260 research outputs found

    Resolved images of the protoplanetary disk around HD 100546 with ALMA

    Full text link
    The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of \approx50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L' observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.Comment: 6 pages, 4 figures. Accepted in ApJ

    Direct imaging constraints on planet populations detected by microlensing

    Full text link
    Results from gravitational microlensing suggested the existence of a large population of free-floating planetary mass objects. The main conclusion from this work was partly based on constraints from a direct imaging survey. This survey determined upper limits for the frequency of stars that harbor giant exoplanets at large orbital separations. Aims. We want to verify to what extent upper limits from direct imaging do indeed constrain the microlensing results. We examine the current derivation of the upper limits used in the microlensing study and re-analyze the data from the corresponding imaging survey. We focus on the mass and semi-major axis ranges that are most relevant in context of the microlensing results. We also consider new results from a recent M-dwarf imaging survey as these objects are typically the host stars for planets detected by microlensing. We find that the upper limits currently applied in context of the microlensing results are probably underestimated. This means that a larger fraction of stars than assumed may harbor gas giant planets at larger orbital separations. Also, the way the upper limit is currently used to estimate the fraction of free-floating objects is not strictly correct. If the planetary surface density of giant planets around M-dwarfs is described as df_Planet ~ a^beta da, we find that beta ~ 0.5 - 0.6 is consistent with results from different observational studies probing semi-major axes between ~0.03 - 30 AU. Having a higher upper limit on the fraction of stars that may have gas giant planets at orbital separations probed by the microlensing data implies that more of the planets detected in the microlensing study are potentially bound to stars rather than free-floating. The current observational data are consistent with a rising planetary surface density for giant exoplanets around M-dwarfs out to ~30 AU.Comment: Accepted for publication in A&A as Research Note, 3 page

    Dust rings and filaments around the isolated young star V1331 Cygni

    Get PDF
    We characterize the small and large scale environment of the young star V1331 Cygni with high resolution HST/WFPC2 and Digitized Sky Survey images. In addition to a previously known outer dust ring (~30'' in diameter), the HST/WFPC2 scattered light image reveals an inner dust ring for the first time. This ring has a maximum radius of 6.5'' and is possibly related to a molecular envelope. Large-scale optical images show that V1331 Cyg is located at the tip of a long dust filament linking it to the dark cloud LDN 981. We discuss the origin of the observed dust morphology and analyze the object's relation to its parent dark cloud LDN 981. Finally, based on recent results from the literature, we investigate the properties of V1331 Cyg and conclude that in its current state the object does not show suffcient evidence to be characterized as an FU Ori object.Comment: 15 pages ApJ preprint style including 3 figures, accepted for publication in ApJ (Feb. 2007

    A Hubble View of Star Forming Regions in the Magellanic Clouds

    Full text link
    The Magellanic Clouds (MCs) offer an outstanding variety of young stellar associations, in which large samples of low-mass stars (with masses less than 1 solar mass) currently in the act of formation can be resolved and explored sufficiently with the Hubble Space Telescope. These pre-main sequence (PMS) stars provide a unique snapshot of the star formation process, as it is being recorded for the last 20 Myr, and they give important information on the low-mass Initial Mass Function (IMF) of their host environments. We present the latest results from observations with the Advanced Camera for Surveys (ACS) of such star-forming regions in the MCs, and discuss the importance of Hubble}for a comprehensive collection of substantial information on the most recent low-mass star formation and the low-mass IMF in the MCs.Comment: To appear in the proceedings of the 41st ESLAB Symposium: The Impact of HST on European Astronomy, 4 pages, LaTeX ESA Publications style, 5 Figure

    Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0We present model constraints on the atmospheric structure of HD 106906 b, a planetary-mass companion orbiting at a ∼700 au projected separation around a 15 Myr old stellar binary, using the APOLLO retrieval code on spectral data spanning 1.1–2.5 μm. C/O ratios can provide evidence for companion formation pathways, as such pathways are ambiguous both at wide separations and at star-to-companion mass ratios in the overlap between the distributions of planets and brown dwarfs. We benchmark our code against an existing retrieval of the field L dwarf 2MASSW J2224–0158, returning a C/O ratio consistent with previous fits to the same JHK s data, but disagreeing in the thermal structure, cloud properties, and atmospheric scale height. For HD 106906 b, we retrieve C/O =0.53−0.25+0.15 , consistent with the C/O ratios expected for HD 106906's stellar association and therefore consistent with a stellar-like formation for the companion. We find abundances of H2O and CO near chemical equilibrium values for a solar metallicity but a surface gravity lower than expected, as well as a thermal profile with sharp transitions in the temperature gradient. Despite high signal-to-noise ratio and spectral resolution, more accurate constraints necessitate data across a broader wavelength range. This work serves as preparation for subsequent retrievals in the era of JWST, as JWST's spectral range provides a promising opportunity to resolve difficulties in fitting low-gravity L dwarfs and also underscores the need for simultaneous comparative retrievals on L-dwarf companions with multiple retrieval codes.Peer reviewe

    V1647 Orionis: One Year into Quiescence

    Full text link
    We present new optical, near-IR, and mid-IR observations of the young eruptive variable star V1647 Orionis that went into outburst in late 2004 for approximately two years. Our observations were taken one year after the star had faded to its pre-outburst optical brightness and show that V1647Ori is still actively accreting circumstellar material. We compare and contrast these data with existing observations of the source from both pre-outburst and outburst phases. From near-IR spectroscopy we identify photospheric absorption features for the first time that allow us to constrain the classification of the young star itself. Our best fit spectral type is M0+-2 sub-classes with a visual extinction of 19+-2 magnitudes and a K-band veiling of rK~1.5+-0.2. We estimate that V1647Ori has a quiescent bolometric luminosity of ~9.5Lsun and a mass accretion rate of ~1.10^-6Msun yr^-1. Our derived mass and age, from comparison with evolutionary models, are 0.8+-0.2 Msun and ~0.5Myrs, respectively. The presence towards the star of shock excited optical [S II] and [Fe II] emission as well as near-IR H2 and [Fe II] emission perhaps suggests that a new Herbig-Haro flow is becoming visible close to the star.Comment: 22 pages, 19 Figures, accepted AJ 13 October 200

    Dissecting the Moth: Discovery of an off-centered ring in the HD 61005 debris disk with high-resolution imaging

    Full text link
    The debris disk known as "The Moth" is named after its unusually asymmetric surface brightness distribution. It is located around the ~90 Myr old G8V star HD 61005 at 34.5 pc and has previously been imaged by the HST at 1.1 and 0.6 microns. Polarimetric observations suggested that the circumstellar material consists of two distinct components, a nearly edge-on disk or ring, and a swept-back feature, the result of interaction with the interstellar medium. We resolve both components at unprecedented resolution with VLT/NACO H-band imaging. Using optimized angular differential imaging techniques to remove the light of the star, we reveal the disk component as a distinct narrow ring at inclination i=84.3 \pm 1.0{\deg}. We determine a semi-major axis of a=61.25 \pm 0.85 AU and an eccentricity of e=0.045 \pm 0.015, assuming that periastron is located along the apparent disk major axis. Therefore, the ring center is offset from the star by at least 2.75 \pm 0.85 AU. The offset, together with a relatively steep inner rim, could indicate a planetary companion that perturbs the remnant planetesimal belt. From our imaging data we set upper mass limits for companions that exclude any object above the deuterium-burning limit for separations down to 0.3". The ring shows a strong brightness asymmetry along both the major and minor axis. A brighter front side could indicate forward-scattering grains, while the brightness difference between the NE and SW components can be only partly explained by the ring center offset, suggesting additional density enhancements on one side of the ring. The swept-back component appears as two streamers originating near the NE and SW edges of the debris ring.Comment: 6 pages, 6 figures. Accepted to Astronomy and Astrophysics letter

    High-resolution polarimetry of Parsamian 21: revealing the structure of an edge-on FU Ori disc

    Get PDF
    We present the first high spatial resolution near-infrared direct and polarimetric observations of Parsamian 21, obtained with the VLT/NACO instrument. We complemented these measurements with archival infrared observations, such as HST/WFPC2 imaging, HST/NICMOS polarimetry, Spitzer IRAC and MIPS photometry, Spitzer IRS spectroscopy as well as ISO photometry. Our main conclusions are the following: (1) we argue that Parsamian 21 is probably an FU Orionis-type object; (2) Parsamian 21 is not associated with any rich cluster of young stars; (3) our measurements reveal a circumstellar envelope, a polar cavity and an edge-on disc; the disc seems to be geometrically flat and extends from approximately 48 to 360 AU from the star; (4) the SED can be reproduced with a simple model of a circumstellar disc and an envelope; (5) within the framework of an evolutionary sequence of FUors proposed by Green et al. (2006) and Quanz et al. (2007), Parsamian 21 can be classified as an intermediate-aged object.Comment: Accepted for publication in the MNRAS. 16 pages, 18 figures and 5 table

    Exploring dust around HD142527 down to 0.025" / 4au using SPHERE/ZIMPOL

    Get PDF
    We have observed the protoplanetary disk of the well-known young Herbig star HD 142527 using ZIMPOL Polarimetric Differential Imaging with the VBB (Very Broad Band, ~600-900nm) filter. We obtained two datasets in May 2015 and March 2016. Our data allow us to explore dust scattering around the star down to a radius of ~0.025" (~4au). The well-known outer disk is clearly detected, at higher resolution than before, and shows previously unknown sub-structures, including spirals going inwards into the cavity. Close to the star, dust scattering is detected at high signal-to-noise ratio, but it is unclear whether the signal represents the inner disk, which has been linked to the two prominent local minima in the scattering of the outer disk, interpreted as shadows. An interpretation of an inclined inner disk combined with a dust halo is compatible with both our and previous observations, but other arrangements of the dust cannot be ruled out. Dust scattering is also present within the large gap between ~30 and ~140au. The comparison of the two datasets suggests rapid evolution of the inner regions of the disk, potentially driven by the interaction with the close-in M-dwarf companion, around which no polarimetric signal is detected.Comment: 11 pages, 7 figures, accepted for publication in A
    corecore