61 research outputs found

    Ultrahigh sensitivity of slow-light gyroscope

    Get PDF
    Slow light generated by Electromagnetically Induced Transparency is extremely susceptible with respect to Doppler detuning. Consequently, slow-light gyroscopes should have ultrahigh sensitivity

    Axillary lymph node imaging in mRNA, vector-based, and mix-and-match COVID-19 vaccine recipients: ultrasound features

    Get PDF
    Objectives To assess ultrasound characteristics of ipsilateral axillary lymph nodes after two doses of four different COVID-19 vaccination protocols, to determine whether these parameters differed with age, and to describe how they changed on follow-up imaging. Methods A total of 247 volunteer employees from our center who had received two doses of COVID-19 vaccination were recruited and followed prospectively. Axillary ultrasound of the ipsilateral vaccinated arm was performed the week after receiving the second dose to analyze lymph node features (number, long-axis, cortical thickness, morphology, and vascular imaging). Axillary lymphadenopathy resulting from four vaccination protocols—mRNA (BNT162b2, mRNA-1273), ChAdOx1-S, and mix-and-match—was compared. Analysis was conducted using the Kruskal-Wallis test and post hoc analysis with Bonferroni corrections. Nodal reactogenicity was evaluated for two age groups: young (< 45 years old) and middle-aged ( ≥ 45 years old). All parameters were compared between both groups using an unpaired-sample Student t test. A p value < 0.05 was considered statistically significant. Results Significantly higher values for total number of visible nodes, cortical thickness, Bedi’s classification (p < 0.001), and vascularity (p < 0.05) were observed in mRNA vaccine recipients compared to full ChAdOx1-S protocol recipients. Moreover, mix-and-match protocol recipients showed greater nodal cortical thickness and higher Bedi’s classification than full ChAdOx1-S recipients (p < 0.001). Analyses between age groups revealed greater cortical thickness, Bedi’s classification, and color Doppler signal in younger patients (p < 0.05). Conclusions Nodal parameters of Bedi’s classification and cortical thickness were more often increased in mRNA and mix-andmatch vaccine recipients when compared to ChAdOx1-S vaccine alone, especially in younger patients. Key Points • Hyperplastic lymphadenopathy was observed more frequently in mRNA and mix-and-match vaccine protocols compared to full vector-based vaccination. • Higher values for cortical thickness, Bedi’s classification, and color Doppler signal parameters were identified in younger patients. • Observed lymph node findings normalized in greater than 80% of patients by the third month following vaccination

    The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes.

    Get PDF
    Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture

    Reliability of a novel electro-medical device for wheal size measurement in allergy skin testing: An exploratory clinical trial

    Get PDF
    Skin prick testing (SPT) is the cornerstone of IgE-mediated allergy diagnosis,1 due to its high sensitivity and specificity.2 However, a uniform method for wheal measurement does not exist. Ansotegui et al.2 recommends to measure wheals in millimeters with a ruler, in many centers they are outlined with a pen and transfer by tape to a paper and then measured. Subsequently, the specialist is able to manually measure the maximum (MD) and orthogonal diameter (OD) of the wheal. This procedure is time consuming and makes repro-ducible measurements difficult.2,3 Knowing the wheal's area could help make a more accurate diagnosis.4 Over the last 30 years, many attempts have been made to develop a device to measure the size of SPT.3 Nexkin DSPT® (Figure S1A,B) is a novel mechatronic system based on 3D laser technology, that automatically locates allergen's wheal and measures its size (MD, OD and area in square millimeters) (Figure S1C)

    Search for the associated production of the Higgs boson with a top-quark pair

    Get PDF
    A search for the standard model Higgs boson produced in association with a top-quark pair t t ¯ H (tt¯H) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb &#8722;1 and 19.7 fb &#8722;1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H &#8594; hadrons, H &#8594; photons, and H &#8594; leptons. The results are characterized by an observed t t ¯ H tt¯H signal strength relative to the standard model cross section, &#956; = &#963;/&#963; SM ,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is &#956; = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

    Measurement of prompt Jψ\psi pair production in pp collisions at \sqrt s = 7 Tev

    Get PDF
    Production of prompt J/ &#968; meson pairs in proton-proton collisions at s s&#8730; = 7 TeV is measured with the CMS experiment at the LHC in a data sample corresponding to an integrated luminosity of about 4.7 fb &#8722;1 . The two J/ &#968; mesons are fully reconstructed via their decays into &#956; + &#956; &#8722; pairs. This observation provides for the first time access to the high-transverse-momentum region of J/ &#968; pair production where model predictions are not yet established. The total and differential cross sections are measured in a phase space defined by the individual J/ &#968; transverse momentum ( p T J/ &#968; ) and rapidity (| y J/ &#968; |): | y J/ &#968; | 6.5 GeV/ c ; 1.2 4.5 GeV/ c . The total cross section, assuming unpolarized prompt J/ &#968; pair production is 1.49 ± 0.07 (stat) ±0.13 (syst) nb. Different assumptions about the J/ &#968; polarization imply modifications to the cross section ranging from &#8722;31% to +27%

    Unilateral axillary adenopathy induced by COVID-19 vaccine: US follow-up evaluation

    Get PDF
    Objectives This study was conducted in order to investigate COVID-19 vaccine influence on unilateral axillary lymph nodes, comparing nodal basal features with their characteristics after the first and second vaccination dose. Methods Ninety-one volunteer employees from our center who participated in the BNT162b2 (Pfizer-BioNTech) vaccination campaign were prospectively recruited. A total of three axillary ultrasound evaluations of the ipsilateral vaccinated arm were performed: before vaccination, the week after the first dose and the week after the second dose. The following findings were recorded: the total number of visible nodes, the maximum measurements of the diameter and cortex, Bedi’s classification, and color Doppler evaluation. The collected data were compared using paired-sample Student’s t-test for quantitative continuous variables and Wilcoxon rank-sum test for ordinal variables. Additional analyses were performed after classifying patients according to the previous history of COVID-19 disease. Differences among both groups were evaluated with the Mann–Whitney U test. Variables with a p value < 0.05 were considered statistically significant. Results Comparative analyses between the three US examinations showed a statistically significant augmentation of total visible nodes, maximum diameter, cortical thickness, grade of Bedi’s classification, and Doppler signal (p < 0.001). Analyses between patients with and without previous COVID-19 infection showed a higher lymph node response in naïve patients compared to those who were previously infected. Conclusions According to our results, both doses of COVID-19 vaccine induced an increase of all axillary lymph node parameters with statistically significant differences, especially in coronavirus-naïve patients

    Profiling of the Salt Stress Responsive MicroRNA Landscape of C4 Genetic Model Species Setaria viridis (L.) Beauv

    No full text
    Setaria viridis has recently emerged as an ideal model species to genetically characterize the C4 monocotyledonous grasses via a molecular modification approach. Soil salinization has become a compelling agricultural problem globally with salinity adversely impacting the yield potential of many of the major cereals. Small regulatory molecules of RNA, termed microRNAs (miRNAs), were originally demonstrated crucial for developmental gene expression regulation in plants, however, miRNAs have since been shown to additionally command a central regulatory role in abiotic stress adaptation. Therefore, a small RNA sequencing approach was employed to profile the salt stress responsive miRNA landscapes of the shoot and root tissues of two Setaria viridis accessions (A10 and ME034V) amenable to molecular modification. Small RNA sequencing-identified abundance alterations for miRNAs, miR169, miR395, miR396, miR397, miR398 and miR408, were experimentally validated via RT-qPCR. RT-qPCR was further applied to profile the molecular response of the miR160 and miR167 regulatory modules to salt stress. This analysis revealed accession- and tissue-specific responses for the miR160 and miR167 regulatory modules in A10 and ME034V shoot and root tissues exposed to salt stress. The findings reported here form the first crucial step in the identification of the miRNA regulatory modules to target for molecular manipulation to determine if such modification provides S. viridis with an improved tolerance to salt stress
    corecore