129 research outputs found

    The Silkworm as a Source of Natural Antimicrobial Preparations: Efficacy on Various Bacterial Strains

    Get PDF
    The global spread of multi-resistant pathogens responsible for infections, which cannot be treated with existing drugs such as antibiotics, is of particular concern. Antibiotics are becoming increasingly ineffective and drug resistance is leading to more difficult-to-treat infections; therefore, new bioactive compounds with antimicrobial activity are needed and new alternative sources should be found. Antimicrobial peptides (AMPs) are synthesized by processes typical of the innate immune system and are present in almost all organisms. Insects are extremely resistant to bacterial infections as they can produce a wide range of AMPs, providing an effective first line of defense. The AMPs produced by insects therefore represent a possible source of natural antimicrobial molecules. In this paper, the possibility of using plasma preparations from silkworm (Bombyx mori) larvae as a source of antimicrobials was evaluated. After simple purification steps, insect plasma was analyzed and tested on different Gram-positive and Gram-negative bacterial strains. The results obtained are encouraging as the assays on Escherichia coli and Enterobacter cloacae showed significant decrease in the growth of these Gram-negative bacteria. Similar results were obtained on Gram-positive bacteria, such as Micrococcus luteus and Bacillus subtilis, which showed strong susceptibility to the silkworm AMPs pool. In contrast, Staphylococcus aureus displayed high resistance to Bombyx mori plasma. Finally, the tested plasma formulations were assessed for possible storage not only at 4 \ub0C, but also above room temperature. In conclusion, partially purified plasma from silkworm could be a promising source of AMPs which could be used in formulations for topical applications, without additional and expensive purification steps

    Considering mesohabitat scale in ecological impact assessment of sediment flushing

    Get PDF
    Benthic macroinvertebrates respond to several factors characterizing the physical habitats, as water depth, current and streambed substrate. Thus, anthropogenic disturbances altering these factors may have different effects on benthos, also depending on mesohabitats. These disturbances include sediment flushing operations, commonly carried out to recover reservoir capacity, and investigating their effects at mesohabitat scale could be relevant for an adequate ecological impact assessment of these operations. Here, we compared benthic macroinvertebrate communities sampled before and after a controlled sediment flushing operation in three different mesohabitats (a pool, a riffle and a step-pool) of an Alpine stream. Contrary from expectations, the composition of macroinvertebrate assemblages was not significantly different among mesohabitats. Moreover, the impact of sediment flushing was more significant in terms of density rather than in richness. Two stressor-specific indices were tested, but only one (the Siltation Index for LoTic EcoSystems - SILTES) clearly detected the impact of sediment flushing on the macroinvertebrate community structure. Finally, some differences in the temporal trajectories and recovery times to pre-flushing conditions were observed among mesohabitats, both if the three mesohabitats were considered separately and if all their possible combinations were accounted for. Particularly, riffle was the most sensitive mesohabitat, not fully recovering one year after the sediment disturbance

    Past and Present Environmental Factors Differentially Influence Genetic and Morphological Traits of Italian Barbels (Pisces: Cyprinidae)

    Get PDF
    Local adaptation and phenotypic plasticity can lead to environment-related morphological and genetic variations in freshwater fish. Studying the responses of fish to environmental changes is crucial to understand their vulnerability to human-induced changes. Here, we used a latitudinal gradient as a proxy for past and present environmental factors and tested its influences on both genetic and morphological patterns. We selected as a suitable biogeographic model, the barbels, which inhabit 17 Adriatic basins of the central-southern Italian Peninsula, and explored association among attributes from genetic, morphological, and environmental analyses. The analysis of the mitochondrial DNA control region evidenced a southward significant increase in the number of private haplotypes, supporting the isolation of the southernmost populations related to the Mio-Pleistocene events. In contrast, morphology was mainly affected by changes in the present environmental conditions. Particularly, the number of scales and fish coloration were clearly associated to latitude, and thus thermal and hydrological conditions. Other morphometric and functional traits varied under the selective pressure of other environmental factors like elevation and distance from headwater. These results highlight the sensitivity of barbels to climate changes, which can serve as a basis for future eco-evolutionary and conservation studies

    Beta-diversity and stressor specific index reveal patterns of macroinvertebrate community response to sediment flushing

    Get PDF
    Anthropogenic increase of fine sediment loading is one of the main pressures for rivers worldwide. Particularly, Alpine streams are increasingly facing this issue due to sediment flushing operations from hydropower reservoirs, aimed at recovering storage for preserving electricity generation. Although Controlled Sediment Flushing Operations (CSFOs) are becoming increasingly frequent, ecological indicators to adequately assess and monitor their impact on the stream ecosystem have been poorly developed. In this work, we aimed to perform a screening of currently available biomonitoring tools to evaluate the CSFO effects on the riverine biota and adequately assess its recovery, starting from the recognition of the main ecological mechanisms triggered by the mentioned activities on benthic macroinvertebrate communities. We used two independent datasets concerning two reservoirs in the central Italian Alps to investigate the temporal effects of CSFOs repeated for four consecutive years (case-study I), and the impact of a single CSFO at a seasonal scale through a before/after-control/impact approach (case-study II). Initially, we quantified the CSFO impact on the richness and beta-diversity of macroinvertebrate communities by combining multivariate and univariate statistical techniques. Then, we compared the performance of the Siltation Index for LoTic EcoSystems (SILTES), recently developed for detecting siltation impact in Alpine streams, with that of the generic index currently adopted to assess the ecological status (sensu Water Framework Directive) of the Italian rivers, and of another sediment-specific index, but developed for a different bio-geographical area. The analysis of the two case-studies demonstrated that the nestedness (i.e. taxa loss) is the primary source of biological impairment caused by CSFOs. Moreover, we found that SILTES was more effective than the other indices because of its strong correlation with the nestedness, and since it properly discriminated impaired and pristine conditions, at both multi-annual and seasonal scale. In the first case-study, a threshold in the temporal trend of this index was detected, indicating a recovery within three months. In the second one, SILTES showed a recovery to pre-event seasonal values after nine months from the CSFO, due to larger and more persistent sediment deposition. This study demonstrates that SILTES could be adopted as a benchmark to improve the management of CSFOs from an ecological viewpoint. Our findings can be extended to the management of other sediment-related activities affecting mountainous streams worldwide, and, more generally, the adopted approach can be replicated for developing new ecological tools to manage other disturbances to river environments

    Impacts of streamflow alteration on benthic macroinvertebrates by mini‑hydro diversion in Sri Lanka

    Get PDF
    Our study focused on quantifying the alterations of streamflow at a weir site due to the construction of a mini-hydropower plant in the Gurugoda Oya (Sri Lanka), and evaluating the spatial responses of benthic macroinvertebrates to altered flow regime. The HEC-HMS 3.5 model was applied to the Gurugoda Oya sub-catchment to generate streamflows for the time period 1991-2013. Pre-weir flows were compared to post-weir flows with 32 Indicators of Hydrologic Alteration using the range of variability approach (RVA). Concurrently, six study sites were established upstream and downstream of the weir, and benthic macroinvertebrates were sampled monthly from May to November 2013 (during the wet season). The key water physico-chemical parameters were also determined. RVA analysis showed that environmental flow was not maintained below the weir. The mean rate of non-attainment was similar to 45% suggesting a moderate level of hydrologic alteration. Benthic macroinvertebrate communities significantly differed between the study sites located above and below the weir, with a richness reduction due to water diversion. The spatial distribution of zoobenthic fauna was governed by water depth, dissolved oxygen content and volume flow rate. Our work provides first evidence on the effects of small hydropower on river ecosystem in a largely understudied region. Studies like this are important to setting-up adequate e-flows

    Towards ecological flows: status of the benthic macroinvertebrate community during summer low-flow periods in a regulated lowland river

    Get PDF
    Climate change along with the increasing exploitation of water resources exacerbates low-flow periods, causing detrimental effects on riverine communities. The main mitigation measure currently adopted to counteract hydrological alterations induced by off-stream diversion is the release of minimum flows (MFs), even if within the European Union Water Framework Directive an upgrade towards ecological flows is urgently required to achieve good ecological status (GES). In this study, we investigated the temporal evolution of the benthic macroinvertebrate community in an Italian regulated lowland river (Ticino River) to clarify the ecological effects of summer low flows, and we evaluated the current MFs in the perspective of meeting GES standard. Biomonitoring was carried out for four consecutive years (2019-2022), in a river site immediately below a large off-stream diversion. The four study years were characterized by different streamflow patterns, thus allowing us to compare the temporal trajectories of the community under different flow conditions. Moreover, the interruption of the low-flow periods due to overflow spilled by the upstream dam gave us the opportunity to assess the effects of experimental flow peaks. Contrary to the expectation, the macroinvertebrate assemblage kept almost unvaried across the years, showing great resistance and resilience to hydrological changes. Even in extraordinarily dry 2022, the community composition varied only slightly, with a reduction of mayflies and an increase of mollusks. However, a deterioration of the ecological status below GES standard was recorded that summer, indicating the need for an upgrading of the current MFs. This upgrade would include experimental flow peaks in critical periods, which act as intermediate disturbances, enhancing community richness, diversity, and overall quality, as well as compliance with a threshold of an index specifically developed for the hydrological pressure

    Morphologic and genetic variability in the Barbus fishes (Teleostei, Cyprinidae) of Central Italy

    Get PDF
    © 2019 Royal Swedish Academy of Sciences Italian freshwaters are highly biodiverse, with species present including the native fishes Barbus plebejus and Barbus tyberinus that are threatened by habitat alteration, fish stocking and invasive fishes, especially European barbel Barbus barbus. In central Italy, native fluvio-lacustrine barbels are mainly allopatric and so provide an excellent natural system to evaluate the permeability of the Apennine Mountains. Here, the morphologic and genetic distinctiveness was determined for 611 Barbus fishes collected along the Padany–Venetian (Adriatic basins; PV) and Tuscany–Latium (Tyrrhenian basins; TL) districts. Analyses of morphological traits and mitochondrial DNA sequence data explored the natural and anthropogenic factors that have shaped their distribution ranges. Over 100 alien B. barbus were recorded in the Tiber basin (TL district) and Metauro basin (PV district). Comparisons of genetic and morphometric data revealed that morphometric data could identify alien B. barbus from native Barbus, but could not differentiate between B. tyberinus and B. plebejus. Genetic analyses revealed ~50 D-loop mtDNA haplotypes and identified a distinct Barbus lineage present only in the Vomano River at the southern boundary of PV district. Demographic expansion and molecular variance analyses revealed a lack of geographic structuring across the sampling regions. While the contemporary B. plebejus distribution has been driven primarily by anthropogenic fish translocations, the dispersal of B. tyberinus has been via natural dispersion, including their crossing of the Apennine Mountains via temporary river connectivity. The results also revealed that the Barbus fishes of the mid-Adriatic region of Europe have a complex pattern of local endemism. To conserve these patterns of genetic uniqueness, especially in the mid-Adriatic basins, Barbus fishes should be managed by treating them as unique evolutionary units and ceasing translocations of all Barbus fishes between river basins

    Identification of Antigenic Proteins from Lichtheimia corymbifera for Farmer's Lung Disease Diagnosis.

    Get PDF
    The use of recombinant antigens has been shown to improve both the sensitivity and the standardization of the serological diagnosis of Farmer's lung disease (FLD). The aim of this study was to complete the panel of recombinant antigens available for FLD serodiagnosis with antigens of Lichtheimia corymbifera, known to be involved in FLD. L. corymbifera proteins were thus separated by 2D electrophoresis and subjected to western blotting with sera from 7 patients with FLD and 9 healthy exposed controls (HEC). FLD-associated immunoreactive proteins were identified by mass spectrometry based on a protein database specifically created for this study and subsequently produced as recombinant antigens. The ability of recombinant antigens to discriminate patients with FLD from controls was assessed by ELISA performed with sera from FLD patients (n = 41) and controls (n = 43) recruited from five university hospital pneumology departments of France and Switzerland. Forty-one FLD-associated immunoreactive proteins from L. corymbifera were identified. Six of them were produced as recombinant antigens. With a sensitivity and specificity of 81.4 and 77.3% respectively, dihydrolipoyl dehydrogenase was the most effective antigen for discriminating FLD patients from HEC. ELISA performed with the putative proteasome subunit alpha type as an antigen was especially specific (88.6%) and could thus be used for FLD confirmation. The production of recombinant antigens from L. corymbifera represents an additional step towards the development of a standardized ELISA kit for FLD diagnosis

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit
    corecore