115 research outputs found

    A Pseudo Nearest-Neighbor Approach for Missing Data Recovery on Gaussian Random Data Sets

    Get PDF
    Missing data handling is an important preparation step for most data discrimination or mining tasks. Inappropriate treatment of missing data may cause large errors or false results. In this paper, we study the effect of a missing data recovery method, namely the pseudo- nearest neighbor substitution approach, on Gaussian distributed data sets that represent typical cases in data discrimination and data mining applications. The error rate of the proposed recovery method is evaluated by comparing the clustering results of the recovered data sets to the clustering results obtained on the originally complete data sets. The results are also compared with that obtained by applying two other missing data handling methods, the constant default value substitution and the missing data ignorance (non-substitution) methods. The experiment results provided a valuable insight to the improvement of the accuracy for data discrimination and knowledge discovery on large data sets containing missing values

    In situ atomic-scale oscillation sublimation of magnesium under COâ‚‚ conditions.

    Get PDF
    Understanding the interactive role between Mg and CO₂ is crucial for many technological applications, including CO₂ storage, melting protection, corrosion resistance, and ceramic welding. Here we report observations of rapid oscillation sublimation of Mg at room temperature in the presence of both CO₂ gas and electron irradiation using environmental transmission electron microscopy. The sublimation is mainly related to phase transformation of amorphous MgCO₃. Differing from the direct formation of gas-state MgCO₃, which attributes to the sublimation of pure Mg under a mild electron beam dose, a unique oscillation process is detected during the process of Mg sublimation under a harsh electron beam dose. The main reason stems from the first-order reaction of a reversible decomposition-formation of amorphous MgCO₃. These atomic-level results provide some interesting insights into the interactive role between Mg and CO₂ under electron beam irradiation

    In-situ atomic-scale phase transformation of Mg under hydrogen conditions.

    Get PDF
    Magnesium hydrogenation issue poses a serious obstacle to designing strong and reliable structural materials, as well as offering a safe alternative for hydrogen applications. Understanding phase transformation of magnesium under hydrogen gas plays an essential role in developing high performance structural materials and hydrogen storage materials. Herein, we report in-situ atomic-scale observations of phase transformation of Mg and Mg-1wt.%Pd alloy under hydrogen conditions in an aberration-corrected environmental transmission electron microscopy. Compare with magnesium hydrogenation reaction, magnesium oxidation reaction predominately occurs at room temperature even under pure hydrogen gas (99.9%). In comparison, magnesium hydrogenation is readily detected in the interface between Mg and Mg6Pd, due to catalytic role of Mg6Pd. Note that the nanoscale MgH2 compound transfers into MgO spontaneously, and the interface strain remarkably varies during phase transformation. These atomic-level observations and calculations provide fundamental knowledge to elucidate the issue of magnesium hydrogenation

    Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins.

    Get PDF
    Light-weight magnesium alloys with high strength are especially desirable for the applications in transportation, aerospace, electronic components, and implants owing to their high stiffness, abundant raw materials, and environmental friendliness. Unfortunately, conventional strengthening methods mainly involve the formation of internal defects, in which particles and grain boundaries prohibit dislocation motion as well as compromise ductility invariably. Herein, we report a novel strategy for simultaneously achieving high specific yield strength (∼160 kN m kg-1) and good elongation (∼23.6%) in a duplex magnesium alloy containing 8 wt % lithium at room temperature, based on the introduction of densely hierarchical {1011}-{101 1} double contraction nanotwins (DCTWs) and full-coherent hexagonal close-packed (hcp) particles in twin boundaries by ultrahigh pressure technique. These hierarchical nanoscaled DCTWs with stable interface characteristics not only bestow a large fraction of twin interface but also form interlaced continuous grids, hindering possible dislocation motions. Meanwhile, orderly aggregated particles offer supplemental pinning effect for overcoming latent softening roles of twin interface movement and detwinning process. The processes lead to a concomitant but unusual situation where double contraction twinning strengthens rather than weakens magnesium alloys. Those cutting-edge results provide underlying insights toward designing alternative and more innovative hcp-type structural materials with superior mechanical properties

    Heterogeneous Ti3SiC2@C-containing Na2Ti7O15 architecture for high-performance sodium storage at elevated temperatures.

    Get PDF
    Rational design of heterogeneous electrode materials with hierarchical architecture is a potential approach to significantly improve their energy densities. Herein, we report a tailored microwave-assisted synthetic strategy to create heterogeneous hierarchical Ti3SiC2@C-containing Na2Ti7O15 (MAX@C-NTO) composites as potential anode materials for high-performance sodium storage in a wide temperature range from 25 to 80 {deg}C. This composite delivers first reversible capacities of 230 mAh g-1 at 200 mA g-1 and 149 mAh g-1 at 3000 mA g-1 at 25 {deg}C. A high capacity of ~93 mAh g-1 without any apparent decay even after more than 10 000 cycles is obtained at an ultrahigh current density of 10 000 mA g-1. Moreover, both a high reversible capacity and an ultralong durable stability are achieved below 60 {deg}C for the same composites, wherein a 75.2% capacity retention (~120 mAh g-1 at 10 000 mA g-1) is achieved after 3000 cycles at 60 {deg}C. To the best of our knowledge, both the sodium storage performances and the temperature tolerances outperform those of all the Ti-based sodium storage materials reported so far. The superior sodium storage performances of the as-synthesized composites are attributed to the heterogeneous core'shell architecture, which not only provides fast kinetics by high pseudocapacitance but also prolongs cycling life by preventing particle agglomeration and facilitates the transportation of electrons and sodium ions by large micro/mesopore structure

    Self-reductive synthesis of MXene/Na0.55Mn1.4Ti0.6O4 hybrids for high-performance symmetric lithium ion batteries.

    Get PDF
    Increasing environmental problems and energy challenges have created an urgent demand for the development of green and efficient energy-storage systems. The search for new materials that could improve the performance of Li-ion batteries (LIBs) is one of today's most challenging tasks. Herein, a stable symmetric LIB based on the bipolar material-MXene/Na0.55Mn1.4Ti0.6O4 was developed. This bipolar hybrid material showed a typical MXene-type layered structure with high conductivity, containing two electrochemically active redox couples, namely, Mn4+/Mn3+ (3.06 V) and Mn2+/Mn (0.25 V). This MXene/Na0.55Mn2O4-based symmetric full cell exhibited the highest energy density of 393.4 W h kg−1 among all symmetric full cells reported so far, wherein it is bestowed with a high average voltage of 2.81 V and a reversible capacity of 140 mA h g−1 at a current density of 100 mA g−1. In addition, it offers a capacity retention of 79.4% after 200 cycles at a current density of 500 mA g−1. This symmetric lithium ion full battery will stimulate further research on new LIBs using the same active materials with improved safety, lower costs and a long life-span

    Statistical optimization for tannase production by Aspergillus tubingensis in solid-state fermentation using tea stalks

    Get PDF
    Background: A sequential statistical strategy was used to optimize tannase production from Aspergillus tubingensis using tea stalks by solid-state fermentation. Results: First, using a Plackett\u2013Burman design, inoculum size and incubation time (among seven tested variables) were identified as the most significant factors for tannase yield. The effects of significant variables were further evaluated through a single steepest ascent experiment and central composite design with response surface analysis. Under optimal conditions, the experimental value of 84.24 units per gram of dry substrate (U/gds) closely matched the predicted value of 87.26 U/gds. Conclusions: The result of the statistical approach was 2.09 times higher than the basal medium (40.22 U/gds). The results were fitted onto a second-order polynomial model with a correlation coefficient (R2) of 0.9340, which implied an adequate credibility of the model

    3D Plotting of Gold Solubility and Gold Fineness: Quantitative Analysis of Ore-Forming Conditions in Hydrothermal Gold Deposits

    Get PDF
    The 3D plotting of gold solubility and gold fineness aims to illustrate how to quantify their correlations with ore-forming conditions in hydrothermal gold deposits. The thermodynamic calculation of the Au-Ag solid solutions in Mathematica and the 3D plotting in MATLAB are used to build isopleths of gold solubility and gold fineness at different temperatures (200℃, 400℃), pressures (0.1, 5 kbar), salinities (1, 40 wt% NaCl eq.), and sulfur concentrations (0.01, 0.5 mol/kg). The plot indicates that the ore-forming conditions have different correlations with gold solubility and gold fineness. Average rates of change for the correlations are quantified, showing distinct values in the four pH-logfO2 fields of (I) HSO4−, (II) SO42−, (III) H2S, and (IV) HS−, where dominant gold and silver complexes have different dependencies on the conditions. The quantification of the plots illustrates that a decrease in gold solubility by one order of magnitude is possibly caused by a decrease in temperature of ≥40℃, the salinity of ≥9.6 wt% NaCl eq. or sulfur concentration of ≥0.14 mol/kg, or an increase in pressure of ≥3 kbar, while a decrease in gold fineness by 100 units is possibly caused by a decrease in temperature of ≥14 ℃, pressure of ≥1.4 kbar, or salinity of ≥4 wt% NaCl eq., or an increase in sulfur concentration of ≥0.07 mol/kg. Quantification results suggest that a sharp decrease in temperature may result in large-scale gold mineralization and a great variation in gold fineness. In addition, the quantification reveals that the correlation between gold solubility and gold fineness can be expressed by a function, providing a rapid method for 3D plotting

    Dissipation Theory-Based Ecological Protection and Restoration Scheme Construction for Reclamation Projects and Adjacent Marine Ecosystems.

    Get PDF
    According to the 2017 results of the Special Inspector of Sea Reclamation, a substantial number of idle reclamation zones existed in 11 provinces (cities) along the coast of China. To improve the protection level of coastal wetlands and strictly control reclamation activities, it is necessary to carry out ecological restoration of reclamation projects and adjacent marine ecosystems. The characteristics of Guanghai Bay and its reclamation project are typical in China’s coastal areas, making it an optimal representative site for this study. The dissipative structure and entropy theory was used to analyze ecological problems and environmental threats. The analytic hierarchy process was applied to determine the order of the negative entropy flow importance. The entropy increase and decrease mechanism was used to determine an ecological protection and restoration scheme for the reclamation, including the reclamation of wetland resource restoration, shoreline landscape restoration, environmental pollution control, and marine biological resource restoration. Finally, based on system logic, a typical ecological restoration system was constructed east of Guanghai Bay, with the mangrove wetland area as the model in the north and the artificial sandbeach recreation area as the focus in the south

    Hydrogenated core-shell MAX@K2Ti8O17 pseudocapacitance with ultrafast sodium storage and long-term cycling.

    Get PDF
    Sodium-ion batteries are considered alternatives to lithium-ion batteries for energy storage devices due to their competitive cost and source abundance. However, the development of electrode materials with long-term stability and high capacity remains a great challenge. Here, this paper describes for the first time the synthesis of a new class of core-shell MAX@K2Ti8O17 by alkaline hydrothermal reaction and hydrogenation of MAX, which grants high sodium ion-intercalation pseudocapacitance. This composite electrode displays extraordinary reversible capacities of 190 mA h g-1 at 200 mA g-1 (0.9 C, theoretical value of ~219 mA h g-1) and 150 mA h g-1 at 1000 mA g-1 (4.6 C). More importantly, a reversible capacity of 75 mA h g-1 at 10 000 mA g-1 (46 C) is retained without any apparent capacity decay even after more than 10 000 cycles. Experimental tests and first-principle calculations confirm that the increase in Ti3+ on the surface layers of MAX@K2Ti8O17 by hydrogenation increases its conductivity in addition to enhancing the sodium-ion intercalation pseudocapacitive process. Furthermore, the distorted dodecahedrons between Ti and O layers not only provide abundant sites for sodium-ion accommodation but also act as wide tunnels for sodium-ion transport
    • …
    corecore