1,173 research outputs found

    First-principles kinetic Monte Carlo simulations for heterogeneous catalysis, applied to the CO oxidation at RuO2(110)

    Full text link
    We describe a first-principles statistical mechanics approach enabling us to simulate the steady-state situation of heterogeneous catalysis. In a first step density-functional theory together with transition-state theory is employed to obtain the energetics of all relevant elementary processes. Subsequently the statistical mechanics problem is solved by the kinetic Monte Carlo method, which fully accounts for the correlations, fluctuations, and spatial distributions of the chemicals at the surface of the catalyst under steady-state conditions. Applying this approach to the catalytic oxidation of CO at RuO2(110), we determine the surface atomic structure and composition in reactive environments ranging from ultra-high vacuum (UHV) to technologically relevant conditions, i.e. up to pressures of several atmospheres and elevated temperatures. We also compute the CO2 formation rates (turnover frequencies). The results are in quantitative agreement with all existing experimental data. We find that the high catalytic activity of this system is intimately connected with a disordered, dynamic surface ``phase'' with significant compositional fluctuations. In this active state the catalytic function results from a self-regulating interplay of several elementary processes.Comment: 18 pages including 9 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    A noninvasive method for measuring mammary apoptosis and epithelial cell activation in dairy animals using microparticles extracted from milk

    Get PDF
    AbstractMilk production from dairy animals has been described in terms of 3 processes: the increase in secretory cell numbers in late pregnancy and early lactation, secretion rate of milk per cell, and the decline in cell numbers as lactation progresses. This latter process is thought to be determined by the level of programmed cell death (apoptosis) found in the animal. Until now, apoptosis has been measured by taking udder biopsies, using magnetic resonance imaging scans, or using animals postmortem. This paper describes an alternative, noninvasive method for estimating apoptosis by measuring microparticles in milk samples. Microparticles are the product of several processes in dairy animals, including apoptosis. Milk samples from 12 Holstein cows, at or past peak lactation, were collected at 5 monthly samplings. The samples (n=57) were used to measure the number of microparticles and calculate microparticle density for 4 metrics: annexin V positive and merocyanine 540 dye positive, for both and total particles, in both whole milk (WM) and spun milk. Various measures of milk production were also recorded for the 12 cows, including daily milk yield, fat and protein percentage in the milk, somatic cell count, and the days in milk when the samples were taken. A high correlation was found between the 4 WM microparticle densities and days in milk (0.46 to 0.64), and a moderate correlation between WM microparticle densities and daily milk yield (−0.33 to −0.44). No significant relationships were found involving spun milk samples, somatic cell count, or fat and protein percentage. General linear model analyses revealed differences between cows for both level of microparticle density and its rate of change in late lactation. Persistency of lactation was also found to be correlated with the WM microparticle traits (−0.65 to −0.32). As apoptosis is likely to be the major contributor to microparticle numbers in late lactation, this work found a noninvasive method for estimating apoptosis that gave promising results. Further investigation is required to find out the factors affecting microparticle production and how it changes throughout lactation

    Risk factors for head injury events in professional rugby union: a video analysis of 464 head injury events to inform proposed injury prevention strategies

    Get PDF
    OBJECTIVES: The tackle is responsible for the majority of head injuries during rugby union. In order to address head injury risk, risk factors during the tackle must first be identified. This study analysed tackle characteristics in the professional game in order to inform potential interventions. METHODS: 464 tackles resulting in a head injury assessment (HIA) were analysed in detail, with tackle type, direction, speed, acceleration, nature of head contact and player body position the characteristics of interest. RESULTS: Propensity to cause an HIA was significantly greater for active shoulder tackles, front-on tackles, high speeder tackles and an accelerating tackler. Head contact between a tackler's head and ball carrier's head or shoulder was significantly more likely to cause an HIA than contact below the level of the shoulder (incident rate ratio (IRR) 4.25, 95%-CI 3.38 to 5.35). The tackler experiences the majority (78%) of HIAs when head-to-head contact occurs. An upright tackler was 1.5 times more likely to experience an HIA than a bent at the waist tackler (IRR 1.44, 95% CI 1.18 to 1.76). CONCLUSIONS: This study confirms that energy transfer in the tackle is a risk factor for head injury, since direction, type and speed all influence HIA propensity. The study provides evidence that body position and the height of tackles should be a focus for interventions, since lowering height and adopting a bent at the waist body position is associated with reduced risk for both tacklers and ball carriers. To this end, World Rugby has implemented law change based on the present data

    WATERWEB - Water Resource Strategies and Drought Alleviation in Western Balkan Agriculture: An EU INCO-WB Project

    Get PDF
    A three-year project, within the EU FP6 INCO-WB programme, with four EU and three WB partners, started in spring 2004 to develop strategies to manage water resources for three regions in Serbia and Montenegro and Macedonia from a river basin scale through the farm and crop scales to single plant water use, taking account of environmental, socio-economic and health implications of different types of land-water use. Consortium members will study river flow, evaporation regimes, rainfall patterns, runoff and water availability in relation to land management, using GIS to categorize two regions near Belgrade, Serbia and Ovce Pole, Macedonia. Water quality and nutrient use will be studied in relation to eutrophication, micro-biological hazards and ecotoxicology on the farm scale, together with trials on water and nutrient use to test deficit irrigation techniques with maize, grapevine, potato, tomato and quinoa. Results will be extended to tests on selected local farmsinfo:eu-repo/semantics/publishedVersio

    Guidelines for community-based injury surveillance in rugby union

    Get PDF
    Objectives The vast majority of rugby union (‘rugby’) participants are community-based players; however, the majority of injury surveillance studies reported relate to the elite, professional game. A potential reason for this dearth of studies could be the perceived difficulty of using the consensus statement for injury recording at the community level. The aim of this study was to identify areas where the consensus statement could be adapted for easier and more appropriate implementation within the community setting. Design Round-table discussion Methods All community-based injury surveillance issues were discussed during a 2-day facilitated round-table meeting, by an 11-person working group consisting of researchers currently active in rugby-related injury surveillance, sports medicine and sports science issues. The outcomes from the meeting were summarised in a draft guidance document that was then subjected to an extensive iterative review prior to producing methodological recommendations. Results Each aspect of the rugby-specific consensus statement was reviewed to determine whether it was feasible to implement the standards required in the context of non-elite rugby and the resources available within in a community setting. Final recommendations are presented within a community-based injury report form. Conclusions It is recommended that whenever possible the rugby-specific consensus statement for injury surveillance studies be used: this paper presents an adapted report form that can be used to record injury surveillance information in community rugby if suitable medical support is not available

    Alloy surface segregation in reactive environments: A first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres

    Full text link
    We present a first-principles atomistic thermodynamics framework to describe the structure, composition and segregation profile of an alloy surface in contact with a (reactive) environment. The method is illustrated with the application to a Ag3Pd(111) surface in an oxygen atmosphere, and we analyze trends in segregation, adsorption and surface free energies. We observe a wide range of oxygen adsorption energies on the various alloy surface configurations, including binding that is stronger than on a Pd(111) surface and weaker than that on a Ag(111) surface. This and the consideration of even small amounts of non-stoichiometries in the ordered bulk alloy are found to be crucial to accurately model the Pd surface segregation occurring in increasingly O-rich gas phases.Comment: 13 pages including 6 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions

    Full text link
    Previous and present "academic" research aiming at atomic scale understanding is mainly concerned with the study of individual molecular processes possibly underlying materials science applications. Appealing properties of an individual process are then frequently discussed in terms of their direct importance for the envisioned material function, or reciprocally, the function of materials is somehow believed to be understandable by essentially one prominent elementary process only. What is often overlooked in this approach is that in macroscopic systems of technological relevance typically a large number of distinct atomic scale processes take place. Which of them are decisive for observable system properties and functions is then not only determined by the detailed individual properties of each process alone, but in many, if not most cases also the interplay of all processes, i.e. how they act together, plays a crucial role. For a "predictive materials science modeling with microscopic understanding", a description that treats the statistical interplay of a large number of microscopically well-described elementary processes must therefore be applied. Modern electronic structure theory methods such as DFT have become a standard tool for the accurate description of individual molecular processes. Here, we discuss the present status of emerging methodologies which attempt to achieve a (hopefully seamless) match of DFT with concepts from statistical mechanics or thermodynamics, in order to also address the interplay of the various molecular processes. The new quality of, and the novel insights that can be gained by, such techniques is illustrated by how they allow the description of crystal surfaces in contact with realistic gas-phase environments.Comment: 24 pages including 17 figures, related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    • …
    corecore