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The global coronavirus disease 2019 (COVID-19) pandemic has lasted for over 2 years
now and has already caused millions of deaths. In COVID-19, leukocyte pyroptosis has
been previously associated with both beneficial and detrimental effects, so its role in the
development of this disease remains controversial. Using transcriptomic data
(GSE157103) of blood leukocytes from 126 acute respiratory distress syndrome
patients (ARDS) with or without COVID-19, we found that COVID-19 patients present
with enhanced leukocyte pyroptosis. Based on unsupervised clustering, we divided 100
COVID-19 patients into two clusters (PYRcluster1 and PYRcluster2) according to the
expression of 35 pyroptosis-related genes. The results revealed distinct pyroptotic
patterns associated with different leukocytes in these PYRclusters. PYRcluster1
patients were in a hyperinflammatory state and had a worse prognosis than
PYRcluster2 patients. The hyperinflammation of PYRcluster1 was validated by the
results of gene set enrichment analysis (GSEA) of proteomic data (MSV000085703).
These differences in pyroptosis between the two PYRclusters were confirmed by the
PYRscore. To improve the clinical treatment of COVID-19 patients, we used least absolute
shrinkage and selection operator (LASSO) regression to construct a prognostic model
based on differentially expressed genes between PYRclusters (PYRsafescore), which can
be applied as an effective prognosis tool. Lastly, we explored the upstream transcription
factors of different pyroptotic patterns, thereby identifying 112 compounds with potential
therapeutic value in public databases.

Keywords: COVID-19, pyroptosis, leukocytes, prognosis model, transcription factors
INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) has killed 6 million people until May 2022 (1). COVID-
19 patients present with different clinical symptoms ranging from mild cold-like symptoms to a
high fever, pneumonia, and possibly acute respiratory distress syndrome (ARDS). In the
org July 2022 | Volume 13 | Article 8886611
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development of severe COVID-19 disease, uncontrolled systemic
hyperinflammation caused by a dysregulated immune response
leads to the release of pro-inflammatory cytokines and
chemokines, a condition that is known as cytokine storm (2).
COVID-19 patients show elevated blood levels of many
cytokines, including IL-1b, IL-2, IL-6, IL-7, IL-8, IL-10, IL-18,
G-CSF, IP-10, MCP-1, MIP-1A, and TNF (3–6). This cytokine
storm is closely related to lung damage, multiple organ failure,
and a poor prognosis, according to recent research (4, 7–11).
Concurrently, several studies have also shown that cytokine
blockade can improve the survival rate of patients with
COVID-19 (12–15).

A possible mechanism linking cytokine storm to organ
damage is inflammatory cell death, namely pyroptosis and
necroptosis. Pyroptosis has been intensely studied recently.
Some patients with severe COVID-19 may develop a systemic
cytokine storm because SARS-CoV-2 promotes cytokine storms
by inducing pyroptosis in pro-inflammatory blood-born
immune cells (16–19). However, only a few studies about
necroptosis and cytokine storm in COVID-19 have been
published thus far.

Pyroptosis is a mechanism of programmed cell death
characterized by the inflow of sodium ions and water mediated
by gasdermin proteins, resulting in cell membrane rupture,
excessive cell swelling, and spontaneous release of cytosolic
contents into the extracellular space (20). Gasdermin proteins,
which consist of an N-terminus with membrane pore-forming
activity and an inhibitory C-terminus, are the key regulators of
pyroptosis. Upon inflammasome activation, caspase proteins,
including caspase-1 and other non-canonical inflammasome
caspases (e.g., caspase-4, caspase-5, and caspase-11), cleave
gasdermin into two parts (21), thereby unleashing the pore-
forming activity of the N-terminus. This N-terminus fragment of
gasdermin binds to the cell membrane, forming pores and
leading to pyroptosis (22). Pyroptosis triggers the rapid release
of a slew of alarmins including, cytokines (IL-1b, IL-18),
chemokines, and damage-associated molecular patterns
(DAMPs), prompting an immediate response from
surrounding immune cells and triggering a pyroptotic chain
reaction (23). Thus, pyroptosis plays a key role in the emergence
of a cytokine storm, according to recent research (17, 19, 24).

Although pyroptosis is crucial for innate immunity (25, 26),
extensive pyroptosis can cause tissue inflammation, organ
failure and death, as found in various diseases (27). For
example, in atherosclerosis, cholesterol crystals and oxidized
low-density lipoprotein cause macrophage pyroptosis, which
leads to a massive release of cytokines, promoting inflammation
and disease progression (28). In line with these findings,
NLRP3 inflammasome or ASC inhibition, which prevent
macrophage pyroptosis, can lower infarct size and improve
heart function in an animal model of myocardial infarction (29,
30). Similar results have also been observed in alcoholic
hepatitis (31), lupus erythematosus (32, 33), and even in the
central nervous system (34).

In COVID-19 patients, various cells undergo pyroptosis,
including leukocytes (monocytes, macrophages, mucosal-
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associated invariant T cells) and other type of cells (adipocytes,
lung epithelial cells and endothelial cells) (16, 35–39). On the one
hand, SARS-CoV-2 nucleocapsid can prevent Gasdermin D
cleavage, thus reducing host pyroptosis and suppressing the
immune response (40), in addition to inhibiting coronavirus
infection by promoting non-classical secretion of b-interferon
(41). On the other hand, SARS-COV-2 can stimulate
macrophage GSDMD-mediated pyroptosis, which leads to the
rapid release of pro-inflammatory cytokines and to a cytokine
storm (17). In addition, the synergistic effect of TNF-a and IFN-
g can trigger GSDMD-mediated pyroptosis and promote a
cytokine storm, thereby increasing mortality among COVID19
patients (42). However, in cats and dogs, deficiencies of the
inflammasome and pyroptosis pathways (cats and tigers do not
express AIM2 and NLRP1, and dogs do not express AIM2 and
have a shorter form of NLRC4 than humans) may provide an
evolutionary advantage against SARS-CoV-2 by reducing
cytokine storm-induced host damage (43). Therefore, the role
of pyroptosis in COVID-19 remains complex, requiring more
comprehensive studies.

Based on transcriptome data of patients with or without
COVID-19 available in public databases (GSE157103), we
found that the leukocytes of ARDS patients with COVID-19
have considerably higher pyroptotic markers than patients
without COVID-19. Moreover, at least two different patterns
of pyroptosis occur in patients with COVID-19, one correlated
with a poor prognosis and the other with a benign prognosis.
These two pyroptosis patterns may be regulated by different
upstream transcription factor networks, which could prove
therapeutically valuable for drug development.
MATERIALS AND METHODS

Obtaining RNA-seq Data from the GEO
Dataset
From the GEO dataset, we retrieved RNA-seq data (GSE157103)
of 126 ARDS patients, namely 100 COVID-19 patients and 26
non-COVID-19 patients, in addition to their clinical data,
including gender, age, underlying disease status (diabetes),
coagulation (D-dimer, ferritin, CRP, procalcitonin, fibrinogen),
and hospital-free days post 45-day follow-up (HFD45), among
other parameters. More specifically, HFD45 is defined as the
number of days patients lived outside of a hospital from
enrollment through death or the end of follow-up (44). The
higher HDF45 is, the milder the disease and the better the
prognosis will be.

Proteomic Data Collection from the
MassIVE Database and Analysis
The label-free quantification (LFQ) intensities of 736 proteins of
126 ARDS patients were collected from Mass Spectrometry
Interactive Virtual Environment (MassIVE) (MSV000085703).
After calculating the logarithm of the FQL intensities, we used
the R package “limma” to calculate the log2(Log2Fold of change)
(log2FC) of 736 proteins between two PYRclusters. The 736
July 2022 | Volume 13 | Article 888661
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proteins were sorted from large to small by log2FC (not absolute
value). Then, using the “org.Hs.eg.db” and “clusterProfiler”
packages, gene set enrichment analysis (GSEA) was performed
based on MSigDB gene sets C2, C5 and C7. Significant gene sets
were identified when |Normalized Enrichment Score (NES)|>1
and False Discovery Rate (FDR) < 0.25.

Function and Pathway Analysis of DE
Immune Genes
Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed using the
“org.Hs.eg.db” and “clusterProfiler” packages. GO terms and
KEGG terms were identified as significantly enriched when
p.adjust < 0.05.

Estimation of Immune Cell Infiltration
Fractions
Single-sample gene set enrichment analysis (ssGSEA) and
“Cibersort” were used to analyze the immune cell infiltration
fractions. The former was based on the list of Pan-cancer
Immune Metagenes (45, 46).

Unsupervised Clustering of COVID-19
Patients
Based on RNA-seq data of 35 pyroptosis-related genes including
AIM2, CASP1, CASP3, CASP4, CASP5, CASP6, CASP8, CASP9,
ELANE, GPX4, GSDMA, GSDMB, GSDMC, GSDMD, GSDME,
GZMA, GZMB, IL18, IL1B, IL6, NLRC4, NLRP1, NLRP2, NLRP3,
NLRP6, NLRP7, NOD1, NOD2, PJVK, PLCG1, PRKACA,
PYCARD, SCAF11, TIRAP, and TNF, we divided 100
COVID-19 patients into two clusters (PYRcluster) using the
“nmf” package. We determine the k value based on the
consensusMap function.

Construction of the PYRscore
The differentially expressed genes (DEGs) of two PYRclusters
were identified using the “limma” package. Using the median of
HFD45 as the cutoff value, COVID-19 patients were divided into
two groups. The DEGs in these two groups were calculated using
the limma package and subsequently applied for PCA analysis.
PC1 and PC2 were used to construct the PYRscore (47).

PYRscore =o PC1i + PC2ið Þ

Construction of the PYRsafescore Model
Based on the log2(TPM) of the 570 DEGs between PYRclusters
and the HDF45 of each patient, we used the “glmnet” package to
build a PYRsafescore model by LASSO regression. We determine
the signatures of the model by selecting the lambda value with
the smallest mean-squared error by 20-fold-cross-validation. The
coefficients of the final signatures were used to calculate the
PYRsafescore as follows: protective score = ∑ Coefficienti ×
Expression level of signaturei. Using the “caret” package, 100
patients were randomly divided into a training group and a test
group with a ratio of 2:1. The model built with the training group
data was validated in the test group. We used “ROCR” packages
Frontiers in Immunology | www.frontiersin.org 3
to plot receiver operating characteristic (ROC) curves and to
calculate area under the curve (AUC) scores to evaluate
model performance.

Transcription Factors Enrichment
First, based on the transcription factor targets (TFT) and their
gene sets in MSigDB (48), we used the “clusterProfiler” package to
enrich the transcription factors from DEGs between PYRclusters.

We then used the “CoRegNet” package to enrich the
transcription factor co-regulatory network in COVID-19
patients from PYRcluster1 and PYRcluster2 based on the
dataset of transcription factor targets (CHEA, ENCODE, and
JASPAR Predicted Transcription Factor Targets, MotifMap
and TRANSFAC Predicted Transcription Factor Targets, and
TRANSFAC Curated Transcription Factor Targets) from
Harmonizome (49, 50). Lastly, the network graph was plotted
using the “ggraph” package.

Search for Drugs Targeting Transcription
Factors
We used the transcription factors that we screened as keywords
to search for the corresponding compounds on ChEMBL (51),
thus screening active or repressed compounds based on their role
in pyroptosis.

Statistical analysis
TheWilcoxon sum-rank test and the t-test were used to compare
different groups, and the Pearson’s product-moment correlation
test was used for correlation analysis. All statistical tests were
two-sided, and a significant difference was defined as a p-value of
0.05. Power calculations were performed using the following R
packages: “pwr” and “rstatix” at sig.level=0.05.
RESULTS

Transcriptome Data Reveal the Pyroptosis
Characteristic of Blood Leukocytes from
COVID-19 Patients
A GEO dataset provided RNA-seq data and clinical data from
126 samples of 100 patients with COVID-19 and 26 patients
without COVID-19 (GSE157103) (44). Initially, we assessed the
expression levels of pyroptosis-related gene sets of all patients
based on prior studies (52).

The expression of the pyroptosis-related genes AIM2, CASP1,
CASP3, CASP6, CASP8, CASP9, GSDMA, GSDMC, GZMB, IL6,
NLRP3, NLRP7, NOD1, NOD2, SCAF11, and TIRAP was
significantly higher in blood leukocytes of COVID-19 patients,
indicating that the level of pyroptosis was significantly increased
(Figure 1A). NLRP3, NLRP7, NOD1, NOD2 are closely related to
caspase activation (53, 54).

Subsequently, we outlined the correlation patterns of 35
pyroptosis-related genes in COVID-19 patients to investigate
relationships between different pyroptosis-related genes.
Although most of the 35 genes have a substantial positive
association with other genes, several genes are nevertheless
July 2022 | Volume 13 | Article 888661
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negatively correlated with other pyroptosis-related genes. ELANE,
for example, is negatively correlated with AIM2, CASP1, CASP3,
CASP4, CASP5, CASP6, CASP8, CASP9, GSDMB, GSDMC,
GZMA, IL1B, IL6, NLRP1, NLRP2, NLRP3, NOD1, NOD2, PJVK,
PLCG1, PRKACA, SCAF11, TIRAP, and TNF. Therefore, the
expression of these pyroptosis-related genes in COVID-19
patients presents complex patterns (Figure 1B). Furthermore,
each caspase is strongly and positively correlated with the others.
For example, the linkage between GSDMA and caspases suggests
that its cleavage is related to caspase-3/-6/-8/-9. CASP3 expression
is highly linked to GSDME, in line with previous reports on
caspase-3 cleavage of GSDME, releasing its activity (22).

By gene set variation analysis (GSVA), we studied changes in
the biological function of leukocytes between the two types of
patients. Mismatch repair, homologous recombination,
replication, cell cycle, and p53 signaling are more enriched in
leukocytes of COVID-19 patients, indicating severe cell damage
during viral infection and ongoing damage repair (Figure 2A
and Supplementary Table 1).

By single-sample gene set enrichment analysis (ssGSEA),
we also compared the proportions of 28 immune cell types
Frontiers in Immunology | www.frontiersin.org 4
between the two groups and found that the numbers of
various immune cells are much higher in COVID-19
patients than in non-COVID-19 patients, indicating a highly
active immune response in COVID-19 patients (46)
(Figure 2B and Supplementary Table 2). Surprisingly, the
numbers of some immune cells, such as macrophage and
cd56dim natural killer cells, were lower in COVID-19
patients than in the control group. This difference could be
due to cell death caused by massive viral infection and
increased pyroptosis (17, 55). Human dendritic cells and T
lymphocytes (including CD4+ and CD8+) undergo pyroptosis
via the AIM2-Caspase1-gasdermin D and the CARD8-
Caspase1-gasdermin D axes (56, 57), respectively. Pyroptosis
has also been identified in macrophages and neutrophils (58,
59). Although NK cells have not been documented to undergo
pyroptosis on their own, they can participate in this process,
playing a key role (60). These results suggests that blood
leukocytes either directly undergo pyroptosis or have a
synergistic role with pyroptosis in COVID-19 patients.

In summary, blood leukocytes exhibit substantial pyroptotic
characteristics in COVID-19 patients.
B

A

FIGURE 2 | (A) Gene set variation analysis (GVSA) analysis shows COVID-19
patients’ leukocytes may have been significantly damaged during viral
infection and are undergoing damage repair. C: COVID-19 patients; NC:
none-COVID-19 patients. (B) The abundance of leukocytes between the
different types of patients. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
ns, no significance.
B

A

FIGURE 1 | (A) Boxplot of 35 pyroptosis-related genes’ relative expression
between different types of patients. C: COVID-19 patients; NC: none-COVID-
19 patients. (B) The Pearson’s correlation between 35 pyroptosis-related
genes in COVID -19 patients, R value represents the Pearson’s correlation
coefficient. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
July 2022 | Volume 13 | Article 888661
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COVID-19 Patients Showed Different
Patterns of Pyroptosis
By non-negative matrix factorization based on 35 pyroptosis-
related genes, we clustered the 100 COVID-19 patients into
two clusters, PYRcluster1 and PYRcluster2 (Figure 3A and
Supplementary Figure 1A). The best clustering result was
found when k = 2, with no differences in age, gender, days
admitted before enrollment, replacement therapy (pre-
enrollment) or underlying disorders between the two
clusters, which we called PYRclusters (Supplementary
Figures 1B–E, 3A, B).
Frontiers in Immunology | www.frontiersin.org 5
We first explored differences in the expression of pyroptosis-
related genes between the two PYRclusters (Figures 3B,C and
Supplementary Table 3) and found that PYRcluster1 has a
higher expression of NLRC4, NLRP6, CASP5, CASP8, CASP9,
GSDMC, and AIM2, whereas PYRcluster2 has a higher
expression of GPX4, GSDMD, PYCARD, TNF, IL6, NLRP2,
NLRP7, GSDMA, CASP6, GSDMB, NOD1, GZMA, and GZMB.

Subsequently, we found that PYRcluster2 has a higher
hospital-free days post 45-day follow-up (HFD45), ventilator-
free days and a lower proportion of mechanical ventilation than
PYRcluster1 (Figures 3D, E and Supplementary Figure 3C),
B

C

D E F

A

FIGURE 3 | (A) Consensus clustering matrix for k = 2. (B) The heatmap of 35 pyroptosis-related genes between the two PYRclusters. Red represents high
expression; blue represents low expression. (C) Boxplot of significant pyroptosis-related genes’ relative expression between two PYRclusters. (D–F) The HFD45,
ventilator-free days, D-dimer levels between the two PYRclusters. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
July 2022 | Volume 13 | Article 888661
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which suggests a better prognosis. The blood D-dimer level of
PYRcluster1 is significantly higher than that of PYRcluster2
(Figure 3F), indicating hypercoagulation. Although albumin
and hemoglobin of the two PYRclusters are mostly below the
normal range (green dashed line), PYRcluster1 deviates further
from the normal range than PYRcluster2. Other clinical features
do not differ significantly between the two clusters
(Supplementary Figures 2A–C). Based on these results, the
highly expressed pyroptosis-related genes of PYRcluster1 may
be associated with a poor prognosis. In line with our results,
AIM2 and NLRC4 deficiency in dogs and cats provide a
protective effect against SARS-CoV-2 by reducing cytokine
storm-induced host damage (43).

We further determined differentially expressed genes
(DEGs) using the “limma” package, with cutoff criteria of |
logFC| >1 and p=0.05, totaling 570 DEGs, and employed Gene
ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichments (Figure 4A and Supplementary
Figure 2E). In addition, we determined the logFC of 736
proteins between two PYRclusters (FC=PYRcluster2/
PYRcluster1) using “limma” from the proteomic data from
the same study as the transcriptome data. Subsequently, we
employed gene set enrichment analysis (GSEA) based on the
log2FC of these proteins (Supplementary Figure 2D,
Supplementary Table 4).

Immune responses such as antigen recognition/presentation,
immune cell activation, migration, and replication are relatively
enhanced in PYRcluster2 (Figure 4A and Supplementary
Figure 2E). Both transcriptome and proteomic results revealed
hyperinflammation in PYRcluster1 (Supplementary Figure 2D,
Supplementary Table 6). KEGG pathway enrichment data
showed that “Coronavirus disease-COVID-19” pathways are
markedly upregulated in PYRcluster2, underscoring a highly
activated immune process unique to PYRcluster2. PYRcluster1
has a higher NO synthesis level than PYRcluster2, which may be
related to the antiviral capacity of its patients (61–63). The highly
activated stress response pathway may associated with severe
damage caused by the virus and lead to higher levels of immune
cell apoptosis in PYRcluster1 (Supplementary Figure 2D,
Supplementary Table 6). Furthermore, PYRcluster1 has a
markedly increased expression of cytokines, including IL-1, IL-
6, IL-8, IL-10, and TNF (Supplementary Table 6), which are
typical components of a cytokine storm and result in a poor
prognosis (64, 65). Consistent with an increased D-dimer
(Figure 3F), the neutrophil extracellular traps (NETs) that
promote blood coagulation are highly expressed in
PYRcluster1, promoting venous thrombosis and leading to
poor prognosis (66, 67). In addition, AIM2, CXCR2 and
UBE2W, which were significantly highly expressed in
PYRcluster1, were included in the 20 genes associated with
distinctly methylated CpG sites between mild and severe
COVID-19 patients (68). Their odds ratios were all greater
than 1, indicating that their downregulation is beneficial to
COVID-19 patients. In conclusion, the two PYRclusters of
COVID-19 patients exhibited distinct pyroptotic patterns and
clinical features.
Frontiers in Immunology | www.frontiersin.org 6
Different Pyroptotic Patterns are
Associated with Different Leukocytes and
Opposite Prognosis
SARS-CoV-2 viruses infect leukocytes and lead to
immunodeficiency (69–71). We speculate that leukocyte
pyroptosis helps to destroy the virus protective niche and release
viruses from cells, thereby enhancing viral clearance and immune
recovery. As a result, viruses released by pyroptosis may be further
removed by phagocytic cells via phagocytosis.

We first assessed the proportion of different immune cells in the
two PYRclusters by ssGSEA. Immune cells highly associated with
antivirals, such as activated B, CD4/8+ T, Treg, and NK cells are
highly expressed in PYRcluster2 (Figure 4B and Supplementary
Figure 4A, Supplementary Table 7). PYRcluster1 had a higher
proportion of pro-inflammatory neutrophils. Using “Cibersort”, we
discovered PYRcluster2 had a higher proportion of anti-
inflammatory M2 macrophages (Supplementary Figure 4A).
The hemogram percentages of several cells, such as neutrophils,
lymphocytes and monocytes, were consistent with the results of
ssGSEA (Supplementary Figure 3F). We then used the “estimate”
package to score the two clusters and found that PYRcluster2
shows a greater increase in immune cell infiltration than
PYRcluster1 (Figure 4C). As shown in Figure 4D, the
expression of characteristic pyroptosis-related genes of
PYRcluster1 were significantly positively correlated with its
expression of characteristic immune cells. For example,
PYCARD, GPX4, GSDMD, GZMA, TNF, NOD1, IL6, NLRP7,
CASP6, GSDME, PJVK, GSDMA, and NLPR2 are positively
correlated with NK, NKT, regulatory T, gd T, activated B, and
Th17 cells, MDSCs, and monocytes (Figure 4D). Both these
pyroptosis-related genes and immune cells are highly expressed
in PYRcluster2 (Figures 3C, 4B). Furthermore, leukocytes have
stronger phagocytic activity in GO enrichment results in
PYRcluster2 than in PYRcluster1 (Supplementary Table 6). In
contrast, pyroptosis in PYRcluster1 may produce several pathogen-
and damage-related molecular patterns that increase cytokine
storm, leading to multiple organ failure and poor prognosis.

We subsequently performed unsupervised clustering of all
COVID-19 patients using 570 DEGs and all genes, respectively,
yielding two more clusters: DEG and All-Gene clusters. The
heatmap demonstrates that these additional clusters match a
previous clustering based on the 35 pyroptosis-related genes
(Figure 5A and Supplementary Figure 4B–D). These data
suggest that distinct patterns of pyroptosis occur in COVID-19
patients, which can be represented by 35 pyroptosis-related genes.

To better elucidate differences in pyroptotic patterns between
PYRcluster1 and PYRcluster2 and their correlation with
prognosis, we created a pyroptosis score (pyrscore)
(Supplementary Figure 4E). As shown in Figure 5B,
PYRcluster1 has a higher score than PYRcluster2. HFD45 and
ventilator-free days are negatively correlated with pyroptosis
scores (Figures 5C, D), whereas sofa, APACHE-II, D-dimer,
and CRP levels are positively correlated (Supplementary
Figures 5A–D). In conclusion, PYRcluster1 and PYRcluster2
have different levels of immune response to SARS-COV-2 and
pyroptotic patterns, resulting in distinct prognoses.
July 2022 | Volume 13 | Article 888661
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Development of A Predictive Pyroptotic
Prognosis Model
Given that different pyroptotic patterns may have a significant
impact on the prognosis of COVID-19 patients, we created a
PYRsafescore model based on the HFD45 of COVID-19
patients and DEGs across PYRclusters by least absolute
shrinkage and selection operator (LASSO) regression
Frontiers in Immunology | www.frontiersin.org 7
analysis. In a ratio of 2:1, 100 COVID-19 patients were
divided into a training group and a test group, and the model
was obtained in the training group. “Lambda-min” was chosen
as the best value in the cross-validation procedure (Figure 5E
and Supplementary Figures 5E). Lastly, based on the log2
value of the expression level of 10 genes, we established the
following scoring model:
B

C

D

A

FIGURE 4 | (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of 570 DEGs Between two PYRclusters, “up” means these pathways of
PYRcluster2 were upregulated when compared to PYRcluster1; “down” means these pathways were downregulated. (B) Leukocytes with significantly different
expression levels among PYRclusters. (C) ImmuneScore calculated by “estimate” package between two PYRclusters. (D) Pearson’s correlation between expressions
of 35 pyroptosis-related genes and abundance of leukocytes, R value represents the Pearson’s correlation coefficient. Annotated bars above and to the left indicate
in which PYRcluster each pyroptosis-related gene or leukocyte is highly expressed.
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PYRsafescore = 0:024522643 � PEBP1 + 0:279568268 � IL2RB + 3:19881976 �HLA − DMB+

0:477980193 � ZNF683 + −0:553440043 � IL1R2ð Þ + −0:318430005 � C3orf 86ð Þ + 1:999292597�
CD8A + 0:82422511� TGFBI + −0:050606043� ADAMTS2ð Þ + 0:29910421� FCER1A :

The area under the ROC curve (AUC) values of the model in
the training and test groups were 0.907 and 0.879, respectively,
indicating that our predictive model performs well (Figure 5F).
HFD45 and PYRsafescore are positively correlated (Figure 6A),
which suggests that a higher PYRsafescore indicates a better
Frontiers in Immunology | www.frontiersin.org 8
prognosis. In addition to HDF45, the correlation of other clinical
variables with PYRsafescore, including sofa, ventilator-free days,
APACHE-II, and CRP levels, also demonstrates that our model
works effectively (Figures 6B, C and Supplementary
Figures 6A, B). Additionally, the expression of these 10 genes
between the two PYRclusters also has significant differences
(Figure 6D). KEGG analysis indicates that they were closely
related to the patient’s immune response (Figure 6E).
B C D

E F

A

FIGURE 5 | (A) Heatmap of the DEGs between the gene clusters, different clinical data was shown in the annotation. (B) Pyrscore between two PYRclusters. (C, D)
Pearson’s correlations between pyrscore and ventilator-free days(C), HFD45 (D), R value represents the Pearson’s correlation coefficient; grey area represents the
95% confidence interval for the linear fit. The maximum value of ventilator-free days is 28 since this 28-day time frame was initially chosen because most subjects
with ARDS will have died or been extubated by Day 28. (E) Mean-squared error (MSE) of different numbers of variables revealed by the LASSO regression model.
The red dots represent the MSE values; the grey lines represent the standard error (SE); the two vertical dotted lines on the left and right, respectively, represent
optimal values by minimum criteria and 1-SE criteria. “Lambda” is the tuning parameter. (F) AUC of patients in the training group and test group. *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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In conclusion, our results proved that the newly created
prognosis model has a considerable clinical predictive value.
Transcriptional Regulatory Networks
and Potential Drugs in Different
Pyroptosis Patterns
Using the “clusterProfiler” package, we first enriched DEGs
across PYRclusters for transcription factors based on MSigDB
Collections: “regulatory target gene sets” (Figure 6F). We further
Frontiers in Immunology | www.frontiersin.org 9
enriched the transcription factor regulatory networks for all
transcriptome data of the two PYRclusters using the
“CoRegNet” package. PYRcluster1 has the regulatory network
with MNDA, TSC22D3, HMGB2, FOS, EEF1A1, TRIM22,
NFKBIA as transcription factors, and PYRcluster2 has the
regulatory network with FOS, MNDA, EEF1A1, DAZAP2,
DDIT3, HCLS1, NFKBIA, TSC22D3, PTMA, and TRIM22
(Figure 7A and Supplementary Figure 6C, Supplementary
Table 8). Notably, both PYRcluster1 and PYRcluster2 are
regulated by FOS, EEF1A1, MNDA, and TRIM22.
B

C D

E F

A

FIGURE 6 | (A, B, C) Pearson’s correlations between PYRsafescore and HFD45 (A), ventilator-free days (B), APACHE-II (C), R value represents the Pearson’s
correlation coefficient; grey area represents the 95% confidence interval for the linear fit. (D) Heatmap of signature genes of PYRsafescore; expression of these genes
was highly correlated with HFD45 and PYRsafescore. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of signature genes of PYRsafescore. (F)
Transcription factor enrichment of 570 DEGs between PYRclusters using “clusterProfiler” package based on MSigDB gene set: TFT (transcription factor targets) gene
set.
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Once SARS-COV-2 infects cells, EEF1A1 is critical for viral
replication. Drug targeting EEF1A has robust antiviral effects in
vitro (72). The nuclear factor-kappaB (NF-kappaB)/REL family
of transcription factors are activated in response to DNA damage
to regulate inflammation and apoptosis resistance (73, 74). Since
NFKBIA is highly expressed in COVID-19 patients (75) and
tripartite motif-containing (TRIM) 22 can activate NF-kappaB
(76) to protect the host from viral infection (77), these two genes
have a huge impact on immune disparities between the two
PYRclusters. MNDA is a member of the family of hematopoietic
interferon (IFN)-inducible nuclear proteins that promotes the
degradation of the anti-apoptotic factor MCL-1 and apoptosis in
myeloid cells (78, 79).
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We then observed the correlation between these
transcription factors and the expression of differentially
expressed pyroptosis-related genes between PYRclusters and
the clinical characteristics of all patients. The correlations
between transcription factors and pyroptosis-related genes
vary greatly, depending on the PYRclusters (Figure 7B).
Pyroptosis-related genes highly expressed in PYRcluster1 are
positively correlated with FOS, MAML1, DAZAP2, STAT6,
STAT5B, ETS2, HCLS1, TSC22D3, HMGB2, MNDA, TRIM22,
NFKBIA, and DDIT3, whereas genes highly expressed in
PYRcluster2 are positively correlated with ZNF623, PSMB5,
PTMA, EEF1A1, ETS1, CEBPA, and USF2. Moreover, some
transcription factors positively correlated with pyroptosis-
B C

A

FIGURE 7 | (A) Transcription factors regulatory network of PYRcluster1. “Degree” means the number of edges connected to the node. (B) Pearson’s correlation of
differentially expressed pyroptosis-related genes and transcription factors in PYRclusters; R value represents the Pearson’s correlation coefficient. Annotation on the
left represents in which PYRcluster each pyroptosis-related gene is significantly highly expressed. (C) Pearson’s correlation between different clinical data and
transcription factors; R value represents the Pearson’s correlation coefficient.
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related genes in PYRcluster2 also have a positive effect on
prognosis (Figure 7C).

Taken together, these findings show that distinct pyroptotic
patterns may result from different upstream transcriptional
regulation pathways. In light of this, we searched the ChEMBL
database for compounds that promote or inhibit appropriate
transcription factors based on diverse roles in prognosis (51). We
screened a total of 112 compounds (Supplementary Table 9)
and found that CHEMBL348436 (also known as Cirsimaritin)
has the potential to regulate blood leukocyte pyroptosis in
COVID-19 patients while simultaneously improving prognosis
through FOS and NFKB1A inhibition. In fact, drugs targeting
FOS have therapeutic effects in COVID-19 patients (80).
DISCUSSION

Pyroptosis, a mechanism of programed cell death which leads to
cell swelling and lysis, plays a key role in innate immunity by
disrupting the pathogen replication niche and killing
intracellular bacteria through pore-induced intracellular traps
(25, 26). However, excessive pyroptosis may trigger an overactive
inflammatory response, resulting in a cytokine storm and severe
organ damage through IL-6, TNF and NETs (81–83).

The occurrence of a cytokine storm is a major factor in the
progression of moderate-to-severe COVID-19. In the therapy of
COVID-19, multi-organ failure induced by cytokine storm has
become a significant issue (84). Despite the relevance of
pyroptosis in the treatment of severe COVID-19 patients,
research on COVID-19 and pyroptosis is currently limited.
Some studies suggest that the elevated pyroptosis is not
conducive to the treatment of the disease but closely related to
SARS-CoV-2 infection and cytokine storm (17, 35, 42, 43). By
contrast, other studies show that pyroptosis can also be beneficial
in fighting SARS-CoV-2 infection (40, 41). A dual role for
Frontiers in Immunology | www.frontiersin.org 11
NLRP3 was reported in a recent study according to which
inflammasome-dependent pyroptosis contributes to the
hyperinflammatory state of the lungs. However, pyroptosis can
release infectious virus, preventing a productive viral cycle,
which can help to eliminate viruses (85). In conclusion, the
role of pyroptosis in COVID-19 remains unclear.

From the transcriptome data of COVID-19 patients, we
found that the blood leukocytes of COVID-19 patients have
typical characteristics of pyroptosis. Of the 35 pyroptosis-related
genes retrieved from the database, 19 are significantly elevated in
COVID-19 patients. Using an unsupervised clustering approach
with non-negative matrix factorization, we classified the
COVID-19 patients into two populations with distinct
pyroptosis patterns. PYRcluster1 featured high AIM2, CASP1,
CASP4, CASP5, CASP8, GSDMC, IL1B, NLRC4, NLRP3, NLRP6,
and SCAF11 expression, whereas PYRcluster2 featured high
CASP6, GPX4, GSDMA, GSDMB, GSDMD, GZMA, GZMB,
IL6, NLRP2, NLRP7, NOD1, PJVK, PLCG1, PYCARD, and
TNF expression.

Although the most well-known pyroptotic pathway in the
present study contain NLRP3, CASP1, and GSDMD (21),
pyroptosis can be induced by different inflammatory caspases
and involves varied gasdermin proteins, such as NLRC4, caspase-
3, caspase-8, caspase-11/4/5 and GSDMC (20, 86–89).

In combination with other clinical information, we found that
PYRcluster2 patients had a better prognosis, including a longer
HFD45 and a lower ICU hospitalization rate. PYRcluster2
patients also had more immune cells and a higher immune
score. Furthermore, the expression of immune cells was highly
correlated with the expression of pyroptosis-related genes. To
better elucidate the pyroptotic patterns and prognosis, we
calculated the “pyrscore” to characterize different pyroptotic
patterns and the “PYRsafescore” to better predict prognosis
and assist clinical treatment. Higher PYRsafescore scores mean
a better prognosis.
FIGURE 8 | Different patterns of pyroptosis of blood leukocytes in patients with COVID-19.
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Lastly, by transcription factor enrichment, we identified the
upstream transcription factors that regulate different pyroptotic
patterns and screened a series of compounds with therapeutic
potential in public databases.

Currently, only a few drugs are available for controlling SARS-
CoV-2 infection, including monoclonal antibodies that neutralize
viral proteins (90–92), drugs that inhibit viral replication (93), and
new oral drugs from Pfizer and Merck, namely PAXLOVID and
Molnupiravir, which inhibit viral replication and viral proteases,
respectively (94, 95). Methods for managing excessive
inflammatory response, which is the leading cause of severe
COVID-19, are very limited and less effective (96): For example,
heparin is widely used to prevent blood clots, and some
immunosuppressants such as dexamethasone, IL-6 monoclonal
antibodies and JAK kinase family inhibitors are used to inhibit
inflammation (12–15, 97–99). Our results suggest that pyroptosis
plays a key role in the generation of a hyperinflammatory immune
response. Therefore, therapeutic strategies targeting pyroptosis
have potential value in managing inflammation and hence
reducing COVID-19 severity and mortality.

In conclusion, our data reveal different patterns of pyroptosis of
blood leukocytes in patients with COVID-19, which is closely
related to their prognosis. We speculate the mechanism
underlying diverse prognoses is shown in Figure 8. Prognosis
prediction models developed based on different pyroptosis
patterns are highly valuable for COVID-19 treatment. In
addition, compounds that target the transcription factor network
that regulates the pyroptotic process may help to develop new
drugs for the treatment of patients with severe COVID-19.
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