71 research outputs found

    Experimental measurement of the quantum geometric tensor using coupled qubits in diamond

    Full text link
    Geometry and topology are fundamental concepts, which underlie a wide range of fascinating physical phenomena such as topological states of matter and topological defects. In quantum mechanics, the geometry of quantum states is fully captured by the quantum geometric tensor. Using a qubit formed by an NV center in diamond, we perform the first experimental measurement of the complete quantum geometric tensor. Our approach builds on a strong connection between coherent Rabi oscillations upon parametric modulations and the quantum geometry of the underlying states. We then apply our method to a system of two interacting qubits, by exploiting the coupling between the NV center spin and a neighboring 13^{13}C nuclear spin. Our results establish coherent dynamical responses as a versatile probe for quantum geometry, and they pave the way for the detection of novel topological phenomena in solid state

    The Representation of Mosuo People and Mosuo Culture in Chinese Tourism Websites

    Get PDF
    Past research has shown that because tourism itself is a product of a gendered society, its processes are gendered in terms of construction, presentation, and consumption. This study examines how these websites shape the image of the Mosuo people and the Mosuo culture by analyzing texts in Chinese tourism websites. Ten representative Chinese tourism websites were selected for this study, and all relevant texts that could be retrieved were analyzed manually. All samples selected were officially published and represent only the attitudes of the tourism websites. The results of the study show that there are a large number of feminized or sexualized descriptions in the texts about the Mosuo people and the Mosuo culture provided by Chinese tourism websites. The language used on tourism websites is shaped by discourses of patriarchy and sexuality and is intended for heterosexual male tourists

    Pyroptotic Patterns in Blood Leukocytes Predict Disease Severity and Outcome in COVID-19 Patients

    Get PDF
    The global coronavirus disease 2019 (COVID-19) pandemic has lasted for over 2 years now and has already caused millions of deaths. In COVID-19, leukocyte pyroptosis has been previously associated with both beneficial and detrimental effects, so its role in the development of this disease remains controversial. Using transcriptomic data (GSE157103) of blood leukocytes from 126 acute respiratory distress syndrome patients (ARDS) with or without COVID-19, we found that COVID-19 patients present with enhanced leukocyte pyroptosis. Based on unsupervised clustering, we divided 100 COVID-19 patients into two clusters (PYRcluster1 and PYRcluster2) according to the expression of 35 pyroptosis-related genes. The results revealed distinct pyroptotic patterns associated with different leukocytes in these PYRclusters. PYRcluster1 patients were in a hyperinflammatory state and had a worse prognosis than PYRcluster2 patients. The hyperinflammation of PYRcluster1 was validated by the results of gene set enrichment analysis (GSEA) of proteomic data (MSV000085703). These differences in pyroptosis between the two PYRclusters were confirmed by the PYRscore. To improve the clinical treatment of COVID-19 patients, we used least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model based on differentially expressed genes between PYRclusters (PYRsafescore), which can be applied as an effective prognosis tool. Lastly, we explored the upstream transcription factors of different pyroptotic patterns, thereby identifying 112 compounds with potential therapeutic value in public databases

    Normal-weight central obesity: implications for diabetes mellitus

    Get PDF
    BackgroundCurrent guidelines for obesity prevention and control focus on body mass index (BMI) and rarely address central obesity. Few studies have been conducted on the association between normal-weight central obesity and the risk of diabetes mellitus (DM).Methods26,825 participants from the National Health and Nutrition Examination Survey (NHANES) were included in our study. A weighted multivariate logistic regression model was used to analyze the relationship between different obesity patterns and the risk of DM.ResultsOur results suggest that normal-weight central obesity is associated with an increased risk of DM (OR: 2.37, 95% CI: 1.75–3.23) compared with normal-weight participants without central obesity. When stratified by sex, men with normal-weight central obesity, obesity and central obesity were found to have a similar risk of DM (OR: 3.83, 95% CI: 2.10–5.97; OR: 4.20, 95% CI: 3.48–5.08, respectively) and a higher risk than all other types of obesity, including men who were overweight with no central obesity (OR: 1.21, 95% CI: 0.96–1.51) and obese with no central obesity (OR: 0.53, 95% CI: 0.30–0.91).ConclusionOur results highlight the need for more attention in people with central obesity, even if they have a normal BMI

    Prediction of overall survival for patients with metastatic castration-resistant prostate cancer : development of a prognostic model through a crowdsourced challenge with open clinical trial data

    Get PDF
    Background Improvements to prognostic models in metastatic castration-resistant prostate cancer have the potential to augment clinical trial design and guide treatment strategies. In partnership with Project Data Sphere, a not-for-profit initiative allowing data from cancer clinical trials to be shared broadly with researchers, we designed an open-data, crowdsourced, DREAM (Dialogue for Reverse Engineering Assessments and Methods) challenge to not only identify a better prognostic model for prediction of survival in patients with metastatic castration-resistant prostate cancer but also engage a community of international data scientists to study this disease. Methods Data from the comparator arms of four phase 3 clinical trials in first-line metastatic castration-resistant prostate cancer were obtained from Project Data Sphere, comprising 476 patients treated with docetaxel and prednisone from the ASCENT2 trial, 526 patients treated with docetaxel, prednisone, and placebo in the MAINSAIL trial, 598 patients treated with docetaxel, prednisone or prednisolone, and placebo in the VENICE trial, and 470 patients treated with docetaxel and placebo in the ENTHUSE 33 trial. Datasets consisting of more than 150 clinical variables were curated centrally, including demographics, laboratory values, medical history, lesion sites, and previous treatments. Data from ASCENT2, MAINSAIL, and VENICE were released publicly to be used as training data to predict the outcome of interest-namely, overall survival. Clinical data were also released for ENTHUSE 33, but data for outcome variables (overall survival and event status) were hidden from the challenge participants so that ENTHUSE 33 could be used for independent validation. Methods were evaluated using the integrated time-dependent area under the curve (iAUC). The reference model, based on eight clinical variables and a penalised Cox proportional-hazards model, was used to compare method performance. Further validation was done using data from a fifth trial-ENTHUSE M1-in which 266 patients with metastatic castration-resistant prostate cancer were treated with placebo alone. Findings 50 independent methods were developed to predict overall survival and were evaluated through the DREAM challenge. The top performer was based on an ensemble of penalised Cox regression models (ePCR), which uniquely identified predictive interaction effects with immune biomarkers and markers of hepatic and renal function. Overall, ePCR outperformed all other methods (iAUC 0.791; Bayes factor >5) and surpassed the reference model (iAUC 0.743; Bayes factor >20). Both the ePCR model and reference models stratified patients in the ENTHUSE 33 trial into high-risk and low-risk groups with significantly different overall survival (ePCR: hazard ratio 3.32, 95% CI 2.39-4.62, p Interpretation Novel prognostic factors were delineated, and the assessment of 50 methods developed by independent international teams establishes a benchmark for development of methods in the future. The results of this effort show that data-sharing, when combined with a crowdsourced challenge, is a robust and powerful framework to develop new prognostic models in advanced prostate cancer.Peer reviewe

    Dynamic Modeling and Frequency Characteristic Analysis of a Novel 3-PSS Flexible Parallel Micro-Manipulator

    No full text
    Dynamic modeling and frequency characteristic analysis of a novel 3-PSS (three-prismatic-spherical-spherical) flexible parallel micro-manipulator with three translational DOF in space were investigated in this paper. Firstly, the kinematics analysis was developed based on the pseudo-rigid body model. The Jacobian matrix and the relationship between the micro angular deformation of the flexible spherical hinge and the end pose of mobile platform were respectively obtained by employing vector closed-loop method and coordinate transformation method. Then, taking into account the elastic strain energy of the flexible spherical hinge, dynamic model of this mechanism was established via Lagrange equations, and the expression of natural frequency was further derived. Combined with a set of given parameters, natural frequencies of the system were calculated by using MATLAB software. For the comparison purpose, a simulated modal analysis of the mechanism with the same parameters was also performed by employing finite element ANSYS software. Results from numerical calculation and finite element simulation indicated that maximum error of their natural frequencies was 2.71%, which verified the correctness of the theoretical dynamic model. Finally, variations of natural frequencies with changes of the basic parameters were analyzed. Analysis results show that natural frequencies increase with the increase of the bending stiffness kbm of flexible spherical hinge and the difference in radius Er between static platform and mobile platform, while decrease with the increase of the length l of the link rod and the masses of the main components of mechanism. Besides, it can be further drawn from these obtained results that the natural frequencies increase with the increase of the angle θl between the link rod and the z axis of reference coordinate system. Considering that the increase of the stiffness kbm and the angle θl will reduce the scope of working space, it is recommended in designing the structure to choose a set of larger stiffness kbm and angle θl as much as possible under the premise of satisfying the working space

    Assignment of Natural Frequencies and Mode Shapes Based on FRFs

    No full text
    This paper proposes a method of structural modification for the assignment of natural frequencies and mode shapes based on frequency response functions (FRFs). The method involves the addition of masses or stiffness (supporting stiffness or connection stiffness), the simultaneous addition of masses and stiffness, or the addition of mass-spring substructures to the original structure. Firstly, the proposed technique was formulated as an optimization problem based on the FRFs of the original structure and the masses or stiffness that needed to be added. Next, the required added masses and stiffness were obtained by solving the optimization problem using a genetic algorithm. Finally, numerical verification was performed for the different structural modification schemes. The results show that, compared to only adding either stiffness or masses, adding both simultaneously or adding spring-mass substructures obtained better optimization results. The advantage of this FRFs-based method is that the FRFs can be directly measured by modal testing, without knowledge of analytical or modal models. Furthermore, multiple structural modifications were considered in the assignment of natural frequencies and mode shapes, making the application of this method more applicable to engineering

    Optimal Design for 3-PSS Flexible Parallel Micromanipulator Based on Kinematic and Dynamic Characteristics

    No full text
    This paper proposes two optimal design schemes for improving the kinematic and dynamic performance of the 3-PSS flexible parallel micromanipulator according to different application requirements and conditions. Firstly, the workspace, dexterity, frequencies, and driving forces of the mechanism are successively analyzed. Then, a progressive optimization design is carried out, in which the scale parameters of this mechanism are firstly optimized to maximize the workspace, combining the constraints of the minimum global dexterity of the mechanism. Based on the optimized scale parameters, the minimum thickness and the cutting radius of the flexure spherical hinge are further optimized for minimizing the required driving forces, combined with constraints of the minimum first-order natural frequency of the mechanism and the maximum stress of the flexure spherical hinge during the movement of the mechanism. Afterward, a synchronous optimization design is proposed, in which the scale parameters are optimized to maximize the first-order natural frequency of the mechanism, combined with the constraints of a certain inscribed circle of the maximum cross-section of the workspace, the maximum stroke of the selected piezoelectric stages, and the maximum ultimate angular displacement of the flexure spherical hinge. The effectiveness of both optimization methods is verified by the comparison of the kinematic and dynamic characteristics of the original and optimized mechanism. The advantage of the progressive optimization method is that both the workspace and the driving forces are optimized and the minimum requirements for global dexterity and first-order natural frequency are ensured. The merit of the synchronous optimization method is that only the scale parameters of the mechanism need to be optimized without changing the structural parameters of the flexible spherical hinge

    miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells

    No full text
    Transforming growth factor-β receptor II (TGFBR2), the type II receptor of the TGF-β/SMA- and MAD-related protein (SMAD) signaling pathway, plays a crucial role in TGF-β signal transduction and is regulated by multiple factors. Nevertheless, the modulation of the non-coding RNA involved in the process of TGFBR2 expression in ovaries is not well studied. In our study, we isolated and characterized the 3′-untranslated region (UTR) of the porcine TGFBR2 gene and microRNA-1306 (miR-1306) was identified as the functional miRNA that targets TGFBR2 in porcine granulosa cells (GCs). Functional analysis showed that miR-1306 promotes apoptosis of GCs as well as attenuating the TGF-β/SMAD signaling pathway targeting and impairing TGFBR2 in GCs. Moreover, we identified the miR-1306 core promoter and found three potential SMAD4-binding elements (SBEs). Luciferase and chromatin immunoprecipitation (ChIP) assays revealed that the transcription factor SMAD4 directly binds to the miR-1306 core promoter and inhibits its transcriptional activity. Furthermore, the TGF-β/SMAD signaling pathway is modulated by SMAD4 positive feedback via inhibition of miR-1306 expression in GCs. Collectively, our findings provide evidence of an epigenetic mechanism that modulates as well as mediates the feedback regulation of the classical TGF-β/SMAD signaling pathway in GCs from porcine ovaries
    • …
    corecore