8 research outputs found

    MEMS tunable infrared metamaterial and mechanical sensors

    Get PDF
    Sub-wavelength resonant structures open the path for fine controlling the near-field at the nanoscale dimension. They constitute into macroscopic “metamaterials” with macroscale properties such as transmission, reflection, and absorption being tailored to exhibit a particular electromagnetic response. The properties of the resonators are often fixed at the time of fabrication wherein the tunability is demanding to overcome fabrication tolerances and afford fast signal processing. Hybridizing dynamic components such as optically active medium into the device makes tunable devices. Microelectromechanical systems (MEMS) compatible integrated circuit fabrication process is a promising platform that can be merged with photonics or novel 2D materials. The prospect of enormous freedom in integrating nanophotonics, MEMS actuators and sensors, and microelectronics into a single platform has driven the rapid development of MEMS-based sensing devices. This thesis describes the design and development of four tunable plasmonic structures based on active media or MEMS, two graphene-based MEMS sensors and a novel tape-based cost-effective nanotransfer printing techniques. First of all, we present two tunable plasmonic devices with the use of two active medium, which are electrically controlled liquid crystals and temperature-responsive hydrogels, respectively. By incorporating a nematic liquid crystal layer into quasi-3D mushroom plasmonic nanostructures and thanks to the unique coupling between surface plasmon polariton and Rayleigh anomaly, we have achieved the electrical tuning of the properties of plasmonic crystal at a low operating electric field. We also present another tunable plasmonic device with the capability to sense environmental temperature variations. The device is bowtie nanoantenna arrays coated with a submicron-thick, thermos-responsive hydrogel. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. Secondly, we present two MEMS -based tunable near-to-mid infrared metamaterials on a silicon-on-insulator wafer via electrically and thermally actuating the freestanding nanocantilevers. The two devices are developed on the basis of the same fabrication process and are easy-to-implement. The electrostatically driven metamaterial affords ultrahigh mechanical modulation (several tens of MHz) of an optical signal while the thermo-mechanically tunable metamaterial provides up to 90% optical signal modulation at a wavelength of 3.6 ĂƒĂ‚Â”m. Next, we present MEMS graphene-based pressure and gas flow sensors realized by transferring a large area and few-layered graphene onto a suspended silicon nitride thin membrane perforated with micro-through-holes. Due to the increased strain in the through-holes, the pressure sensor exhibits a very high sensitivty outperformed than most existing MEMS-based pressure sensors using graphene, silicon, and carbon nanotubes. An air flow sensor is also demonstrated via patterning graphene sheets with flow-through microholes. The flow rate of the air is measured by converting the mechanically deflection of the membrane into the electrical readout due to the graphene piezeroresistors. Finally, we present a tape-based multifunctional nanotransfer printing process based on a simple stick-and-peel procedure. It affords fast production of large-area metallic and dielectric nanophotonic sensing devices and metamaterials using Scotch tape

    Humidity assay for studying plant-pathogen interactions in miniature controlled discrete humidity environments with good throughput

    Get PDF
    This paper reports a highly economical and accessible approach to generate different discrete relative humidity conditions in spatially separated wells of a modified multi-well plate for humidity assay of plant-pathogen interactions with good throughput. We demonstrated that a discrete humidity gradient could be formed within a few minutes and maintained over a period of a few days inside the device. The device consisted of a freeway channel in the top layer, multiple compartmented wells in the bottom layer, a water source, and a drying agent source. The combinational effects of evaporation, diffusion, and convection were synergized to establish the stable discrete humidity gradient. The device was employed to study visible and molecular disease phenotypes of soybean in responses to infection by Phytophthora sojae, an oomycete pathogen, under a set of humidity conditions, with two near-isogenic soybean lines, Williams and Williams 82, that differ for a Phytophthora resistance gene (Rps1-k). Our result showed that at 63% relative humidity, the transcript level of the defense gene GmPR1 was at minimum in the susceptible soybean line Williams and at maximal level in the resistant line Williams 82 following P. sojae CC5C infection. In addition, we investigated the effects of environmental temperature, dimensional and geometrical parameters, and other configurational factors on the ability of the device to generate miniature humidity environments. This work represents an exploratory effort to economically and efficiently manipulate humidity environments in a space-limited device and shows a great potential to facilitate humidity assay of plant seed germination and development, pathogen growth, and plant-pathogen interactions. Since the proposed device can be easily made, modified, and operated, it is believed that this present humidity manipulation technology will benefit many laboratories in the area of seed science, plant pathology, and plant-microbe biology, where humidity is an important factor that influences plant disease infection, establishment, and development

    MEMS tunable infrared metamaterial and mechanical sensors

    Get PDF
    Sub-wavelength resonant structures open the path for fine controlling the near-field at the nanoscale dimension. They constitute into macroscopic “metamaterials” with macroscale properties such as transmission, reflection, and absorption being tailored to exhibit a particular electromagnetic response. The properties of the resonators are often fixed at the time of fabrication wherein the tunability is demanding to overcome fabrication tolerances and afford fast signal processing. Hybridizing dynamic components such as optically active medium into the device makes tunable devices. Microelectromechanical systems (MEMS) compatible integrated circuit fabrication process is a promising platform that can be merged with photonics or novel 2D materials. The prospect of enormous freedom in integrating nanophotonics, MEMS actuators and sensors, and microelectronics into a single platform has driven the rapid development of MEMS-based sensing devices. This thesis describes the design and development of four tunable plasmonic structures based on active media or MEMS, two graphene-based MEMS sensors and a novel tape-based cost-effective nanotransfer printing techniques. First of all, we present two tunable plasmonic devices with the use of two active medium, which are electrically controlled liquid crystals and temperature-responsive hydrogels, respectively. By incorporating a nematic liquid crystal layer into quasi-3D mushroom plasmonic nanostructures and thanks to the unique coupling between surface plasmon polariton and Rayleigh anomaly, we have achieved the electrical tuning of the properties of plasmonic crystal at a low operating electric field. We also present another tunable plasmonic device with the capability to sense environmental temperature variations. The device is bowtie nanoantenna arrays coated with a submicron-thick, thermos-responsive hydrogel. The favorable scaling of plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel response, respectively. Secondly, we present two MEMS -based tunable near-to-mid infrared metamaterials on a silicon-on-insulator wafer via electrically and thermally actuating the freestanding nanocantilevers. The two devices are developed on the basis of the same fabrication process and are easy-to-implement. The electrostatically driven metamaterial affords ultrahigh mechanical modulation (several tens of MHz) of an optical signal while the thermo-mechanically tunable metamaterial provides up to 90% optical signal modulation at a wavelength of 3.6 Ã ”m. Next, we present MEMS graphene-based pressure and gas flow sensors realized by transferring a large area and few-layered graphene onto a suspended silicon nitride thin membrane perforated with micro-through-holes. Due to the increased strain in the through-holes, the pressure sensor exhibits a very high sensitivty outperformed than most existing MEMS-based pressure sensors using graphene, silicon, and carbon nanotubes. An air flow sensor is also demonstrated via patterning graphene sheets with flow-through microholes. The flow rate of the air is measured by converting the mechanically deflection of the membrane into the electrical readout due to the graphene piezeroresistors. Finally, we present a tape-based multifunctional nanotransfer printing process based on a simple stick-and-peel procedure. It affords fast production of large-area metallic and dielectric nanophotonic sensing devices and metamaterials using Scotch tape.</p

    Thermomechanically Tunable Infrared Metamaterials Using Asymmetric Split-Ring Resonators

    No full text

    Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges

    No full text
    corecore