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Abstract 

Magnesium hydrogenation issue poses a serious obstacle to designing strong and 

reliable structural materials, as well as offering a safe alternative for hydrogen 

applications. Understanding phase transformation of magnesium under hydrogen gas 

plays an essential role in developing high performance structural materials and 

hydrogen storage materials. Herein, we report in-situ atomic-scale observations of 

phase transformation of Mg and Mg-1wt.%Pd alloy under hydrogen conditions in an 

aberration-corrected environmental transmission electron microscopy. Compare with 

magnesium hydrogenation reaction, magnesium oxidation reaction predominately 

occurs at room temperature even under pure hydrogen gas (99.9%). In comparison, 

magnesium hydrogenation is readily detected in the interface between Mg and Mg6Pd, 

due to catalytic role of Mg6Pd. Note that the nanoscale MgH2 compound transfers into 

MgO spontaneously, and the interface strain remarkably varies during phase 

transformation. These atomic-level observations and calculations provide fundamental 

knowledge to elucidate the issue of magnesium hydrogenation. 
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Introduction 

Mg-based alloys play essential roles in developing new structural and functional 

materials owing to their high specific strength and large gravimetric hydrogen density. 

1 However, both structural and functional materials are closely related to the subject of 

Mg hydrogenation. In the case of Mg-based structural materials, the hydrogen gas 

affects mechanical properties, lead to premature or catastrophic failure.2 Many 

mechanisms have been proposed to explain this phenomenon in the past decades in 

terms of macro-scale experiments.3 For example, it proposes that interstitial H atoms 

aggregate on the cleavage plane ahead of a crack, and dislocation emission becomes 

easier.4 In addition, it also believes that some hydrides form during preparing process, 

and change deformation mode, resulting in crack blunting and defeats cleavage-like 

fracture.5 However, the detailed mechanism on the interactive roles between Mg and 

H remains unclear, especially on the atomic-level.   

In addition, the pulverization of Mg-based storage hydrogen materials has been 

confirmed as one of main reasons for the invalidation of ab/desorption hydrogen 

cycles.6 The structure morphology and phase stability of MgH2 medium are associated 

with the storage-hydrogen properties of Mg-based materials, in which the formation 

and decomposition of MgH2 lead to the large inertial stress due to different lattice 

parameters in the interface of MgH2 and Mg.7, 8 Basically, it has been confirmed that 

the hydrogenation behavior of Mg-based storage-hydrogen materials is related to the 

formation and decomposition of MgH2.
9

 However, the formation process and phase 

transformation of MgH2 on the atomic-level has hardly reported owing to technique 

challenges.  

Undoubtedly, Mg hydrogenation plays an essential role in elucidating service 

performances of Mg alloys in the fields of both structural and functional materials. 

Atomic-level observation and atomistic simulations/calculations are desirable to 

clarify these scientific phenomena. To resolve atomic-scale dynamic hydrogenation 

process, in-situ environmental transmission electron microscopy (ETEM) that has 
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evolved dramatically in recent years 10-12offers the capability for temperature-, time-, 

and pressure-resolved imaging of gas-surface reactions by introducing a reactive gas 

to the sample while simultaneously monitoring the structural evolution. Theoretical 

calculations using first principles density function theory (DFT) provides other 

evidences to elucidate these processes.13  

In present work, we disclose the hydrogenation behaviors of pure Mg and 

Mg-1wt%Pd alloy under pure hydrogen gas (99.9%) by performing in-situ ETEM 

technique. The formation processes of MgO and MgH2 combined with phase stability 

of MgH2 were firstly detected on the atomic-scale level. Meanwhile, the 

transformation mechanisms have been elucidated based on DFT calculations. 

Results and discussion 

In-situ oxidation of Mg under hydrogen condition  

Typically, a high purity Mg ingot has been prepared by the chill-casting method14. The 

Mg slice was prepared by a common preparing process via diamond-cutting and ion 

beam milling. The oxidation reaction of the Mg slice occurred in the grain boundary 

under a hydrogen gas environment of 1.0 ~ 1.1 mbar (Figure 1a and Movie S1). The 

oxidation reaction of Mg at the grain boundary is contradictory with expectations in 

the field-Mg hydrogenation reaction under pure hydrogenation.15 There are two 

possible reasons for the origin of oxygen atoms. On one hand, the sample adsorbed 

oxygen during the transformation of sample. On the other hand, the impurity of 

hydrogen gas involves oxygen although the purity of hydrogen gas is high. Taking 

into account of a low Pilling-Bedworth ratio (~0.8), the formed MgO film is 

incompact owing to the lower crystal spacing of MgO in contrast to that of Mg16-18. In 

this regard, the oxidation process can occur although the existence of MgO. Thus, the 

oxygenation behaviour under ETEM observation is mainly related to oxygen impurity 

in pure hydrogen gas.  

The phase compositions and orientation relationship (ORs) between Mg and MgO 

have been confirmed by high revolution transmission electron microscopy (HRTEM, 
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Figure 1b) and selected electron area diffraction (SEAD, Figure 1c). Their ORs are 

(011�0)Mg||(020)MgO and [21�1�0]Mg||[001]MgO, (0002)Mg||(200)MgO and 

[21�1�0]Mg||[001]MgO, respectively. Time-lapse images (Figure 2) revealed that the 

MgO was preferential to form in the grain boundaries with retarding reaction time. 

The e-beam-induced temperature increase of the sample was estimated to be less than 

1 oC19. In contrast, these ORs are different from those observed in the 

high-temperature oxidation, i.e., (112�0)Mg||(220)MgO and [21�1�0]Mg||[001]MgO,20 and the 

low-temperature confined growth of MgO, i.e., (0002)Mg||(110)MgO and [21�1�0]Mg|| 

[001]MgO.21 In addition, the MgO layers were observed to be crystalline, and epitaxial, 

and consistent with an early, incomplete phase of oxide formation( Al2O3 
22 and FeO 

23). Finally, the in-situ observations show that Morie fingers formed at the initial 

oxidation, and then the epitaxial MgO/Mg interface become incoherent. The 

incoherency stress due to the lattice mismatch between Mg and MgO relaxes partly,24 

resulting in a large tilt angle of ~20.1o along MgO (020) plane near the MgO/Mg 

interface. In this regard, it can be confirmed that the Mg hydrogenation can hardly 

occur except for presenting effective catalysts or prohibiting oxidation. 

In-situ hydrogenation of Mg near to Mg6Pd compound    

To probe the hydrogenation process of Mg, a Mg-1wt.%Pd alloy has been prepared by 

ultrahigh pressure melting technique (UPM, 4 GPa and 1300 oC). A typical equiaxial 

morphology has been detected in the UPMed Mg-1wt.%Pd alloy. Some fine Mg6Pd 

eutectic phases with an average dimension of ~30 nm are confirmed in terms of X-ray 

diffraction pattern (XRD, Figure 3a) and transmission electron microscopy (TEM) 

images (Figure 3b and Figure 3c). The high resolution transmission electron 

microscopy (HRTEM) image (Figure 3d) along [001] electron beam direction 

indicates that the spacing values of (660) and (600) are 0.254 nm and 0.352 nm, 

respectively. Both of them are consistent with those of perfect Mg6Pd compound 

(JCPDF No. 25-1084) 

A typical hydrogenation process of Mg has been detected near to Mg6Pd particles 

under the same hydrogen gas environment of 1.0 ~ 1.1 mbar (Movie S2). During the 
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reaction process, time-lapse images reveal a new phase presents in the junction of 

Mg6Pd (Figure 4). The HRTEM image (Figure 5a and Figure 5b) show the d 

spacing of new phase value is ~ 2.26 nm, corresponding to the (200) plane of MgH2. 

In addition, the crystal orientation relationship has been confirmed between MgH2 and 

Mg6Pd: (002) MgH2//(310) Mg6Pd (Figure 5c), suggesting the formation of MgH2 is 

closely relative to Mg6Pd. After phase transformation, the Mg5Pd2 phase is identified 

by the HRTEM (Figure 6a,) and fast fourier transform (FFT) images (Figure 6 b). 

The possible decomposition reaction can be shown as followed: 2Mg6Pd→Mg5Pd2 

+2Mg, which is consistent with the phase diagram.25 The electron energy loss 

spectroscopy (EELS, Figure 6c) shows that some new peaks at 14.9, 22.6 and 57.5 eV, 

which correspond to MgH2 (14.8 eV)26 and MgO (22.8 and 57.8 eV)27, respectively, 

are detected except for the primitive Mg6Pd peaks (10.5, 21.3, 31.8, 52.7 and 70 eV). 

These results are consistent with those observed by in-situ SEAD patters (Figure 6d).  

To clarify the coexistent phenomena of MgO and MgH2 in the hydrogenation process 

of Mg-1wt%Pd alloy, in-situ structure transformation in the interface of MgO/MgH2 

has been observed (Figure 7 and Movie S3). The HRTEM (Figure 8a) and fast 

fourier transform (FFT) images (Figure 8b) demonstrates that the ORs are (020)MgH2// 

(020)MgO and [001]MgH2//[110]MgO, respectively. With increasing reaction time, 

time-lapse images show that the volume fraction of MgH2 reduces, and the amount of 

MgO increases correspondingly. It demonstrates that the phase transformation from 

MgH2 to MgO occurs spontaneously, resulting in the coexistence of both MgH2 to 

MgO. The result agrees well with oxidation reaction of Mg even under hydrogenation 

gas.  

Phase transformation mechanisms 

To understand the hydrogenation and oxidation mechanisms, first principles 

calculations were performed to obtain the formation energies (Ef) of MgH2, MgO and 

the phase transformation from MgH2 to MgO. The Ef values of MgH2 and MgO are 

3.55 eV and 4.52 eV, respectively. It suggests that it is prior to form MgO instead of 

MgH2, which is the main reason for the preferential product of MgO under pure 
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hydrogen gas pressure. In contrast, MgH2 readily forms at the Mg/Mg6Pd interface 

(Figure 9a). The formation of the MgH2 at the Mg/Mg6Pd interface is attributed to 

the catalytic role of the Pd compound and its decomposition.28  

To probe this spontaneous phase transformation from MgH2 to MgO under hydrogen 

conditions, the transformation process has been elucidated in terms of the first 

principles calculations. The results show that the dissociation energy (originating from 

the energy of the chemical reaction MgH2→Mg+H2) is 3.139 eV/H2 (Figure 9b) 

when H atoms break away from MgH2 to form H2 molecule. Comparatively, the 

formation of MgO releases the energy of -5.032 eV/MgO (originating from the energy 

of the chemical reaction 2Mg+O2→2MgO). The energy barrier of removing next H 

atoms layer from MgH2 is 2.264 eV/H2 (Figure 9c). And then the MgO layer (Figure 

9d) shifts displace to combine with MgH2 (Figure 9e). It can decrease the energy of 

0.581 eV/MgO. Actually, the above steps occur simultaneously, and the total energy 

reduces by -0.207 eV, demonstrating that the transformation from MgH2 to MgO is 

spontaneous (Figure 9f). In addition, the continuous phase transformation processes 

(Figure 9g and Movie S4) exhibit this transformation is not only a spontaneous 

reaction (-0.207 eV for the surface transformation), but also an accelerated process 

(-1.420 eV for the 7th layer transformation). 

The surface energies of MgH2 on different surfaces show that MgH2 (001) surface is 

the most stable (Figure 10), which is consistent with HRTEM. The surface energies at 

HRTEM lead us to believe the oxygen atoms undergo ingress along the MgH2 [001] 

direction. The lattice mismatch between MgH2 and MgO (Table 1) suggests MgH2 

(001)/MgO(001) interface is possible. The smallest lattice misfits of MgH2 (001) and 

MgO along (001) surface are 5.7% and 6.1%, respectively. With increasing the 

number of MgO layers, the strain of MgH2 increases, but the strain of MgO decreases 

(Table 2).  

Summary 

In-situ ETEM observations combining DFT calculations have been performed to 
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investigate two main chemical reactions of Mg: hydrogenation and oxidation 

processes. The results reveal the oxidation reaction plays a crucial role in tuning phase 

transformation of Mg even under hydrogen environments. In addition, with the 

presence of Mg6Pd catalyst, MgH2 compound is prone to form in the interface of 

Mg/Mg6Pd. However, the MgH2 compound will spontaneously change to MgO with 

retarding time. The DFT calculation of the MgO oxide formation energy is consistent 

with the facile oxidation of Mg. The observations on two processes extend the 

understanding on the fundamental characteristics of Mg-based materials. 

Methods 

Specimen preparation  

High purity Mg (>99.9%) ingot was melted at 720 oC for 1h, and then directly 

solidified by chill-casting method14. The cooling rate was below 0.5 mm/s to 

achieve the bar of 50 mm in diameter with a large grain size (~ 5 mm). The grain 

orientation along [101�0] direction was confirmed by electron back scattered 

diffraction equipped with a HKL-EBSD system.  

High purity Mg and Pd (99.99 wt%) powders were utilized to synthesis 

Mg-1wt.%Pd alloy by ultrahigh pressure method. The detailed process has been 

elucidated in our previous results.2 Specifically, the pressure and temperature 

were 4 GPa and 1300 oC, respectively. The dimensions were a diameter of 10 

mm and a length of 14 mm. After ultrahigh pressure treatment, the samples were 

quenched to room temperature directly before unloading pressure. 

Microstructural characterization 

The microstructural investigations were performed using SEM observation. The 

sample was prepared by a procedure involving grinding up to 2400 SiC paper, 

followed by mechanical polishing with 9, 3, and 1 µm water-free diamond 

suspensions and final polishing using 0.05 µm colloidal silica. The final step 

included chemical polishing in a fresh solution containing a mixture of 100 mL 

of methanol, 12 mL of hydrochloric acid, and 8 mL of nitric acid. XRD was 
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carried out on the Rigatu D/MAX/2500/PC with Cu Kα radiation at a scan from 

20° to 80° with a step of 0.02 and a scan rate of 4° min−1. Both Mg and 

Mg-1w.%Pd slices were prepared by diamond cutting, and thin foil specimens of 

3 mm in diameter were punched from the slices for TEM observation. The 

specimens were prepared by traditional mechanical grinding and polishing from 

500 to 30 µm in thickness, then ion-beam milling using Gatan PIPS 691 with 4 

keV.  

First-principles density function theory (DFT) calculation 

All calculations are performed using Vienna ab initio simulation package (VASP 29) 

based on density functional theory (DFT), and the ion-electron interaction described 

with the projector augmented wave (PAW) method.30 The generalized gradient 

approximation (GGA) by the Perdew, Burke, and Ernaerhof (PBE31) form is used to 

describe the exchange-correlation functions. Cutoff energy of the plane wave basis is 

set to 520 eV. The ions are relaxed toward equilibrium until the Hellmann-Feynman 

forces are less than 10-5 eV/Å. Brillouin zone integrations with a Gaussian broadening 

of 0.05 eV are performed. The tetragonal structure of α-MgH2 (space group: P42/mnm) 

and the NaCl-structure MgO (space group: Fm-3m) are used as the calculation models 

in our work. The centered Monkhorst Pack k-point mesh for sampling the Brillouin 

zone was 20×20 ×20 for MgH2 and MgO bulks, 20×20×1 for (001), (100), (101) and 

(110) surface of Mg and Mg (001) / MgO (001) interface, respectively. The electronic 

structures including density of states (DOS32) was obtained using k point of 30×30×1  

Gamma centered Monkhorst-Pack k-point grid. A large vacuum space of 20 Å was 

used for avoid any interaction between slabs. All calculations are carried out by 

structure optimization with relaxation of all atoms.  

The formation energies of MgO and MgH2 are defined as33: 

OMgMgOf EEEMgOE −−=)(                               (1) 

HMgMgHf EEEMgHE 2)(
22 −−=                             (2) 

where MgOE  and 
2MgHE  are the total energy of the MgO and MgH2 bulks, respectively. 
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OE  and HE  are the total energy of every H and O atom deriving from the total 

energy of the H2 and O2 molecular, respectively. Herein, the oxygen spin polarization 

was considered.  

The surface energy of MgH2 surface is defined as 34: 

 SnEE bulksurfaceMgH 2/)(
2

−=σ                            (3) 

where surfaceE  and bulkE  are the total energy of the MgH2 surfaces including (001), 

(100), (101) and (110) plane, respectively. To obtain the accurate surface energy, the 

MgH2 surfaces contain the certain number atoms which is an integral number of 

MgH2 formula units. S is the area of the MgH2 surface. 1/2 is because of two surfaces 

every slab. 

The formation energy every MgO layer in MgH2 (001) surface is defined as 33: 

nnEEnEEE OHMgHnMgOnf MgHnMgO
/)2( 2/2//)()( 22/)1(22

−−+=
−

       (4) 

where 
2/)( MgHnMgOE  and 

2/)1( MgHnMgOE
−

 are the total energy of the MgO/MgH2 interface 

with n layer MgO (Figure 9). When n is 1, the equation means the formation energy of 

one layer MgO in MgH2 (001) by the introduction of O2 and the release of H2. The 

rest can be done in the same manner. 2/2HE  and 2/2O
E  are the total energy of every 

H and O atom deriving from the total energy of the H2 and O2 molecular, respectively.  
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Table 1. Lattice parameters of MgH2 and MgO. 
 

 a (nm) b (nm) c (nm) 

MgO 0.424 0.424 0.424 

MgH2 0.450 0.450 0.301 
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Table 2. The lattice parameters of MgO/MgH2 system and the strains of MgO and 

MgH2 with different numbers of MgO layer.  

Layer number 

of MgO 

a 

(nm) 

Strain of MgH2 

(%) 

Strain of MgO 

(%) 

1 0.448 0.00 - 

2 0.433 -3.37 3.49 

3 0.430 -4.13 2.68 

4 0.426 -4.87 1.89 

5 0.423 -5.49 1.22 

6 0.422 -5.83 0.86 

7 0.421 -6.03 0.65 
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Figure 1. The formation of MgO of pure Mg under hydrogen condition. (a), A typical 

HRTEM image showing the presence of MgO in the grain boundaries of Mg.. (b) 

Local high magnification image of the MgO/Mg interface, wherein the orientation 

relationships ((020)MgO//(0110)Mg, (200)MgO//(0002)Mg) are confirmed. A distorted 

angle of ~20.1o is related to the lattice strain. (c) FFT of the MgO/Mg interface. The 

scatted rings and regular dots correspond to MgO and Mg, respectively, confirming 

the orientation relationship between Mg and MgO. 
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Figure 2.  Time-lapse images of phase transformation from Mg to MgO. The yellow 

dashed-line area shows the grain boundaries of Mg.  
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Figure 3: (a) XRD patterns of pure Mg and the ultrahigh pressure Mg-1wt%Pd alloy 

(4GPa, 1300oC). (b) SEM image of the ultrahigh pressure Mg-1wt.%Pd alloy. The 

eutectic Mg6Pd phases are distributed in both grain boundaries and grain interior. (c) 

TEM image of the ultrahigh pressure Mg-1wt.%Pd alloy. (d) HRTEM image of the 

Mg6Pd compound along [001] electron beam direction.   
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Figure 4. Time-lapse images of phase transformation from Mg to MgH2 near to the 

Mg6Pd particles. The inset images in 0 sand 66 s corresponds to the SEAD patterns of 

Mg6Pd and MgH2 along [001] direction, respectively. 
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Figure 5. The formation of nano-scale MgH2 phases. (a) The presence of some 

nano-scale MgH2 phases near to the Mg6Pd particles. (b) HRTEM image of MgH2. (c) 

SEAD pattern of the MgH2/Mg6Pd interface.  
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Figure 6. (a) HRTEM image of the Mg5Pd2 compound along [-113]. (b) FFT pattern 

of the Mg6Pd compound dependent on (a). (c) EELS profiles of positions A (red line) 

and B (blue line) in Figure 4a. (d) Comparison of SEAD patterns of position A after 

hydrogen treatment in Figure 4a. 
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Figure 7. Time-lapse images of phase transformation from MgH2 to MgO. The 

dashed-line area shows the boundary of MgO. The inset images in 0 s and 1204 s 

corresponds to the SEAD patterns of MgH2 and MgO along [001] electron beam 

direction, respectively.  
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Figure 8. (a) The HRTEM image containing MgH2 and MgO. (b) FFT patterns of 

MgH2 and MgO along [001] direction, respectively.  
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Figure 9. Phase transformation mechanism. (a-f) Time-lapse images of atomic 

structure evolution of MgH2 viewed along (001) direction. It reveals that there exists a 

high stress in the interface of MgH2/MgO. (g) The formation energy dependent on the 

layer number of MgO. The presence of MgO leads to the reduction of formation 

energy, accelerating phase transformation. 
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Figure 10: The surface energy of MgH2 compound in terms of DFT calculations.  
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