence, we describe two new species; Acropora rongoi n. sp. and Acropora tenuissima n. sp. and remove five additional nominal species from synonymy. Systematic relationships revealed by our molecular phylogeny are incongruent with traditional morphological taxonomy and demonstrate that characters traditionally used to delineate species boundaries and infer evolutionary history are homoplasies. Furthermore, we show that species within this clade have much smaller geographical ranges and, consequently, population sizes than currently thought, a finding with profound implications for conservation and management of reef corals

    Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    Get PDF
    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites \u3e20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excessmucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact onmore than half of the colony,whereas nearly a quarter of all of the corals showed impact to \u3e90% of the colony. Additionally, 53% of these corals\u27 ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleumbiomarkers isolated from the floc provides strong evidence that this material contained oil fromtheMacondowell. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems

    Bamboozled! Resolving deep evolutionary nodes within the phylogeny of bamboo corals (Octocorallia: Scleralcyonacea: Keratoisididae).

    Get PDF
    Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters

    A modern scleractinian coral with a two-component calcite–aragonite skeleton

    Get PDF
    Until now, all of the ca. 1,800 known modern scleractinian coral species were thought to produce skeletons exclusively of aragonite. Asymbiotic Paraconotrochus antarcticus living in the Southern Ocean is the first example of an extant scleractinian that forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. This discovery adds support to the notion that the coral skeletal formation process is strongly biologically controlled. Mitophylogenomic analysis shows that P. antarcticus represents an ancient scleractinian clade, suggesting that skeletal mineralogy/polymorph of a taxon, once established, is a trait conserved throughout the evolution of that clade.One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.Mitogenome sequences data have been deposited in GenBank (MT409109). All other study data are included in the article text and supporting information
    corecore