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1 
2 
3 
4 Abstract 
5 
6 
7 Understanding the interactive role between Mg and CO2  is crucial for many technological 
8 
9 
10 applications, including CO2  storage, melting protection, corrosion resistance and ceramic 
11 
12 welding. Here we report observations of rapid oscillation sublimation of Mg at room 
14 
15 temperature in the presence of both CO2  gas and electron irradiation using environmental 
16 
17 

18 transmission electron microscopy. The sublimation is mainly related to phase 
19 
20 transformation of amorphous MgCO3. Differing from the direct formation of gas-state 
21 
22 
23 MgCO3  which attributes to the sublimation of pure Mg under a mild electron beam dose, a 
24 
25 unique oscillation process is detected during the process of Mg sublimation under a harsh 
27 
28 electron beam dose. The main reason stems from the first-order reaction of a reversible 
29 
30 

31 decomposition-formation of amorphous MgCO3. These atomic-level results provide some  
32 
33 interesting insights into the interactive role between Mg and CO2 under electron beam 
34 
35 
36 irradiation. 
37 
38 
39 
40 
41 
42 
43 

44 KEYWORDS: Magnesium; Sublimation; Phase transformation; Oscillation 
45 
46 
47 
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1 
2 
3 
4 Introduction 
5 
6 
7 

As one of active metals, the role between magnesium and gas is an inevitable issue, 
9 
10 proventing the development and service of Mg-based materials. Especially, the interactive 
11 
12 
13 role between Mg and CO2 is of importance to control functions in mangy industrial 
14 
15 applications, such as CO2 storage,1 metal-air batteries,2 melting protection,3  corrosion 
17 
18 resistance4 and ceramic welding.5 Sublimation, as a fundamental chemical-physical 
19 
20 

phenomenon, is an intense endothermic phase transition between solid and vapor along 
22 
23 with chemical reactions, in which the atoms break away from their neighbors in the crystal 
24 
25 
26 lattice and then they are removed into gas phase.6  Interpreting the sublimation mechanism 
27 
28 of Mg under CO2  condition may have a great influence on above-mentioned applications 
30 
31 from the scientific interest in combination of the viewpoints of industry. Nevertheless, the 
32 
33 

majority of previous investigations relative to the sublimation of Mg focused on the 
35 
36 equilibrium thermodynamic parameters (enthalpy, vapor pressure, free energy),7 the 
37 
38 
39 kinetics of vaporization in Mg alloys 8, and the observation under a simple oxygen  
40 
41 condition.9  The direct experimental results on this sublimation process are scarce so far 
43 
44 owing to high reaction activity and severe reaction temperatures. 
45 
46 
47 

To probe the interactive role between gas and metals, researchers have developed 
49 
50 several different methods- such as scanning microscopy observation,10 ambient pressure 
51 
52 
53 X-ray photoelectron spectroscopy11  and in-situ environmental transmission electron 
54 
55 microscopy (ETEM).12  Differing from conventional techniques, ETEM that has been 
57 
58 evolved recently offers the capability for temperature-, time-, and pressure-resolved 
59 
60 
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1 
2 
3 
4 imaging of the interactive role between gas/vapour and a solid, as well as the 
5 
6 

surface/subsurface layers of materials by introducing a reactive gas to the sample while 
8 
9 simultaneously monitoring the structural evolution at the atomic level 13-15. It provides a 
10 
11 
12 unique, important route to look into the spatial details of chemical reaction. Herein, by 
13 
14 performing a gas flow of CO2  and in situ ETEM, we firstly investigated the influence of 
16 
17 both CO2  and electron-beam (e-beam) irradiation on the sublimation behavior of Mg in 
18 
19 

terms of e-beam dose, gas flow rate and kinetics process. 
21 
22 
23 Results and discussion 
24 
25 
26 In-situ sublimation of Mg under CO2  irradiation condition 
28 
29 

30 To probe the sublimation of pure Mg under CO2  irradiation environments, a high purity 
31 
32 Mg ingot has been prepared by our chill-casting method.16  The Mg slice along [1213] 
33 
34 
35 which was prepared by means of a focus ion beam cutting was selected to identify phase 
36 
37 transformation. Unpredictably, when a gas flow of CO2 was charged, a severe sublimation 
39 
40 phenomenon was detected at room temperature under e-beam irradiation. Moreover, as 
41 
42 

43 shown in Figure 1a, a new hierarchical structure is observed in the front of sublimation 
44 
45 edge. The core is crystal Mg, confirmed by selected area fast Fourier transformation (FFT) 
46 
47    

48 pattern along the [1213] direction (Figure 1b). The separated islands near to pure Mg are 
49 
50 assigned to MgO in terms of FFT pattern (Figure 1c). The orientation relationship (ORs) 
52 
53 between Mg and MgO have been confirmed by the high revolution transmission electron 
54 
55 

 

56 microscopy (HRTEM, Figure 1b), wherein the OR is (0111)Mg||(020)MgO. This OR is akin 
57 
58 to the oxidation behavior of pure Mg under high pure hydrogen condition,17  but it is 
59 
60 
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1 
2 
3 
4 different from that observed results in the high-temperature oxidation, i.e., (112 
5 
6 

7 0)Mg 
8 

||(220)  MgO and [2110]Mg ||[001]  MgO ,18  and the low-temperature confined growth of MgO, 

 
 9 i.e., (0002)Mg||(110)MgO and [2110]Mg|| [001]MgO.19 In addition, the in-situ observation 

10 
11 
12 results (Movie 1) reveal that an amorphous layer with a thickness of ~8 nm is detected on 
13 
14 the surface of the sample. With increasing the sublimation time, the interface shrinks 
16 
17 rapidly, but the thickness of the amorphous layer remains relatively stable. Attractively, this 
18 
19 

severe sublimation phenomenon only occurs with the coexistence of CO 
21 

gas and e-beam 

22 irradiation. Specifically, a number of squared-like MgO particles are observed in the 
23 
24 
25 sample by adding e-beam irradiation without CO2 (Figure S1a), which might be related to 
26 
27 the adsorptive oxygen during sample preparation.20  In contrast, some Morie fringes and a 
29 
30 lot of MgO phases are observed can be detected with the CO2  gas (under a beam-blanking 
31 
32 

mode, Figure S1b), which is ascribe to the high chemical activity of Mg. Therefore, it can 
34 
35 be confirmed that both CO2  gas and e-beam irradiation are the prerequisites for the rapid 
36 
37 
38 sublimation of pure Mg. 
39 
40 To further identify the phase composition on the unique hierarchical structure, both 
42 
43 electron energy loss spectroscopy (EELS) and in-situ selected area electron diffraction 
44 
45 

(SAED) have been performed. The low-loss and core-loss of EELS results (Figure 2a,b) 
47 
48 show that the core and the medium layers are mainly composed of Mg (23.5 eV) and MgO 
49 
50 
51 (11.3, 22.6 and 534.2 eV), respectively, which are consistent with the FFT patterns. 
52 
53 Comparatively, the amorphous layer is mainly contains of Mg, C and O, which might be 
55 
56 associated with MgCO3. This same amorphous phase has also confirmed in ceramic 
57 
58 

nanowelding of MgO under CO 
60 

gas.5  The phase transformation during the reaction process 

2 

2 
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1 
2 
3 
4 has been confirmed by in-situ SAED. The results (Figure 2c-e) demonstrate that the Mg 
5 
6 

7 firstly changes into crystalline MgO, and then the MgO varies into amorphous MgCO3. 
8 
9 
10 Effect of e-beam doses on sublimation of Mg 
11 
12 
13 To probe the effect of e-beam doses on the sublimation of Mg, the sublimation 
14 
15 

16 processes of Mg under different e-beam doses have been investigated. In the case of a mild 
17 
18 dose e-beam of 5×104 e/nm2·s, the hierarchical structure formed in the initial stage, and 
19 
20 
21 then the structure maintains stable (Movie 2). With retarding the irradiation time, the whole 
22 
23 interface shrinks continuously, but the surface contour of the sample remains invariable. In 
25 
26 addition, except for the Mg, MgO and MgCO3, there are some droplets on the surface, 
27 
28 

29 which is confirmed as amorphous graphite-carbon, in terms of EELS result (Figure 2a). 
30 
31 This result is consistent with the calcination mechanism of Mg under CO2 condition.21 
32 
33 
34 Time-lapse images show (Figure 3a-d) that some cracks forms on the surface of the sample 
35 
36 with increasing the irradiation time. The maximum sublimation rate (based on the variation 
38 
39 distance of the sublimation tip) is ~1 nm·s-1. Meanwhile, some quadrate-like particles are 
40 
41 

42 detected near to the tip of sublimation edge. Both of them are related to the presence of 
43 
44 MgO phases, in which the large stress between the interface of Mg and MgO results in the 
45 
46 
47 formation of cracks.22 
48 
49 In contrast, the surface changes into more active with increasing the e-beam dose to 
51 
52 1×105  e/nm2·s (Figure 3c-f, Movie 3). On the one hand, the exterior amorphous layer 
53 
54 

55 slightly shinks with retarding irradiation time, analogous to the sublimation of Mg under a 
56 
57 mild e-beam dose. On the other hand, some bubbles are detected near to the amorphous 
58 
59 
60 layer. These bubbles were observed to oscillate continuously, with both inflation and 
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1 
2 
3 
4 deflation of the bubble dimension with time. The maximum sublimation rate increases to 
5 
6 

~1.8 nm·s-1. Furthermore, it is worthy note that some dot-shaped particles were observed 
8 
9 after oscillation, and its number increases dependent on the oscillation frequency. The 
10 
11 
12 HRTEM image (Figure S2) shows that the nano dot-like particle is assigned to crystalline 
13 
14 MgO, with a dimension of ~15 nm. The different OR between adjacent MgO particles 
16 
17 indicates that they form discontinuously. 
18 
19 

More interestingly, the bubbles cover on the whole surface of the sample under a harsh 
21 
22 e-beam dose of 7×105  e/nm2·s (Figure 4a-d). Both inflation and deflation of the bubble 
23 
24 
25 size varies dependent on the time (Movie 4). The effect of CO2  pressure and electron dose 
26 
27 on the frequency and amplitude of the oscillatory motion has been investigated. The 
29 
30 variation in the diameter of the largest bubble was measured over time to obtain the 
31 
32 

amplitude and frequency at different pressures and electron doses. Specifically, when the 
34 
35 CO2  gas pressure was increased, the frequency of the structural oscillations and the 
36 
37 
38 amplitude (~210 nm) changed slightly (Figure 4e, Movies 4, 5). The possible reason is that 
39 
40 the fluctuation of gas flow is slight owing to the limitation of the instrument, wherein a 
42 
43 large gas flow results in the vibration of sample and gas leakage. Comparatively, an 
44 
45 

increment in e-beam irradiation results in increased oscillation frequency and decreased 
47 
48 oscillation amplitude. At a constant CO2  pressure of 1.0 mbar, the increment of the electron 
49 
50 
51 dose rate from 1×105 e/nm2·s (Movie 6) to 1×107 e/nm2·s (Movie 7) resulted in an increase 
52 
53 in the oscillation frequency from 0.05 to 0.18 Hz, while the maximum displacement 
55 
56 decreased from 42 to 21 nm (Figure 4f). 
57 
58 

Oscillation sublimation mechanism 
60 
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1 
2 
3 
4 The reaction process demonstrates that oscillation phenomenon is related to e-beam and 
5 
6 

7 CO2. The oscillatory motion suggests that the stretched bubble surface can recover after 
8 
9 shrinking, which may be related to the high mobility of gas ions which can re-adsorb the 
10 
11 
12 CO2  to re-inflate the bubbles. This process is also similar to hydrogen generation and  
13 
14 storage in NaBH4  compounds, which provides as the new method for hydrogen-energy  
16 
17 process chain and hydrogen economics.23-25 
18 
19 

Taking a single bubble as an example (Figure S4), a simple model can be performed to 
21 
22 describe the above oscillation process (Figure 4g).26  The interior of bubble is an isolated 
23 
24 
25 environment, and the gas can be treated as an ideal gas. Thus, we will have: 
26 
27 𝑝𝑝b𝑉𝑉= 𝑛𝑛𝑛𝑛T (1) 
29 
30 where 𝑝𝑝b  is the pressure inside the bubble, 𝑉𝑉 is the volume of the bubble, 𝑛𝑛 is the mole 
31 
32 

33 number of CO2 
34 

gas in the bubble, R is the gas constant, and T is the temperature. In the 

35 case of classic bubbles: 
36 
37 
38 𝑝𝑝b − 𝑝𝑝T=4S/d (2) 
39 
40 where 𝑝𝑝 is the pressure in TEM, 𝑆𝑆 is the surface energy of MgCO3, and d is the bubble size 
42 
43 (bubble diameter). Here 𝑝𝑝𝑏𝑏  ≫ 𝑝𝑝𝑇𝑇  due to the low pressure in TEM and high pressure in 
44 
45 

46 bubble to cause MgCO3 
47 

deformation. Therefore: 

48 𝑝𝑝𝑏𝑏   ≈4𝑆𝑆/d (3) 
49 
50 
51 Combine (1) and (3), notice that 𝑉𝑉 = 𝜋𝜋d3/6, we have: 
52 
53 𝑛𝑛  ≈2𝜋𝜋Sd2/3𝑛𝑛T (4) 
55 
56 This implies us: 
57 
58 

𝑛𝑛  ∝ d2 (5) 
60 
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1 
2 
3 
4 During inflation and deflation processes, if we assume gas evolution and oxygen leaking 
5 
6 

are the rate-determine steps, respectively, then: 
8 
9 For inflation process: ∆(𝑛𝑛) = 𝛼𝛼ger ∆(t) (6) 
10 
11 
12 For deflation process: ∆(𝑛𝑛) = 𝛽𝛽glr ∆(t) (7) 
13 
14 where t is the time, 𝛼𝛼ger  is the gas evolution rate, and 𝛽𝛽glr is the oxygen leaking rate. For the 
16 
17 first-order approximation, if we treat the rates of gas evolution and leaking as constants, 
18 
19 

from (5), (6) and (7) we can get: 
21 
22 ∆(d2) ∝ ∆(t) (8) 
23 
24 
25 With these approximations, the relationship ofΔ(d2)∝Δ(t) can be inferred. This 
26 
27 relationship can also be proofed by plotting the square of bubble size (d2) against time. It 
29 
30 implies that the oscillation process is related to a reversible first-order reaction.27 Moreover, 
31 
32 

further testing confirms that the double bubbles also agree the first-order reaction in terms 
34 
35 of linear trends dependent on two different stages (Figure S5). When the bubbles grow to 
36 
37 
38 larger sizes and the thickness of their skin reduces below some critical thickness (the order 
39 
40 of 1~2 nm, Movie 4), the gas molecules inside will begin to leak away and start the 
42 
43 deflation process. However, CO2  gas was activated under harsh dose e-beam irradiation, 
44 
45 

experimentally composing of CO2+, CO+, CO, O+, O2+ etc.28 Therefore, additional studies 
47 
48 are required to identify the ionc composition during the oscillation in the future. 
49 
50 
51 As a result, as illustrated in Figure 5, the whole sublimation of pure Mg under CO2 
52 
53 irradiation condition can be divided into three stages: 
55 
56 The first stage: 
57 
58 

59 Mg(s)+CO2  (s) → MgO (s) + C (s) (9) 
60 
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1 
2 
3 
4 The second stage can be shown as: 
5 
6 

7 MgO(s)+CO2  (g)↔MgCO3 (s, amorphous) (10) 
8 
9 The third stage can be divided into two types of sublimation depending on e-beam doses: 
10 
11 
12 Type I: MgCO3  (s, amorphous) → MgCO3 (g) (under a mild e-beam dose) (11) 
13 
14 Type II: MgCO3  (s) ↔ MgO (s) + CO2 (g) (under a harsh e-beam dose) (12) 
16 
17 Note that the accelerated sublimation of Mg under CO2  irradiation condition occurs at 
18 
19 

room temperature. According to the Clapeyron-Clausius equation,29 the boiling 
21 
22 temperature (Eq. 3) and decomposed temperature (Eq. 4) reduce remarkably since the  
23 
24 
25 exterior gas pressure is reduced. For instance, the decomposition temperature of MgCO3 
26 
27 changes from ~350 to ~170 oC in the case of CO2  gas pressure of 0.1 mbar. Thus, the 
29 
30 concentrated e-beam can achieve this reaction without external heat source. 
31 
32 

In addition, the disappearance of grahite-carbon might be related to the following  
34 
35 chemical reaction:  
36 
37 
38       C(s)+CO2  (g → 2CO (g)        (13) 

39 
40 Unfortunately, it is impossible  to  identify  the  prescence  of  CO  gas  under  ETEM  
 
43 observation owing to the similar elemental composition and complex ionics compositions.  
44 
45 

Note that this possible chemical reaction mainly occurs in the surface of C without forming  
47 
48 the bubbles. More imporatnly, given that the CO2  penetrates the surface of C, the mole  
49 
50 
51 amount of gas remains invariable, and the oscillation would never occur. Therefore, the  
52 
53 CO2  gas instead of CO gas accounts for the oscillation process. 
55 
56 Conclusions 
57 
58 

In-situ ETEM observations have been performed to investigate the unique sublimation of 
60 
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1 
2 
3 
4 Mg under CO2 irradiation condition. Differing from the oxidation of Mg, severe 
5 
6 

7 sublimation phenomenon is detected due to the coexistence of electron irradiation and CO2. 
8 
9 The fundamental reason is related to the formation of amorphous MgCO3. The direct 
10 
11 
12 sublimation of MgCO3  phase accounts for the continuous sublimation of pure Mg under a 
13 
14 mild electron dose. In turn, the decomposition of amorphous MgCO3  plays a crucial role in 
16 
17 accelerating the sublimation of Mg under a harsh electron dose, resulting in a unique 
18 
19 

oscillatory phenomenon. The reason for oscillation stems from the first-order reversible 
21 
22 phase transformation of MgCO3. These observations provide a thorough understanding of 
23 
24 
25 the interactive role between Mg and CO2  under e-beam irradiation, and point towards new 
26 
27 routes in the design of Mg materials with enhanced anti-corrosion and welding properties 
29 
30 under CO2 condition. 
31 
32 
33 

Experimental procedure 
35 
36 
37 High purity Mg (>99.9%) ingot was melted at 720 oC for 1 h, and then directly solidified 
38 
39 
40 by a chill-casting method. The cooling rate was below 0.5 mm/s to achieve the bar of 50 
41 
42 mm in diameter with a large grain size (~ 5 mm). The grain orientation was confirmed by 
44 
45 electron back scattered diffraction equipped with a HKL-EBSD system. The specimens 
46 
47 

were prepared by traditional mechanical grinding and polishing from 500 to 10 μm in 
49 
50 thickness, then ion-beam milling using Gatan PIPS 691 with 4 keV. The atomic structures 
51 
52 
53 of specimens were identified by high revolution transmission electron microscopy 
54 
55 (HRTEM, FEI TITAN ETEM G2: an ultra-high point resolution of 0.1 nm with a Gatan 
57 
58 Model-994 CCD digital camera and an electron energy loss spectrometer (EELS), operated 
59 
60 
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16 

25 

36 

53 

 
 

1 
2 
3 
4 at a voltage of 300 kV. The CO2  gas around the thin specimen was performed at a pressure 
5 
6 

range of 0.5 ~ 1.2 mbar during the entire experiments, and the range of e-beam dose is 
8 
9 between 5×103 and 1×107 e/nm2·s. Video and image recording were started only until the 
10 
11 
12 range of pressure of dioxide-gas was reached. 
13 
14 
15 Supporting Information Available 
17 
18 

19 Additional figures and movies as described in the text. This material is available free of 
20 
21 charge via the Internet. 
22 
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