15 research outputs found

    Phosphorus Fractions and Release Factors in Surface Sediments of a Tailwater River in Xinmi City, a Case Study

    No full text
    The Shuangji River in Xinmi City is a tailwater-type river. Its main water sources are the effluent from the domestic sewage plant, the effluent from the paper industry sewage plant and the coal well. The construction of wastewater treatment facilities in Xinmi city has significantly reduced the amount of total phosphorus (TP) discharged into Shuangji River. However, phosphorus control in rivers where the overlying waters are predominantly tailwaters is still a challenge, especially as the sediment–water interface’s phosphorus exchange mechanism needs to be investigated in detail. In this study, the content and proportion of each phosphorus fraction in the sediment of a tailwater-type river, the Shuangji River, were determined. It was found that the organic phosphorus (OP) and iron-bound phosphorus (Fe-P) content and proportion were high, and the risk of release was relatively high in the section of the river where the overlying water was the tailwater of a sewage plant. Temperature, pH, dissolved oxygen, and hydraulic disturbance were also found to control phosphorus forms’ transformation and release in the sediment. Elevated temperatures mainly stimulated the release of OP and Fe-P from the sediments. The dissolution of calcium-bound phosphorus (Ca-P) is the main pathway for phosphorus release under acidic conditions, whereas, under alkaline conditions, phosphorus release is mainly controlled by ion exchange between OH− and Fe-P and metal oxide-bound phosphorus (Al-P). Aerobic versus anaerobic conditions cause changes in Fe-P content in the sediment mainly by changing Fe ions’ chemical valence. Hydrodynamic disturbance accelerates labile-P release, but once the hydrodynamic disturbance stops, the overlying water dissolved total phosphorus (DTP) concentration rapidly decreases to a similar concentration as before

    Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods.

    No full text
    Multivariate statistical techniques, including cluster analysis (CA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA), were used to evaluate temporal and spatial variations in and to interpret large and complex water quality datasets collected from the Shuangji River Basin. The datasets, which contained 19 parameters, were generated during the 2 year (2018-2020) monitoring programme at 14 different sites (3192 observations) along the river. Hierarchical CA was used to divide the twelve months into three periods and the fourteen sampling sites into three groups. Discriminant analysis identified four parameters (CODMn, Cu, As, Se) loading more than 68% correct assignations in temporal analysis, while seven parameters (COD, TP, CODMn, F, LAS, Cu and Cd) to load 93% correct assignations in spatial analysis. The FA/PCA identified six factors that were responsible for explaining the data structure of 68% of the total variance of the dataset, allowing grouping of selected parameters based on common characteristics and assessing the incidence of overall change in each group. This study proposes the necessity and practicality of multivariate statistical techniques for evaluating and interpreting large and complex data sets, with a view to obtaining better information about water quality and the design of monitoring networks to effectively manage water resources

    Macroscopic, Flexible, High-Performance Graphene Ribbons

    No full text
    Tailoring the structure and properties of graphene fibers is an important step toward practical applications. Here, we report macroscopic, long graphene ribbons formed by combining electrostatic interaction and shear stress during the wet-spinning process. The graphene ribbons are flexible and can be woven into complex structures, and the ribbon morphology can be tailored by controlling the orientation of wrinkles to obtain elasticity within a modest strain. We demonstrate several potential applications of pure or Pt–graphene hybrid ribbons as elastic strain sensors, counter electrodes for dye-sensitized fiber solar cells with cell efficiencies reaching 4.69% under standard illumination and 6.41% with a back reflector, and woven fabric supercapacitor electrodes. Our method can directly fabricate meter-long graphene ribbons with controlled structure and high performance as both energy conversion and energy storage materials
    corecore