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ABSTRACT 

 

Sub-wavelength resonant structures open the path for fine controlling the near-field at the 

nanoscale dimension. They constitute into macroscopic “metamaterials” with macroscale 

properties such as transmission, reflection, and absorption being tailored to exhibit a particular 

electromagnetic response. The properties of the resonators are often fixed at the time of 

fabrication wherein the tunability is demanding to overcome fabrication tolerances and afford 

fast signal processing. Hybridizing dynamic components such as optically active medium into 

the device makes tunable devices. Microelectromechanical systems (MEMS) compatible 

integrated circuit fabrication process is a promising platform that can be merged with photonics 

or novel 2D materials. The prospect of enormous freedom in integrating nanophotonics, MEMS 

actuators and sensors, and microelectronics into a single platform has driven the rapid 

development of MEMS-based sensing devices. This thesis describes the design and development 

of four tunable plasmonic structures based on active media or MEMS, two graphene-based 

MEMS sensors and a novel tape-based cost-effective nanotransfer printing techniques.  

First of all, we present two tunable plasmonic devices with the use of two active medium, 

which are electrically controlled liquid crystals and temperature-responsive hydrogels, 

respectively. By incorporating a nematic liquid crystal layer into quasi-3D mushroom plasmonic 

nanostructures and thanks to the unique coupling between surface plasmon polariton and 

Rayleigh anomaly, we have achieved the electrical tuning of the properties of plasmonic crystal 

at a low operating electric field. We also present another tunable plasmonic device with the 

capability to sense environmental temperature variations. The device is bowtie nanoantenna 

arrays coated with a submicron-thick, thermos-responsive hydrogel. The favorable scaling of 
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plasmonic dimers at the nanometer scale and ionic diffusion at the submicron scale is leveraged 

to achieve strong optical resonance and rapid hydrogel response, respectively.  

Secondly, we present two MEMS -based tunable near-to-mid infrared metamaterials on a 

silicon-on-insulator wafer via electrically and thermally actuating the freestanding 

nanocantilevers. The two devices are developed on the basis of the same fabrication process and 

are easy-to-implement. The electrostatically driven metamaterial affords ultrahigh mechanical 

modulation (several tens of MHz) of an optical signal while the thermo-mechanically tunable 

metamaterial provides up to 90% optical signal modulation at a wavelength of 3.6 µm.  

Next, we present MEMS graphene-based pressure and gas flow sensors realized by 

transferring a large area and few-layered graphene onto a suspended silicon nitride thin 

membrane perforated with micro-through-holes. Due to the increased strain in the through-holes, 

the pressure sensor exhibits a very high sensitivty outperformed than most existing MEMS-based 

pressure sensors using graphene, silicon, and carbon nanotubes. An air flow sensor is also 

demonstrated via patterning graphene sheets with flow-through microholes. The flow rate of the 

air is measured by converting the mechanically deflection of the membrane into the electrical 

readout due to the graphene piezeroresistors.   

Finally, we present a tape-based multifunctional nanotransfer printing process based on a 

simple stick-and-peel procedure. It affords fast production of large-area metallic and dielectric 

nanophotonic sensing devices and metamaterials using Scotch tape.
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Background 

Controlling the properties of light at the sub-wavelength scale precision has been an 

intense subject over the past two decades. Plasmonics is such a branch of nanophotonics that 

explores the study and application of surface plasmon (SPs) bound to a metal surface over a 

dimension of much smaller than the wavelength of light. In essence, SPs are electromagnetic 

(EM) field coupled collective oscillations of free electrons in a metal. They squeeze light into a 

very tiny volume of charge density with spatial variation and generate extremely intense and 

concentrated optical fields. Hence, one key advantage of SPs is their capability of confining 

optical fields in sub-wavelength scale to overcome the diffraction limit of light. This has led to 

many applications in sub-diffraction limited imaging [1, 2] and integrated electro-opto circuits 

[3]. On the other hand, the huge enhancement of local optical fields is very useful in enhancing 

interactions between light and matters at the nanoscale and has found vast applications in 

biosensors [4, 5], surface enhanced Raman spectroscopy (SERS) [6], medicine (cancer therapy 

[7], drug delivery [8]), nanolasers [9, 10].  

The properties of SPs are very sensitive to the geometrical shapes of nanostructures. 

Tremendous plasmonic structures with varied shapes are studied to achieve increasing 

confinement and enhancement of light, or peculiar optical phenomena. Among them, coupled 

nanoparticles [11, 12] and plasmonic metamaterials [13, 14] are most notable structures. The 

former often with dimer configuration provides coupled and thus extremely enhanced optical 

fields in the nanoscale gaps compared to the individual nanoparticle system while the latter made 
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of arrays of resonant elements and can be engineered to exhibit negative refractive index and to 

steer wavefronts of light. 

However, plasmonic devices are not practical unless they can overcome fabrication 

limitations and tolerances and meet the increasing demand for strong and fast nonlinearities for 

switching light and precise control of the EM properties of devices at nanoscale footprints. 

Adding tunability to the passive plasmonic devices has the great promise to enhance the 

functionalities of the devices. To date, this tunability is mainly achieved through hybridizing 

nonlinear materials into the device or mechanically altering the shape of resonant elements [15, 

16].  

Microelectromechanical systems (MEMS), also named “microsystem technology” in 

Europe or “micromachines” in Japan is a microscopic technology, in general, referred to as 

miniaturized mechanical and electro-mechanical devices or structures made using 

microfabrication techniques. The MEMS devices are often made up of arrays of components 

with physical dimensions ranging from one micron to a hundred microns. Basically, there are 

four types of components for MEMS: microsensors, microactuators, microelectronics and 

microstructures. Among these components, microsensors and microactuators are defined as 

transducers that can convert energy from one to another. MEMS actuators usually convert 

electrical, optical, or thermal energy into mechanical motions while MEMS sensors are mostly 

designed for the conversion of mechanical signal to electric or optical signals. Some common 

MEMS actuating methods are electrostatic, piezoelectric, thermal types. Optical MEMS as an 

emerging field is of particular interest. Conventional optical MEMS are mainly used to steer and 

direct optical rays with applications in portable digital displays (e.g., digital micromirror device 

[16]), adaptive optics [18] (e.g., wavefront correction), and optical switches [19].  
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The potential of combining MEMS with near-field based plasmonics are gradually 

recognized with the advancement of nano/micro-fabrication techniques. In fact, both MEMS and 

plasmonic devices are often manufactured using modified complementary metal-oxide-

semiconductor (CMOS) processes, which are the same batch fabrication techniques used to 

create integrated circuits (ICs) in industry and many commercial MEMS products are actually 

integrated and packaged together with ICs. There is enormous design freedom by merging 

plasmonics, MEMS sensors and actuators with microelectronics onto a single substrate. 

Aside from the lithography-based CMOS processes for MEMS and plasmonics, 

nanotransfer printing (nTP) is another technique widely adopted to fabricate large-area and 

affordable plasmonic devices [20]. With nanolithographically created structures or stamp, the 

nTP utilizes chemically modified surfaces as release or glue layers to assist the transfer of 

nanopatterns. The nTP is cost-effective and high-throughput yet high-resolution technology, 

which allows the manufacturing of large-area nanopatterns. 

1.2 Introduction  

In last section, the concepts of tunable SPs and MEMS and the prospect of integrating the 

two technologies are introduced. This section will detail relevant work including: 1. Tunable 

plasmonics using active media, 2. Tunable plasmonics using MEMS or nanoelectromechanical 

systems (NEMS) technologies, 3. Graphene-based MEMS sensors, 4. Nanotransfer printing 

technologies.  

1.2.1 Active Media Enabled Tunable Plasmonics 

Here active media are defined as the materials that in response to an external stimulus 

(i.e., electrical field, heat, light, chemical compounds, etc.) their optical properties are variable 

and controllable. By hybridizing these functional materials into the plasmonic nanostructures, it 
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is possible to realize real-time control of the plasmonic properties. To date, commonly used 

materials are liquid crystals (LCs) [21], semiconductor [22], phase-change media [23] (i.e., 

vanadium dioxide, gallium), hydrogels [24] etc. In the following, LCs and hydrogels based 

devices will be the main topics of this section due to their versatile driven methods and wide 

application range.  

 

Figure 1.1 A schematic configuration of tuning near-field properties of plasmonic nanostructures 
via external electric field. The LCs are birefringent and uniaxial materials with extraordinary 
refractive index (ne) and ordinary refractive index (no). The reorientation of LCs molecules 
caused by external electric field tunes the refractive index and influence the optical fields 
surrounding the plasmonic structures. 

LCs are well-known for their applications in electronic display technologies. The most 

common LC phase is the nematic, which in its phase the rod-shape molecules has no positional 

order but are in long-range directional order along their long axes. There are a variety of ways to 

drive the phase of LCs. For example, all nematic LCs will eventually transit from anisotropic 

into isotropic states after ambient temperature increases to a certain point. This phase transition 

leads to the macroscopic optical property variations of LCs (i.e., refractive index). Take the 

6CHBT LCs for example, in its initial phase, they are birefringent with extraordinary refractive 

index of 1.71 and ordinary refractive index of 1.53 [25], but are isotropic with effective 
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refractive index of 1.59 at the temperature of 33 oC. Thus, the ambient refractive index variation 

causes SP resonance shifts if LCs are infiltrated into the plasmonic nanostructures. In addition to 

the temperature stimulus, the nematic LCs can also be easily aligned by applying an external 

magnetic or electric field. Fig. 1.1 schematically presents a configuration of LCs based 

plasmonic structure with electrically controllable optical properties. LCs are sandwiched 

between the top electrode (e.g., indium tin oxide (ITO) glass) and bottom metallic nanostructure. 

The surface of the two electrode surfaces are often pre-treated with mechanical method or saline 

to anchor the LCs molecules near the electrodes. When an external electric field is applied, the 

long axis of LC molecules in those isotropic regions tend to align along the direction of the 

electric field which in turn tunes the near-field properties of the nanostructure.  

Because many LCs have relative low phase transition temperatures (6CB: 29 oC; EBBA: 

77 oC, used for industrial LC display) and response relaxation time is in the order of millisecond, 

LCs are effective and affordable materials for controlling plasmonic devices if ambient 

temperatures and speed of operations are not critical issues.  

 

Figure 1.2 Schematic of the temperature-responsive hydrogels on plasmonic nanostructures. In 
reaction to a temperature increase, hydrogels undergo volumetric changes from swollen to 
collapsed state. Their refractive index increases as they collapsed and influences the near-field of 
plasmonic structures.  

Stimuli-hydrogels are well-known in autonomous microfluidics playing the role of both 

sensors and actuators [26, 27]. The hydrogels are crosslinked polymers usually working in 
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aqueous environment with the ability to absorb and expel water and they undergo abrupt 

volumetric changes in response to various environmental stimuli (e.g., temperature, pH, glucose, 

light, electric field, etc). Take temperature-responsive hydrogels for example, their wetting 

behaviors below and above the volume phase transition temperature (VPTT) (~ 32 oC for most 

hydrogels) are totally opposite. As shown in Fig. 1.2, the hydrogels are initially in swollen state 

(i.e., absorb water; large volume) at room temperature but becoming collapsed (i.e., repel water; 

smaller volume) as the temperature is beyond the VPTT. These reversible volumetric variations 

lead to the refractive index changes of the hydrogels. Hence, hydrogels can be used to convert 

various stimuli signals into optical signals by utilizing the exceptional refractive index sensing 

capability from a plasmonic nanostructure. 

 

Figure 1.3 Hydrogel coated plasmonic antenna for noninvasive glucose sensing [28]. 

Fig. 1.3 presents a plasmonic antenna coated with a boronic acid functionalized hydrogel 

which is highly specific to glucose and large molecules [28]. The hydrogel films reversibly swell 

in the presence of glucose and blocks the large size protein from the plasmonic sensing range. It 

thus allows for low glucose concentration measurement in the physiological millimolar range.  

Due to the ‘smart’ feature, the hydrogels have been applied in a diverse field, such as 

drug delivery, diagnostics, tissue engineering and smart optical systems, as well as biosensors, 

MEMS, coatings and textiles [27]. 
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1.2.2 MEMS/NEMS Enabled Tunable Plasmonics  

In addition to the use of active media to control the optical properties of nanostructures, 

as mentioned in Section 1.1, MEMS or NEMS is very suitable and promising platform for 

mechanically tuning plasmonic structures because of the enormous freedom of the integration 

with current IC batch fabrication techniques. The thermal, MEMS actuator, electrostatic 

actuating methods are commonly used techniques. Earlier tunable metamaterials devices operate 

at THz range with feature size of tens of micrometers as these devices are relatively easy to 

fabricate and tune. 

 

Figure 1.4 THz reconfigurable planar split ring resonator arrays on bimaterial cantilevers. The 
resonator arrays bent out of plane in response to a thermal stimulus [29]. 

Fig. 1.4 exhibits a first demonstration of thermally reconfigurable split ring resonator 

(SRR) metamaterial device working at THz [29]. The SRRs are sitting on a bimorph actuator 

consisting of gold and silicon nitride bilayer materials. Because of the different thermal 

expansion coefficient, thermal stimulus causes the deflection of the bimorph and tilts SRR arrays 

and thus modulates the transmission/reflection properties of the metamaterial.  
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Figure 1.5 THz switchable magnetic metamaterials using combo-drive actuators. The resonant 
element consists of two semi-square split ring (Marked as yellow lines in the figure). The left 
one is fixed to the substrate while the right one is laterally movable controlled by the combo-
drive actuator [30]. 

Another way to tune EM properties of metamaterials is to take the advantage of existing 

MEMS actuators, such as combo-drive actuators as shown in Fig. 1.5. The metamaterial working 

at 2 THz made of arrays paired semi-square SRR with one anchored and another movable 

controlled by the integrated MEMS combo-drive [30]. Thus, it allows precise control of the 

lateral gap between the two semi-square SRR and therefore, their coupling strength.  The 

described tuning method can switch the effective permittivity of the metamaterials from negative 

to positive providing an exceptional large tunability. However, due to the large size MEMS 

combo-drive, it is hard to further reduce the metamaterial structure to shrink the working 

wavelength. 
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Figure 1.6 Mid-infrared electrical force enabled tunable metamaterial. The metamaterials are 
nanopatterned diaphragm (100 × 100 µm2) suspended over a grounding plane with a separation 
of 1.2 µm [31]. 

In order to scale down the working wavelength of the metamaterial device while 

retaining a compactness structure, main challenges are effective modulation schemes to tune the 

optical properties of the device. One of the schemes that enables the device to work at infrared 

even optical regime with high contrast switching is electrostatic force actuated diaphragm-based 

metamaterial device. Fig. 1.6 schematically exhibits the configuration of such a device that the 

nanopatterned membrane are suspended over a grounding substrate with a separation of 1.2 µm 

[31]. Upon an electric field is applied between the top metamaterial membrane and bottom 

grounding plane, electrostatic force drives the metamaterial downward and the reflection 

spectrum is greatly modulated due to the coupling of metamaterial and bottom reflecting layer. A 

modulation depth of 56% is attained at the wavelength of 6.2 µm when the top metamaterials is 

snapped down as shown in Fig. 1.6(b). However, to drive macroscopic displacement of the large 

area membrane, the mechanical modulation frequency of the device is ~ 30 kHz. 
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Figure 1.7 Near-infrared electrically tunable metamaterials with mechanical modulation 
frequency up to 1.3 MHz. The metamaterial consists of pairs of parallel microstrings. A DC 
voltage is applied between neighboring metal strings to control their gap distance [32]. 

Another scheme to achieve much higher mechanical modulation frequency is to reduce 

the size of the actuating unit. Fig. 1.7 shows an electrically tunable metamaterial device 

consisting of pairs of parallel microstrings [32]. By applying a voltage between the neighboring 

metallic strings, electrostatic forces will change the distance between the strings, and thus 

modulate the optical fields confined between the strings. At the wavelength of 1.3 µm, a 

maximal modulation depth is measured to be 8% with an applied voltage of 3 V. Although this is 

much smaller than 56% from diaphragm based metamaterial device, the mechanical modulation 

depth reaches 1.3 MHz benefited from the picogram weighted microstrings.  

1.2.3 Graphene-Based MEMS Sensors 
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Graphene is a two-dimensional (2D) atomic thick (~ 0.345 nm) material with hexagonal 

lattice made of carbon atoms. It exhibits fast electron mobility in excess of 15000 cm2⋅V−1⋅s−1 at 

room temperature and is the strongest material ever tested with an intrinsic tensile strength of 

130.5 GPa and a Young's modulus of 1 TPa.  

 

Figure 1.8 In situ nanoindentation experiments performed on suspended graphene ribbon (purple 
color) devices to measure electrical resistance while introducing homogenous tensile strain [32]. 

In addition to its excellent mechanical and electrical properties, impermeability for gases 

and ultra-strong adhesion to many materials (e.g., SiO2) makes graphene very suitable for 

pressurized MEMS applications. There has been intensive work reporting the graphene based 

piezoresistive sensing devices. For example, the wok in Fig. 1.8 studies the electro-mechanical 

coupling in graphene through in-situ nanoindentation experiments by applying a uniaxial tensile 

strain [33]. It is found that the resistance has increased is ~ 2% with 1% strain. The extracted 

gauge factor of graphene piezoresistor is 1.9 which is close to the theoretical prediction of 2.4.  
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Figure 1.9 (a) A wire bonded graphene pressure sensor. A part of graphene is suspended over a 
rectangular cavity with an area of 6 × 64 µm2. (b) Normalized sensitivity per unit area compared 
to carbon nanotube and silicon based sensors [34]. 

However, at present only several graphene based piezoresistive pressure sensors have 

been developed. Fig. 1.9 presents the study of a piezoresistive pressure sensing properties of 

suspended graphene membranes [34]. The membrane is sitting on a SiO2 substrate etched with a 

square cavity. Thus, with the graphene suspended over the cavity, when the cavity is filled with 

argon, the pressure difference inside and outside the cavity causes the deflection of the graphene 

membrane and turns into the electrical readout. The sensitivity per unit area of the sensor is 

orders of magnitude higher than conventional silicon and nanotube based pressure sensors. The 

results also show that suspended graphene membrane exhibits a strain gauge independent of 

crystallographic orientation allowing for aggressive size scalability.  
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Figure 1.10 (a) Schematic of a MEMS pressure sensor with graphene meander on suspended 
silicon nitride (SiNx) membrane. (b) The photograph of the device. The square SiNx is 280 µm 
wide and graphene is located within the regions (dashed area) with highest tensile strain. (c) 
Dynamic electrical readout versus time with differential pressure increasing from 0 to 700 mbar. 
(d) Electrical readout versus differential pressure [35]. 

Chemical vapor deposition (CVD) has allowed large-area uniform growth of graphene 

sheets on various substrates [36, 37]. With the advent of transferring techniques, graphene has 

the promise to be merged into micromachined MEMS sensors and actuators. Fig. 1.10 exhibits 

the monolithic integration of graphene into suspended silicon nitride (SiNx) membrane [35]. The 

CVD grown graphene is first transferred onto SiNx membrane suspended over a micromachined 

silicon base. To increase the effective length and resistance, graphene sheet is patterned into 

meander shape. Stain is applied on graphene meander through the deflection of the SiNx 

membrane when applying a differential pressure. The device exhibits a high performance with 

the observation of a 0.4% resistance change in response to a differential pressure change of 600 
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mbar. A good linear response is seen in Fig. 1.10(d) with the pressure detection limit ~ 100 

mbar.  

1.2.4 Nanotransfer Printing Technologies 

 

Figure 1.11 A nanoimprint technique to transfer of material from relief nanofeatures on a stamp 
to a substrate. The presented process uses self-assembled monolayer chemical as covalent glues 
and release layers [38]. 

The nTP process transfers a metal pattern from the template, usually made of silicon or 

poly-dimethylsiloxane (PDMS), to a backing layer through physical contact. It uses interfacial 

chemistries to modify the bonding strength between the two different surfaces. Fig. 1.11 presents 

a nTP process with the use of self-assembled monolayer (SAM) chemical to print gold 

nanopatterns from a PDMS substrate onto silicon substrate [38]. As we know, many metal, such 

as gold or silver, naturally do not adhere to silicon or PDMS substrates which requires the 

surface treatment on silicon wafer in order to transfer gold nanopatterns. The chemical 

modification process is briefly as follow: first, silicon wafer is soaked in a mixture of distilled 

water, H2O2, and HCl to generate surface hydroxyl (-OH) groups; second, a vapor deposit of 

SAM (3-mercaptopropyltrimethoxysilane) on the silicon wafer allows the co-condensation of the 

methoxy groups with the hydroxyl groups on the surface; last, the PDMS stamp with gold 



15 
 

 

nanopattern will adhere to the silicon wafer due to the formation of sulfur-gold bonds when the 

stamp is brought into physical contact with the wafer.  

 

Figure 1.12 Template stripping technique to generate ultrasmooth nanopatterned metal. (a) 
Stripping process of silver circular concentric grooves from silicon wafer. (b), (c) SEM images 
of the device at glancing incidence [39]. 

Template stripping technique is another nTP process without the need of SAM. It is very 

straightforward in directly peeling off the metal from silicon or PDMS using a much adhesive 

substrate, such as adhesive tape, epoxy. Fig. 1.12 presents the use of such template stripping 

method to create ultrasmooth metallic nanopatterns [39]. In nanoimprint techniques, patterned 

polymeric stamp deposited with metal often induces serious surface roughness. Stamps with 

other materials suffer from low efficiency due to an additional etching process to release the 

metal pattern. This template stripping simply makes use of poor adhesion and good wettability of 

noble metals on silicon. Basically, the silicon wafer is first patterned, coated with silver and a 

thick layer of epoxy. The silver patterns can be ultraflat due to its good wettability on silicon. 

Because the silver does not adhere to silicon but is very much adhesive to epoxy, the epoxy-
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metal bilayer can then be directly peeled off from the substrate. The patterned structure on epoxy 

substrate will be ultraflat with a surface roughness mainly determined by the wafer stamp. 

1.3 Problem Statement 

So far, we have discussed tunable optical sensors based on active media and MEMS 

methods, graphene based MEMS sensors and nTP technologies for low-cost nanofabrications. 

The main challenges are sensitivity improvement, cost reduction, increased functionalities, and 

the fusion of above technologies. Take MEMS-based tunable optical devices for example, the 

challenges are the development of efficient and new actuating mechanism at nanoscale, fast 

modulation speed, low power consumption and the integration with IC platform. It is impossible 

to discuss the challenges solely without considering their applications. Depending on the feature 

of each optical or MEMS sensor, challenges and approaches will be discussed separately from 

the application perspective.  

1.3.1 Liquid Crystal based Tunable Plasmonics 

In general, the resonance wavelength shift and modulation amplitude are two measures of 

LCs based plasmonic devices. However, it is hard to achieve the best of them simultaneously. 

For example, regarding LC display applications wherein high contrast switching is necessary, V-

shape metamaterials are proposed to have a modulation amplitude ~ 82% although the device 

exhibits nearly zero resonance shift [40]. To achieve better refractive index sensing ability, a 

larger resonance shift up to 24 nm is obtained using plasmonic nanorods with large anisotropic 

optical properties but only showing a 4% modulation amplitude [41]. In the meantime, another 

rarely mentioned characterization for electronic devices is the power consumption. Most of 

existing electrical LCs based plasmonic devices using LSPR modes are in the range of 2-5 V/µm 

for the applied electric field. However, some SPP based plasmonic devices are demanding a 

weaker value around 1.5 V/ µm. The key to lower the operating electric field is reducing the 
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degree of reorientation of LCs molecules which means smaller refractive index changes. My 

work will design such a new LCs alignment method while to sense the small refractive variation, 

we adopt quasi-3D nanostructure wherein its strongly coupled plasmonic mode is sensitive to the 

reorientation of LCs molecules. 

1.3.2 Stimuli-responsive Hydrogels Based Tunable Plasmonics 

Among many hydrogels-based tunable optical devices, nonlithographically made 

nanoparticles often exhibit relatively poor control over uniformity, i.e., their shape and size and 

thus lead to broadband resonance. Lithographically nanopatterns are also reported but the 

structures are mainly isolated nanoparticles unable to achieve high field enhancement which 

limits their sensitivity and tuning range. In contrast to individual nanoparticles, the excitation of 

SPs within the nanoscale air gap (less than 20 nm) in the coupled plasmonic nanoparticles 

greatly enhances of optical fields. This effect is useful for various applications in enhancing 

light-matter interactions, such as second harmonic generation, florescence enhancement and 

spaser. Our work studies the use of bowtie nanoantenna arrays (BNAs) with a tip-to-tip 

separation of 20 nm coated with temperature-responsive hydrogel. The intrinsically high field 

enhancement in the nanoscale gap is leveraged to achieve a more sensitive temperature-

responsive device. 

1.3.3 MEMS Based Tunable Metamaterials and Graphene Sensors 

The MEMS technology based tunable metamaterials using thermally actuated bimorph 

beams or in-plane electrostatic comb-drive usually have relatively large size of resonant element 

which limits their optical resonance wavelength and mechanical modulation frequency. For 

example, although the metal diaphragm patterned with diffractive nanohole gratings can work in 

visible wavelength with a switch contrast of 61%, they exhibit modulation frequencies only at 

tens of kilohertz due to large mass hundred microns membrane [31]. To increase the mechanical 
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modulation frequency, multiple parallel pairs of metallic microstrings were driven using 

electrostatic forces to control nanoscale strip displacements at a rate of 1.6 MHz [32]. Despite 

these efforts, modulating EM properties of metamaterials at a rate of several tens of MHz into 

the near-infrared wavelength region remains very challenging.  

Our work will design a compact and easy-to-implement tunable metamaterial, in which 

the nanoscale freestanding cantilevers provides a mechanical modulation frequency up to 32 

MHz to modulate an optical signal at the wavelength of 2.1 µm. In addition, based on the same 

process scheme, a thermomechanically tunable asymmetric SRR metamaterial is also proposed 

to generate more than 90% optical signal modulation at the wavelength of 3.6 µm. 

It is also promising to merge graphene with micromachining technology, however, there 

are only a few MEMS-based graphene pressure sensors as listed in Section 1.2.3. By carefully 

designing the micromachined membrane to optimize strain on graphene sheets, it is promising to 

realize ultrahigh sensitivity graphene based pressure sensor device. Our work developed high 

sensitivity graphene based pressure sensor via using the freestanding perforated thin membrane 

to significant enhance the areal strain of graphene. On the basis of the high sensitivity graphene 

piezoresistive pressures sensor, we also developed an air flow sensor to provide high velocity 

measurement with a high sensitivity. 

1.3.4 Tape Based Nanotransfer Printing 

As discussed in Introduction, the nTP is a cost-effective approach to fabricate large-area 

nanostructures. The adhesive tapes, often used to exfoliate graphene or single-layer MoS2, are 

also included in many nTP processes primarily as an intermediate transfer media. For example, 

the thermal adhesive tapes have been used for transferring nanotube transistors from a quartz 

substrate to plastic substrates [42]. This process utilizes the dramatic decrease in adhesion 
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strength of the tape at a high temperature and allows the nanotubes to be detached from the tape 

and adhered onto the receiver substrates.   

On the other hand, adhesive tape itself can be a direct transfer media and the final 

architecture of the devices. To date, only one work is reported to have transferred the aluminum 

nanohole arrays onto the tape [43]. There is no systematical study to fully exploit the potential of 

the tape based nTP process for cost-effective fabrications of nanostructures. Our work focuses on 

the systematic development of a multifunctional nTP tape based technique to enable fast 

production of multiple optical nanodevices both on the tape and unconventional substrates. 

1.4 Thesis Organizations 

The following chapters are an accumulation of four published journal papers, two 

conference papers, one paper in preparation of which I am the primary author. 

Chapter 2 describes the electrical tuning of optical properties of a quasi-3D mushroom 

plasmonic nanostructure using nematic LCs. The current design greatly reduces the operating 

electric field with a good switching contrast and resonance shift. The device may have 

applications in LCs display, sensing, and complex optical signal processing. The paper titled 

“Electrically Tunable Quasi-3-D Mushroom Plasmonic Crystal” is published in Journal of 

Lightwave Technology, 34 (9), 2175-2181 (2016). 

Chapter 3 describes a temperature sensing device that incorporates optical nanobowtie 

structure and temperature-responsive hydrogels. The study suggests applications in 

environmental-sensitive plasmonic devices via integrating coupled plasmonic nanostructures and 

environmental-responsive materials. The paper titled “Tunable Optical Nanoantennas 

Incorporating Bowtie Nanoantenna Arrays with Stimuli-Responsive Polymer” is published in 

Scientific Report, 5, 1567 (2015). 
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Chapter 4 reports on a NEMS enabled infrared tunable metamaterial that exhibits an 

ultrahigh mechanical modulation frequency for infrared signal modulation. The study may find 

many applications in optical modulators, infrared sensors, and transformation optics. The paper 

titled “NEMS-based Infrared Metamaterial via Tuning Nanocantilevers within Complementary 

Split Ring Resonators” is published in Journal of Microelectromechanical Systems, doi: 

10.1109/JMEMS.2017.2746688 (2017). 

Chapter 5 describes an easy-to-implement thermo-mechanically tunable metamaterial that 

provides 90% signal modulation at infrared wavelenght. The study may find applications in 

thermal sensing, spectral filters, switches, and many other tunable photonic devices. The paper 

titled “Thermo-mechanically Tunable Asymmetric Split Ring Resonators for NEMS-based 

Infrared Metamaterials” is published in 17th International Conference on Nanotechnology (IEEE 

NANO 2017). 

Chapter 6 describes a graphene-based MEMS pressure sensor. The measured sensitivity 

outperforms many other existing graphene based counterpart sensors. The paper titled “Graphene 

“Microdrums” on Freestanding Perforated Thin Membrane for High Sensitivity MEMS Pressure 

Sensor” is published in Nanoscale, 8 (14), 7663-7671 (2016). 

Chapter 7 describes a graphene-based MEMS flow sensor. The perforated graphene sheet 

flows air and converts the mechanical signal of memberane deflection into electrical signal via 

the graphene piezeroresistors. The paper is in preparation.  

Chapter 8 describes a multifunctional nTP method based on a simple stick-and-peel 

procedure that enables fast production of multiple optical nanodevices using Scotch tape. The 

study suggests applications in wearable and highly flexible nanophotonic devices for 

biochemical sensing, imaging and optical emission applications. The paper titled “Tape-based 
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Flexible Metallic and Dielectric Photonic Devices and Metamaterials” is published in The 17th 

International Conference on Nanotechnology (IEEE NANO 2017). 
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CHAPTER 2 

 ELECTRICALLY TUNABLE QUASI-3D MUSHROOM PLASMONIC CRYSTAL 

A paper published in Journal of Lightwave Technology 

Qiugu Wang, Weikun Han, Peng Liu, and Liang Dong 

2.1 Abstract  

This paper reports an electrically tunable plasmonic crystal incorporating a nematic liquid 

crystal (LC) layer on the top surface of quasi-3D mushroom plasmonic nanostructures. The 

presented plasmonic crystal is formed by an array of polymeric mushroom nanoposts with gold 

disks at the top and perforated nanoholes in a gold thin film at the bottom. The coupling between 

surface plasmon polariton (SPP) and Rayleigh anomaly (RA) is observed in experiments with 

quasi-3D plasmonic crystals, and verified by simulations. The coupled SPP-RA resonance mode 

has its electric field vector prominently normal to the surface of the plasmonic nanostructures, 

and extends into the surrounding medium. This feature makes the coupled resonance sensitive to 

molecular reorientation in LC, and thus, is useful for designing index modulation-based tunable 

plasmonic crystal devices. Therefore, by applying external voltages across the LC layer, the SPP-

RA resonance mode shows a redshift of 8 nm with a 35% change in amplitude. 

2.2 Introduction 

Nanoplasmonics provides an efficient way to control and manipulate light in the vicinity 

of a metal surface below the diffraction limit through the excitation of surface plasmons (SPs) 

[1]. The Rayleigh anomaly (RA) is a non-resonant diffraction effect caused by light diffracting 

into an extended propagating in-plane wave [2-4]. This differs from surface plasmon polariton 

(SPP) resonance, which decays much more quickly away from the metal surface [4-6]. As has 

been previously studied, the coupling of RA and SPP [5, 6], and the coupling between RA and 
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localized surface plasmon resonance (LSPR) [7-12] in planar plasmonic nanostructures, can lead 

to a stronger and narrower hybridized resonance. Quasi-3D plasmonic crystals are structured by 

an array of metal nanodisk-nanohole pairs physically separated by dielectric nanoposts or air-

filled nanowells [13-20]. Because of the nanoscale distance between the nanodisks and 

nanoholes, a variety of hybridized SP modes exist with higher electric-field enhancement than 

the sole SPPs found in conventional planar nanohole-based plasmonic structures [13-18]. Quasi-

3D plasmonic crystals can support RA, SPP and LSPR and can be fabricated in large-area arrays 

using soft nanoimprinting lithography, giving unique plasmonic performance [13-20]. For 

example, the coupled LSPR-RA resonance resulted in a high figure of merit value approaching 

the theoretical limit for standard propagating SP sensors [12]. 

Quasi-3D plasmonic nanostructures have demonstrated their capabilities in SP resonance-

based sensing [13-16], imaging [13], and surface enhanced Raman spectroscopy [19, 20] in the 

visible and near-infrared wavelengths. However, if their optical responses are dynamically 

tunable, the quasi-3D nanostructures will become more useful when adapting to different 

applications. Therefore, we are interested in realizing an unexplored capability to actively control 

plasmonic fields in quasi-3D plasmonic crystals. A simple way to tune their optical response is to 

modulate their refractive index environment by using an active medium. Among many possible 

active media, liquid crystal (LC) has been extensively used to tune properties of many optical 

structures and devices [21-31] due to its large and controllable optical anisotropy and its versatile 

driving methods, including electrical [21-25], optical [26, 27], thermal [28, 29], and acoustic 

tuning [30]. 
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Figure 2.1 (a) Schematic of an electrically tunable quasi-3D plasmonic crystal in a transmission 
measurement setup. (b, c) Top and 45o side-view scanning electron microscopy (SEM) images 
for an array of polymer nanoposts without Au nanodisks (lattice constant a = 500 nm, post 
diameter = 190 nm, post height = 300 nm). (d, e) 10o and 30o tilt view of the nanopost array 
deposited with a Ti/Au thin film. Scale bars in (b-e) represent 500 nm. (f, g) Cross section and 
close-up of the nanoposts deposited with a Ti/Au thin film. Scale bars in (f) and (g) represent 100 
nm. 

In this paper, we demonstrate an electrically tunable quasi-3D plasmonic crystal using a 

thin layer of nematic LCs (Fig. 2.1(a)). This plasmonic nanostructure is formed by a periodic 

array of mushroom nanoposts with Au disks and nanoholes perforated in an Au thin film at the 

bottom (Figs. 2.1(b)-(e)). A shallow LC cell is created between the Au thin layer and a 

transparent conducting glass. We show that the introduction of the LCs allows for a redshift of 

an SPP mode excited at the Au disks to couple to the RA at the perforated Au film. The 

characteristic SPP-RA resonance field is predominately normal to the nanostructured surface and 
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penetrates into the surrounding LC, thus making the resonance sensitive to reorientation of LC 

molecules. By applying an electric field applied across the LC cell of 0.55 V/µm, an 8 nm 

resonance shift with a 35% change in amplitude for the SPP-RA mode is observed. 

2.3 Methods and Experimental Details  

To fabricate the proposed tunable quasi-3D plasmonic crystal, we first utilize soft 

lithography-based replica molding process to form a polymer nanopost array made of 

polydimethyl- siloxane (PDMS) elastomer. In this step, a silicon template is used as a solid 

master mold containing a square array of nanoposts. The master mold is silanized with 

(tridecafluoro- 1, 1, 2, 2-tetrahydrooctyl)-1-trichlorosilane (T2492-KG, United Chemical 

Technologies) in a desiccator under active vacuum for 20 min. Then, an h-PDMS precursor 

solution is prepared by mixing poly (7-8% vinylmethyl-siloxane)- (dimethylsiloxane) (Gelest # 

VDT-731), (1, 3, 5, 7-tetravinyl-1, 3, 5, 7-tetramethylcyclotetrasiloxane) (Gelest # SIT7900.0), 

platinum catalyst Xylene (Gelest # SIP6831.2) and poly (25-30% methylhydro-siloxane)-

(dimethylsiloxane) (Gelest # HMS-301) at the weight ratio of 3.4: 0.1: 0.05: 1. Air bubbles are 

removed from the mixture in a degassing chamber for 10 min, followed by spin-coating of the 

mixture onto the silicon mold at 1000 rpm for 40 sec and curing at 70 oC for 10 min. 

Subsequently, an s-PDMS precursor solution is prepared by mixing Sylgard 184 (Dow Corning, 

USA) and curing agent at the weight ratio of 10: 1 and degassing in a vacuum desiccator for 20 

min. The s-PDMS mixture is then poured onto the top surface of the h-PDMS and cured on a 

hotplate at 65 oC for 2 hr. After that, the PDMS slab containing a square array of nanoholes is 

peeled from the silicon mold.  

To form an array of polymer nanoposts shown in Fig. 2.1(c), the PDMS nanoholes 

obtained in the last step are used as a soft mold. This soft mold is treated with saline, coated with 
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h-PDMS, and poured over with s-PDMS using the exactly same procedures as those used to 

make the soft mold. After that, the PDMS slab containing a square array of nanoposts is peeled 

from the soft mold. The obtained nanoposts have the period of 500 nm, the post diameter of 190 

nm, and the post height of 300 nm. Finally, a 5 nm thick titanium (Ti) adhesion layer and a 60 

nm thick Au layer are deposited on the whole surface of the device by using e-beam evaporation.  

 

Figure 2.2 Microscopic transmission images of the device under different electric fields. The 
upper and lower electrode surfaces of the 100 µm-deep LC cell are treated with SCA. (a) No 
electric field with two parallel polarizers; (b) No electric field with crossed polarizers; (c)-(f) 
Different electric fields with crossed polarizers. The field strength in each case is given in each 
panel. 
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To obtain a uniform and large-area homeotropic alignment of nematic LCs (6CHBT; 1-

(trans-4-Hexylcyclohexyl)-4- isothiocyanatobenzene, Sigma-Aldrich, USA) at the Au surface of 

the nanostructure, we functionalize the Au surface with a fluorinated silane-coupling agent 

(SCA, trichloro(1H,1H,2H, 2H-heptadecafluorodecyl) silane, Tokyo Chemical Industry, Japan) 

using a vapor-phase deposition method [32]. In this process, the PDMS-based array of 

nanoposts, an indium tin oxide (ITO) conducting glass, and a drop of silane-coupling agent 

(SCA, trichloro-1H,1H,2H,2H-heptadecafluorodecyl silane, Tokyo Chemical Industry, Japan) 

are placed inside an active vacuum desiccator at room temperature for 5 min, and then is left for 

another 25 min to complete the deposition process. The formation of a monolayer SCA on 

nanostructure surface makes it strongly hydrophobic, allowing for homeotropic anchoring and 

aligning of LC molecules at the nanostructure surface. The LC cell is then formed by placing a 

conducting ITO glass 100 µm away from the Au surface by using a double-sided silicone 

adhesive tape (Caplinq, UK). Lastly, the LCs are infused into the cell through a hole preformed 

in the ITO glass.  

To verify the efficacy of the SCA treatment, two polarizers (Thorlabs, USA) are first 

arranged with their polarization directions parallel to each other and no electric field is applied to 

the device. In this case, the microscopic transmission image of LC textures appears quite bright 

(Fig. 2.2(a)). Subsequently, the polarizers are oriented orthogonally with each other and 

microscopic transmission images of LC textures under different electric fields are taken (Fig. 

2.2(b)-(f)). As shown in Fig. 2.2(b), before applying an electric field, the microphotograph of 

LCs under the crossed polarizers do not become totally dark, indicating that the LC molecules 

are partially isotropic. This is because the upper and lower electrodes of the cell is 100 µm apart, 

the interaction between the LC molecules and SCA-treated surfaces may not be sufficient 
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enough to homeotropically align all the LC molecules. However, after an electric field is applied 

with increasing field strength, the microphotographs of LCs with the crossed polarizers gradually 

become darker (Fig. 2.2(c)-(e)). At the field strength of 0.35 V/µm, the LC cell turns to almost 

completely dark (Fig. 2.2(f)), indicating that under this electric field condition, all the LC 

molecules in the cell become almost homeotropically aligned to both the upper and lower 

electrode surfaces treated with SCA. 

2.4 Results and Discussion 

 

Figure 2.3 (a) Plots in the upper panel show the measured transmission spectra of the quasi-3D 
plasmonic nanostructure under the normal incidence of light in different media. Plots in the 
lower panel show the corresponding simulated results. D1, P1, P2, and P3 in the simulated spectra 
indicate the transmission features of interest. λD1 = 519 nm and λP1 = 710 nm when the 
nanostructure surface was exposed in air; λP2 = 689 nm when in methanol (n = 1.33); λP3 = 725 
nm when in LC (n = 1.59). (b) Simulated cross-sectional electric field distributions (|Ez|) at the 
resonant wavelengths mentioned above. 

It should be noted that the optical properties of quasi-3D plasmonic crystals are generally 

attributed to many possible resonance modes, including SPP at the Au/media interface, LSPR at 

the Au nanodisks and nanoholes, and non-resonant RA. The coupling effect of these modes will 
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lead to further rich optical phenomena. Specifically, excitation wavelengths of the SPP and RA 

change with angle of incidence or surrounding index. Mode coupling between the SPP and RA 

may further be obtained through index modulations, which recently was demonstrated in planar 

plasmonic nanohole arrays [5, 6]. In addition, coupled SP resonances may also exist at the Au 

nanodisks and nanoholes due to their nanoscale distance, which leads to Fabry–Pérot (FP) 

resonance, as previously reported [12, 16, 18]. The resulting RA-FP resonance mode has a small 

full width at half maximum, a useful feature that enables high index sensitivity approaching the 

theoretical limit [12]. In the tunable quasi-3D plasmonic nanostructure presented here, electrical 

modulation of the effective index of LC will change the coupled resonance between the SPP at 

the medium/Au interface and the RA excited by the grating effect in the PDMS substrate, which 

will be discussed later.  

To identify the underlying physics of the transmission features of the device, we first 

measure zero-order transmission spectra with normal incident light to the device surface exposed 

to air (n = 1.00) and different index liquids, including methanol (n = 1.33), ethanol (n = 1.36), 

isopropyl alcohol (IPA) (n = 1.38), and LC (neff = 1.59) at room temperature [Fig. 2.2(a)]. The 

effective index of LC is calculated using 2 2 22 1

3 3eff o en n n    [28], where no = 1.53 and ne = 1.71 

[33], representing the ordinary and extraordinary indices, perpendicular to and along the 

molecule orientation, respectively, of the LCs. In the optical measurement setup (Fig. 2.1(a)), a 

collimated white light source is generated from a 150 watts quartz halogen lamp. The transmitted 

light through the device is collected by an optical fiber through a 10× magnification objective 

lens (NA=0.25) and measured by a spectrometer. The measured transmission spectra are shown 

in the upper panel of Fig. 2.3(a). When the 3D-quasi plasmonic nanostructure is exposed to air, a 

transmission dip appears at 519 nm, and a broadband Fano-like resonance profile consisting of a 
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minimum transmission is observed at 710 nm. Full wave numerical simulations are carried out 

by using a finite element analysis (FEA) method with the commercial COMSOL software, where 

the relative permittivity of Au is taken from experimental data [34]. In this simulation, periodic 

boundary conditions are applied at the boundaries in parallel with the light propagation direction. 

Two perfect match layers (PMLs) are placed above and below the nanostructure to absorb the 

scattered electromagnetic (EM) fields. Also, the substrate is considered to be infinitely thick by 

setting the refractive index of the PMLs to be the same as that of the substrate. As given in the 

lower panel of Fig. 2.3(a), the simulation results agree with the experimental results when the Au 

disk has a diameter of 190 nm and a thickness of 60 nm. Note that the close-up SEM image of 

nanoposts (Fig. 2.1(f) and (g)) shows that there exists subtle isolated nanoscale grains of Au on 

the sidewall of nanoposts. But, in our simulation, these Au grains are not included in the model, 

because previous simulation for a similar nanostructure (nanodisk-nanohole pairs separated by 

air-filled nanowells) has shown that the inclusion of these Au grains on the sidewall will only 

slightly suppress the resonance intensity and shift the resonant wavelength. In Fig. 2.3(a), the 

formation of the dip D1 at 519 nm is attributed to the overlap of (1, 0) SPPs at the air/Au 

nanodisk interface with the direct light transmission through the thin Au film at the bottom. The 

peak around the wavelength of 500 nm is due to the direct transmission of light through the Au 

film. As the real part of the gold dielectric constant becomes +1, it leads to transparency in the 

absence of damping [5, 13, 14]. For a square lattice, the free space incident wavelength to excite 

an SPP and the free space incident wavelength of the RA are given respectively by [2]: 

2 2
1 1

= d m
SPP

d m

a

i j

 


                                 2.1 

2 2
2 2

=RA d

a

i j
 

                                       2.2 
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where ɛd and ɛm are the dielectric constant of the medium and Au, a is the lattice constant, 

and (i1, j1) and (i2, j2) correspond to the order of SPPs and RA, respectively. According to 

Equation (1), at a normal incidence in air, the calculated SPP resonance λSPP (1, 0) at the air/Au 

interface is 539 nm, which is redshifted compared to the experimental and simulated resonant 

wavelength at 519 nm. Eq. 1 used to estimate the SPP resonant wavelength is generally 

considered accurate when the metal film is thick enough. In our experiment, since the thickness 

of Au is only 60 nm, the interaction of the resonance modes on two sides of the Au film is 

expected to lead to a blueshift of the measured and FEA simulated resonance, compared to the 

calculated resonant wavelength using Eq. 2.1. As shown in the electric field distribution (Fig. 

2.3(b)), the standing wave feature above the Au nanodisk and below the perforated Au film 

confirms the excitation of SPPs. At the peak P1 of 710 nm, the strong interaction between the 

LSPRs at the Au nanodisk and the Au film leads to a broad FP resonance. This phenomenon has 

also been observed in Ref. [12, 16, 18]. It is noteworthy that a weak standing wave feature 

appears in the resonance field distribution at P1 in the PDMS substrate, but with a deeper field 

penetration into the substrate compared to the SPP resonance at D1. This is attributed to the 

excitation of (1, 0) RA at the side of the PDMS substrate which is slightly blue-shifted with 

respect to the calculated RA wavelength at 730 nm, as estimated by Eq. 2.2. Although this RA 

mode has a relatively weak field intensity, the coupling between the SPP and RA at both sides of 

the thin Au film causes an enhanced transmission amplitude. As the surrounding medium 

changes to methanol (n = 1.33), a transmission peak with a larger amplitude emerges around 693 

nm, which agrees with the simulation result for the peak P2. The corresponding field distribution 

at P2 (Fig. 2.3(b)) shows a similar pattern in the upper medium region to that at D1, except for the 

region in the PDMS substrate where (1, 0)PDMS RA occurs. According to Eq. 2.1, as the medium 
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changes from air to methanol, the resulting (1, 0) SPP red-shifts to 705 nm and this leads to the 

coupling of (1, 0)methanol/Au SPP and (1, 0)PDMS RA. This SPP-RA coupling effect is similar to 

those that occurred in the planar plasmonic nanohole arrays where the coupling effect was 

achieved by tuning the position of RA [5, 6]. However, the SPP-RA resonance observed here is 

achieved by tuning the position of λSPP (1, 0) at the medium/Au nanodisk interface. Further 

increasing the index of the surrounding liquid medium to 1.36 and 1.38 causes the SPP-RA 

resonance to red-shift with a sensitivity of 517 refractive index units per nm (RIU/nm), while 

gradually decreasing its amplitude.  

In the case that the index liquid medium uses LC (neff = 1.59), both the experiment and 

simulation show the peak P3 at 710 nm, but with a relatively lower amplitude compared to the 

peak P2. The corresponding field distribution in Fig. 2.3(b) shows a similar pattern to P2 but with 

a much deeper penetration depth, suggesting another coupled SPP-RA resonance. By using 

Equation (1), (1, 0)LC/Au SPP is predicted to be at 831 nm, while the (1, 1) order is at 651 nm. 

The relatively low amplitude at P3, in comparison with the peaks caused by the coupling of (1, 

0) SPP and RA, is due to two reasons: first, (1, 1)LC/Au SPP is away from the strongest coupling 

position at 690 nm; second, (1, 1)LC/Au SPP suffers more radiative losses than the (1, 0) order. 

However, the (1, 1) SPP electric field has a much deeper penetration rate into the medium than 

the (1, 0) order, which can be a benefit in designing LC-based plasmonic tunable devices. 

With increasing applied electric field, the LC molecules tend to be aligned with the 

electric field and become predominantly perpendicular to the substrate surface. Because the 

coupled SPP-RA mode has its electric field predominantly normal to the surface of the 

plasmonic nanostructure and extends up into the LC thin layer (as shown in Fig. 2.3(b)), the 

resonance characteristics of the device become sufficiently sensitive to index changes in the 
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direction perpendicular to the LC/Au interface. Let us first assume the LC molecules experience 

a transition from a total isotropic state to a total homeotropic state. Under this assumption, the 

resulting maximum index variation in the perpendicular direction will be 0.12 or ne − neff. 

Obviously, this theoretical index change is overestimated. Nevertheless, a redshift of the coupled 

SPP-RA resonance will still be expected. Figure 2.4(a) shows the measured zero-order 

transmission spectra for different applied electric fields. By increasing the field strength to 0.55 

V/µm, a maximum resonant wavelength shift of 8 nm with a 35% change in amplitude at the 

SPP-RA resonance is observed. Based on the measured resonance shift of 8 nm and the 

measured sensitivity of 517 RIU/nm mentioned above, the actual index change is calculated to 

be 0.015, which is much lower than the theoretical maximum value of 0.12 mentioned above. 

This is because the initial alignment of LC molecules is not fully homeotropic to the upper and 

lower electrode surfaces. After applying an electric field, the LCs tend to become homeotropic. 

Note that previous work on LC-based plasmonic switches also reported the resonance shift due 

to the LC reorientation from a partially homeotropic state to a homeotropic state [35].  

In other reported LC-based tunable plasmonic devices using SPP or LSPR mode confined 

at the dielectric/metal interface, the SPP field usually has a longer decay length and can extend 

more into the surrounding medium, and thus exhibits higher sensitivity to the reorientation of LC 

molecules than the LSPR field does. Consequently, the LC devices using SPP mode require a 

lower operating electric field (e.g., ~ 1.25 V/µm [23]) than those using LSPR mode (e.g., ~ 2 

V/µm [21] and 5 V/µm [22]). It should be pointed out that by coupling SPP and RA mode, our 

device has a higher field enhancement capability and allows extending the coupled field deeper 

into the LC layer. This unique feature leads to a lower operating electric field of ~0.55 V/µm of 

our device than the previously reported LSPR or SPP based LC devices [21-23].  
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Figure 2.4 (a) Transmission spectra of the LC-based quasi-3D plasmonic crystal at different 
applied electric field strengths. (b) Wavelength and relative transmission variation of the SPP-
RA resonance as a function of applied electric field strength. ∆T = TON - TOFF, where TON and 
TOFF represent transmission intensity when an external voltage is at the ON and OFF state, 
respectively. 

2.5 Conclusions 

In summary, we have demonstrated a LC-based electrically tunable quasi-3D plasmonic 

crystal, where both the experiment and simulation results have confirmed the coupling effect 

between RA and SPP resonance. The SPP-RA resonance field is predominantly normal to the 

surface of the plasmonic nanostructure and penetrates into the surrounding LC, which makes the 

resonance sensitive to the molecular reorientation of the LC. The ability of the device to tune its 

optical response suggests many potential applications in the areas of micro-display, sensing, and 

complex optical signal processing. 
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CHAPTER 3 

 TUNABLE OPTICAL NANOANTENNAS INCORPORATING BOWTIE NANOANTENNA 

ARRAYS WITH STIMULI-RESPONSIVE POLYMER 

A paper published in Scientific Report 

Qiugu Wang, Longju Liu, Yifei Wang, Peng Liu, Huawei Jiang, Zhen Xu, Zhuo Ma, Seval Oren, 
Edmond K.C. Chow, Meng Lu, and Liang Dong 

3.1 Abstract 

The ever-increasing demand for active control of optical properties of nanostructures has 

resulted in technological innovations to achieve reconfigurable features in size-limited devices. 

Compromises, however, are often made to optical device designs among their footprint, 

functionality, and complexity. Existing resonance-based devices require external control systems 

to accomplish reconfigurability. Here, we demonstrate environment-responsive autonomous 

plasmonic devices that incorporate coupled bowtie nanoantenna arrays (BNAs) with a 

submicron-thick, environment-responsive hydrogel coating. The coupled plasmonic 

nanoparticles provide an intrinsically higher field enhancement than conventional individual 

nanoparticles. The favorable scaling of plasmonic dimers at the nanoscale and ionic diffusion at 

the submicron scale is leveraged to achieve strong optical resonance and rapid hydrogel 

response, respectively. We demonstrate that the smart BNAs are able to be self-adapted to local 

environmental temperature variations driven by chemical to mechanical energy conversion. The 

phase transition of hydrogel brings 16.2 nm of resonant wavelength shift for the hydrogel-coated 

BNAs, whereas only 3 nm for the uncoated counterpart. In addition, the response time of the 

device to temperature variations is only 250 ms, due to the submicron-thick hydrogel. This 

research suggests a series of smart plasmonic nanoantennas with various stimuli-responsive 

hydrogels for applications in optics, sensing, and lab-chip devices. 
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 3.2 Introduction 

Reconfigurable plasmonic devices have attracted much attention, because of an 

increasing demand for tunable optical properties to accommodate flexible application 

requirements. Often, these active devices are structurally variable, or hybridizing functional 

materials (e.g., liquid crystal, semiconductor, phase-change media, and etc) with plasmonic 

structures [1, 2]. Various tuning mechanisms (e.g., mechanical stretching [3], thermo- and 

electro-mechanical [4-6], electro-, magneto-, and thermo-optical [7-10], and electron beam 

manipulation [11]) have been studied to regulate their structural configurations or refractive 

indices of surrounding media. Recently, stimuli-responsive, surface-bound hydrogels have been 

suggested as a promising candidate to realize active plasmonic devices [12-24]. These polymers 

are sensitive to different stimuli (e.g., temperature, pH, light, glucose, electric field, and ions 

strength), by changing their volume or shape [25, 26]. Most of the existing efforts in active 

plasmonics with hydrogels have mainly focused on using metallic nanoparticles or islands 

attached to polymer brushes [12-19], and on functionalizing gold (Au) films with hydrogels [20, 

21]. As these nonlithographic nanoparticles have relatively poor control over their shape and 

size, fine tuning for optical properties of the nanoparticles-hydrogel composites is challenging; 

also, their optical responses usually have undesirable, broad resonance bands. Lithographically 

nanopatterned particles have thus been utilized to integrate with hydrogel [21-24], but almost all 

the reported research dealt with isolated nanoparticles unfavorable to achieving high field 

enhancement, thus hindering the improvement in their tuning range and sensitivity to specific 

environmental changes. 

We herein report on smart coupled plasmonic bowtie nanoantennas (BNAs) that offer 

autonomous adaptation to changing environmental conditions by reconfiguring its resonance 
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properties. Neither any external controls nor external power supplies are needed. In contrast to 

individual nanoparticles, coupled plasmonic nanoparticles provide an intrinsically higher field 

enhancement. Their integration with stimuli-responsive hydrogel is expected to bring a 

synergistic effect to improve tuning of active plasmonics in response to environmental changes. 

Basically, plasmonic BNA is coupled metallic nanoparticle dimers with two tip-to-tip 

nanotriangles [27]. The nanoscale air gap between the nanotriangles allows for tight confinement 

and large enhancement of optical fields through the excitation of surface plasmons (SPs). This 

effect has been harnessed for many applications, such as high-harmonic generation [28], 

florescence enhancement [29], nanolasing [30], and optical trapping [31, 32]. In this study the 

smart BNAs are formed by simply coating the top surface of BNAs with a submicron-thick, 

stimulus-responsive hydrogel. As a specified environmental parameter changes, there will be a 

change in the refractive index of hydrogel, accompanied by swelling or deswelling behavior of 

the hydrogel cross-linked network in water. This will result in changing optical characteristics of 

the BNAs. Herein, the scaling of plasmonic dimers and ionic diffusion is favorably leveraged to 

achieve strong BNA resonance and rapid hydrogel response time, respectively. The creation of 

the smart BNAs takes advantages of these scaling properties.  

3.3 Results and Discussion 

We demonstrate the autonomous BNAs using thermosensitive poly(N-

isopropylacrylamide) or PNIPAAm hydrogel that expands at low temperatures and contracts at 

high temperatures with a volume phase transition temperature (VPTT) at approximate 32 °C. The 

volumetric change of hydrogel causes a continuous and reversible change in its refractive index, 

typically between 1.36 and 1.46 [33]. As the degree of swelling drastically changes around the 

VPTT, the hydrogel-coated BNAs present a considerable resonant wavelength shift of 16.2 nm. 
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In contrast, with the same temperature change, the uncoated device yields only 3 nm resonant 

wavelength shift. Furthermore, the hydrogel-coated BNAs respond to environmental changes 

rapidly within 250 ms because the thickness of hydrogel is reduced to a submicron scale for fast 

ion diffusion. The present smart BNAs device is structurally simple, and can be modified to 

incorporate many other hydrogels that respond, for example, to light, pH, electric fields, and 

antigens, for use as physical, biological or chemical sensors. 

 

Figure 3.1 (a) Scanning electron microscopy (SEM) image for the bare Au BNAs without a hydrogel 
coating. The inset shows a pseudo-color SEM image for a close-up of BNAs. (b) Experimental and 
simulated reflection spectra of the uncoated BNAs in water under normally incident TE and TM polarized 
light. (c, d) Normalized electric field distributions at the resonances under the TE (c) and TM (d) 
polarization, respectively. The color scale bars show the normalized electric field amplitude relative to the 
incident field |E0|. 

In this study, 50 nm thick Au BNAs were patterned in 428 nm spaced square arrays 

covering an area of 500 × 500 μm2 on a 25 nm thick indium tin oxide (ITO) coated glass 
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substrate (Fig. 3.1(a)). Each bowtie consists of two equilateral triangles with a side length of 150 

nm and a tip-to-tip distance of 20 nm (see the inset of Fig. 3.1(a)). We first measured the 

reflection spectra of the bare BNAs (without hydrogel coating) using a spectroscopic 

measurement setup. For the transverse magnetic (TM) polarization, the excitation light has the 

electric field component along (parallel to) the nanogap direction of the bowtie. Figure 3.1(b) 

shows that the uncoated BNAs have a resonance at 838 nm for TM polarization and the other at 

750 nm for transverse electric (TE) polarization. We then performed full wave simulation using a 

finite element analysis method. The simulation results show a good agreement with the 

experimental ones in terms of their resonance positions (Fig. 3.1(b)). The minor difference in the 

spectra may be attributed to imperfect structural uniformity of the fabricated device. Figures 

3.1(c)-(d) show the electric field distributions at the resonances under TE and TM polarizations. 

In the case of TM polarization, the surface plasmon resonance leads to significant field 

confinement inside the nanogap of the bowtie with a maximum amplitude enhancement factor of 

38, while under TE polarization, the “hot spots” occur at the two base corners of each triangle 

with a much lower maximum enhancement factor of 12. Therefore, the strong ability of the 

BNAs to enhance the local field amplitude, especially at the TM resonance, is promising to 

enable effective tuning of their optical characteristics by minute changes of the surrounding 

index. 

To form the proposed smart BNAs, we coated the top surface of the BNAs with a 750 nm 

thick PNIPAAm hydrogel layer [34] (Figs. 3.2(a)-(c)). The fabrication details are described in 

Materials and Methods. We studied optical responses of the hydrogel-coated and uncoated BNAs 

to local environmental temperature changes. Fig. 3.2(d) shows the reflection spectra of the two 

devices at room temperature (22 oC), both with normal incidence of non-polarized light. 
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Figure 3.2 (a) Fabrication processes for the environment-responsive smart BNAs. (b) SEM 
image of the hydrogel-coated BNAs. (c) SEM image showing the morphological difference 
between the hydrogel-coated and the uncoated BNAs. The hydrogel at the edge was intentionally 
unexposed to ultraviolet (UV) light during the device fabrication. (d) Reflection spectra of the 
uncoated BNAs (upper panel) and the hydrogel-coated device (lower panel) in air and water at 
22 oC under non-polarized normal light incidence. 

Immersing the uncoated BNAs in water caused a resonant wavelength red shift of 83 nm and 40 

nm to the TM and TE modes, respectively. After the uncoated device were coated with 

PNIPAAm hydrogel, the TM and TE resonances red shifted by 92 nm and 50 nm, respectively. 

By immersing the hydrogel-coated device in water at 22 oC, both the TE and TM resonances red 

shifted, but with different amounts: 25 nm for the TM mode and 7.5 nm for the TE mode. It is 

also noteworthy that when immersed in water, the two devices shifted their resonant wavelength 

in an opposite direction. This is because the as-polymerized hydrogel on the smart BNAs 

initially absorbed water to reach an initial equilibrium, giving rise to an increase in physical 

volume, in accompany with a decrease in refractive index, thus causing a blue resonance shift. In 
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addition, the introduction of the hydrogel to the surface of the BNAs did not significantly 

influence the bandwidth of the plasmonic resonances. 

Figure 3.3 (a) Reflection spectra of the uncoated BNAs at different temperatures. (b) Reflection 
spectra of the hydrogel-coated BNAs at different temperatures. The spectra were measured under 
normally incident non-polarized light. 

Figure 3.3 shows the reflection spectra of the hydrogel-coated and uncoated BNAs as the 

environment temperature changes from 22 to 42 oC. First, when responding to an increase in 

temperature, the hydrogel-coated device showed a larger increase in reflection intensity than the 

uncoated counterpart, because of a larger increase in refractive index for the hydrogel-coated 

BNAs. As for the resonance response to increasing temperature, the TM resonance peak of the 

hydrogel-coated device significantly red shifted by 16.2 nm, while the TE resonance peak shifted 

by 8 nm (Fig. 3.3(b)). This difference may result from the higher field enhancement factor at the 

TM mode than that at the TE mode. Figure 4a shows that the majority of the resonance shift 

occurred around the VPTT of the hydrogel, due to the phase transition induced large index 

change, confirming the function of the hydrogel in tuning the optical properties of the hydrogel-

coated BNAs. 
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Figure 3.4 (a) TM and TE mode resonance shifts of the hydrogel-coated and uncoated BNAs as a 
function of temperature. (b) Calculated refractive index of the PNIPAAm hydrogel as a function 
of temperature. The inset shows the TE and TM resonant wavelengths of the BNAs as a function 
of environmental refractive index n. The yellow arrows indicate the different surrounding media, 
including air, water, and dry hydrogel [35, 36].  

To estimate how the refractive index of the hydrogel coating changed with temperature, 

we first plotted the TM and TE resonant wavelengths of the Au BNAs with respect to the 

refractive indices of different surrounding media, including air (n = 1), water (n = 1.33), and a 

dry hydrogel layer (n = 1.48) [35, 36]. The slopes of the two plots in the inset of Fig. 3.4(b) 

indicate that the BNAs have the refractive index sensitivity of 248 nm/RIU (RIU: refractive 

index unit) and 129 nm/RIU for the TM and TE resonances, respectively. Based on the 

resonance wavelength shift (Fig. 3.4(a)) of the hydrogel-coated BNAs and the refractive index 

sensitivity obtained above, the refractive index of the hydrogel coating at different temperatures 

was extracted. As the temperature increased from 22 oC to 42 oC, the refractive index increased 

from 1.37 to 1.435, with a total index variation of 0.065 (Fig. 3.4(b)). Essentially, the effective 

refractive index variation of the BNAs may be attributed to the following factors. The 

dominating factor is the volume change induced index change of the hydrogel coating. As the 

local temperature increased by 20 oC, the refractive index of the hydrogel was significantly 
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increased by 4.74%. Another factor relates to changes in thermophysical properties of other 

device materials (i.e., water, Au, and ITO-coated glass), which is considered to have an 

insignificant effect on the resonance shift, as evident by a maximum 3 nm and 1.6 nm shift of the 

TM and TE mode resonance peaks, respectively, of the uncoated BNAs (Fig. 3.3(a) and Fig. 

3.4(a)). The temperature induced dispersion change of Au may also contribute to the observed 

resonance shift of both the hydrogel-coated device and the uncoated counterpart, in accompany 

with a minor decrease in quality factor. At 830 nm near the TM mode resonance of the BNAs, as 

the temperature increases from 22 oC to 42 oC, the real part of Au permittivity remains almost the 

same at the value of -8, while the imaginary part changes from 1.6 to 1.9, which leads to an 

increase in radiative losses [37]. This, in turn, may cause a decrease in collective coupling of 

neighboring bowties, thus slightly red shifting the TM mode resonant wavelength.  

To further demonstrate the ability of the BNAs to dynamically respond to environmental 

temperature changes, we applied a temperature stimulus by flowing warm water (42 oC) over the 

surface of both the hydrogel-coated and uncoated BNAs in a microfluidic channel. Figure 2.5 

tracks the TE and TM mode resonant wavelengths of the two devices during temperature rising 

and natural cooling. For the uncoated device (Fig. 3.5(a)), the resonance shift of each resonance 

mode has a similar trend with the temperature variation. As the warm water arrived, the 

resonance shift of each peak reached a maximum value of about 3 nm for TM mode and 1.6 nm 

for TE mode. As the device naturally cooled down, the resonance peaks progressively blue 

shifted until a new temperature stimulus came. For the hydrogel-coated device (Fig. 3.5(b)), the 

overall resonance shift patterns are similar to those for the uncoated one, except for having a 

much larger amplitude at the level of 16.2 nm for TM mode and 8 nm for TE mode. Figure 

3.5(b) further confirms the phase transition effect of the hydrogel around 32 oC on the resonance 
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shift of the device. The resonant wavelength blue shifted much faster at 29-35 oC than it did in 

other temperatures. Therefore, the hydrogel-coated device is able to dynamically sense the 

environmental temperature variations and take action to shift its resonance shift.  

 

Figure 3.5 Dynamic tracking of TE and TM mode resonance peaks for the uncoated BNAs (a) and the 
hydrogel- coated BNAs (b) at different temperatures. The upper panels in (a) and (b) show the changing 
environmental temperatures. 

To quantify how fast the hydrogel-coated BNAs respond to temperature changes, we 

tracked changes in reflection intensity of the hydrogel-coated BNAs at the TM mode wavelength 

of 847 nm at 22 oC. In this study, warm water at a raised temperature (i.e., 30, 32, 35, or 37oC) 

was continuously injected into the channel such that the surface temperature of the BNAs 

remained constant. As the warm water flowed over the device, the reflection intensities at the 

two fixed wavelengths reached maximum or plateau values in just about one second (Figure 3.6). 

It should be pointed out that a response time of only 250 ms was observed for the device; this 

refers to the time from being exposed 42 oC warm water to a clear intensity change shown on the 
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spectrometer. Such a short response time is attributed to the use of the submicron hydrogel 

coating, because the time response of the volume change approximately follows the square of the 

dimension as the hydrogel structure reversibly expands and contracts, depending on the 

temperature of the surrounding environment. As the temperature was kept constant, the hydrogel 

remained in a contracted state where no volumetric change of the hydrogel occurred. As a result, 

the resonant wavelength remained unchanged, forming the intensity plateau. 

 

Figure 3.6 Dynamic tracking of reflection intensity of the hydrogel-coated BNAs at different 
temperatures. Water at different temperatures (37, 35, 32, and 30 oC) flowed over the surface of 
the BNAs located on the bottom of a microfluidic channel.  

While this study utilizes the PNIPAAm hydrogel with a fixed VPTT as a model hydrogel 

to proof the concept of stimuli-responsive BNAs, the use of multiple thermoresponsive 

hydrogels with different VPTTs for multiple temperature-responsive BNAs will make it feasible 

to program the response of each individual BNAs device where a specific hydrogel coating is 

used [38]. This will provide adequate flexibility in the design of stimuli-responsive BNAs. 

Furthermore, a variety of hydrogels can be used to further diversify the tuning mechanisms and 
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their applications [39]. For example, functionally complex BNAs can be realized to act as 

biological and chemical sensors to detect multi-environmental parameters, and subsequently 

generate optical outputs (resonant wavelength, and optical intensity). By working in the scale 

range of submicron for stimuli-responsive hydrogels where ion diffusion pathway is favorably 

short, and by working in the scale range of nanometers for BNAs where the localized field is 

sensitive to small local index changes, the stimuli-responsive BNAs will bridge local 

environmental input parameters with optical resonance outputs through the use of stimuli-

responsive hydrogels. 

3.4 Methods and Experimental Details 

The NIPAAm hydrogel precursor solution was prepared according to the recipe described 

in Ref. [34]. The hydrogel solution contained 14.3 wt% NIPAAm, 2 wt% crosslinking agent 

N,N’-methylenebis (acrylamide) (99%) (BIS), and 2 wt% photoinitiator 2-hydroxy-4’-(2-

hydroxyethoxy)-2-methyl propiophenone (98%) in distilled water (all purchased from Sigma-

Aldrich). 

The BNAs were fabricated on a 25 × 25 × 0.42 mm3 ITO-coated glass slide. E-beam 

lithography was used to form nanopatterns of BNAs in poly(methyl methacrylate) resist (Sigma-

Aldrich). The area of the BNAs is 500 × 500 µm2 with a periodicity of 428 nm in each direction. 

Each bowtie has a length of 150 nm and a tip-to-tip distance of 20 nm. A 5 nm thick titanium 

adhesion layer and a 50 nm thick Au layer were evaporated onto the sample using an e-beam 

evaporator. Subsequently, a lift-off process was used to remove the metal from the regions where 

the e-beam resist remained. The sample was immersed into pure acetone with sonication for 20 

mins. Therefore, the Au BNAs were formed. 
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To coat the NIPAAm hydrogel on the BNAs, a shallow air cavity was created between 

the ITO-coated glass slide and a polyethylene terephthalate (PET) slab. Here, a 750 nm thick 

photoresist was spin-coated and patterned on the glass slide to form multiple spacers. The PET 

slab was supported by these photoresist spacers. Therefore, the 750 nm thick air cavity was 

formed. Subsequently, the hydrogel precursor solution was injected into the cavity at the edge of 

the cavity by using a pipette. The sample was cooled down on a cooling stage with a surface 

temperature of 5 oC, and then, was exposed to UV light (wavelength: 365 nm, intensity: 74 

mW/cm2) for 5 s. The low-temperature exposure enabled enhancing optical transparency of the 

hydrogel. Lastly, the PET slab was peeled off and nonpolymerized residual monomer was 

removed by rinsing the sample with ethanol and water. 

Optical spectra of the sample were measured using a spectroscopic measurement setup. 

The incident light was coupled from a 150 watts quartz halogen lamp using a multimode fiber 

and focused on to the BNAs by a 60× objective lens (NA = 0.85). A polarizer was inserted 

between the light source and the objective to control the polarization state of the excitation light.  

Optical full wave simulation was carried out using a finite element method based 

commercial package COMSOL Multiphysics. The geometric parameters of the BNAs were 

extracted from the SEM image of the fabricated device. The curvature radius at the triangle apex 

was set to 14 nm. The glass substrate was considered to have an infinite thickness. The 25 nm 

thick ITO layer between the substrate and BNAs was also included in the model of the device.  

To facilitate changing environmental temperatures, a microfluidic channel (1 mm wide, 

750 µm high, and 15 mm long) was built on the top of the BNAs. To form the channel, a 100 µm 

thick glass coverslip (Sigma-Aldrich) was placed 750 µm above the BNAs with double sided 

adhesive as spacers. A photopatternable polymer solution consisting of isobornyl acrylate, 
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tetraethylene glycol dimethacrylate, and 2,2-dimethoxy-2-phenylacetophenone (all purchased 

from Sigma-Aldrich) with a weight ratio of 32:1.7:1,38 was injected into the chamber formed 

between the coverslip and the device surface using a pipette. A film photomask (Fineline 

Imaging) was used to define the patterns. The UV light intensity was set to 8.4 mW/cm2. After 

20 s exposure, the channel was developed by soaking the device in pure ethanol (Sigma-Aldrich) 

for 2 min, followed by baking on a hotplate at 60 oC for 1 hr. The inlet and outlet of the 

chambers were punched through the glass slides by using a conventional milling machine. Water 

with different temperatures were injected into the channel and flowed over the top surface of the 

device. The local temperature was monitored by a thermocouple probe (Omega HH506RA 

multilogger thermometer) placed in contact with the surface of the device. 

3.5 Conclusions 

In this work, we have demonstrated a temperature-responsive BNAs device by coating 

the plasmonic dimers with a submicron-thick thermos-responsive hydrogel. Upon the 

temperature variations, the water content of hydrogel varies due to the transition of hydrogel 

from hydrophobic to hydrophilic state and will gradually alter the refractive index of hydrogel. 

Because of the large field enhancement of the plasmonic modes in the BNAs, the spectra shift of 

resonances can indicate refractive index changes. The experiment results show that for the 

hydrogels-coated BNAs, a 16.2 nm of resonance shift was observed, compared to a 3 nm shift 

for the uncoated bare BNAs. Our study suggests a possibility of making environmental-sensitive 

plasmonic devices through the incorporation of coupled plasmonic nanostructures and 

environmental-responsive materials. 



58 
 

 

3.6 Acknowledgement 

This work was supported in part by National Science Foundation under Grants # ECCS- 

0954765 and CCF-1331390, United State Agriculture Department under Grant # NIFA-2013-

68004-20374, and Iowa State University’s Plant Sciences Institute. P. L. and H. J. thank China 

Scholarship Council for partial financial support. S.O. thanks Turkish Council of High Education 

and Anadolu University in Turkey for financial support.  

3.7 References 

[1] Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Materials 

11, 917-924, doi:10.1038/NMAT3431 (2012). 

[2] Liu, A. Q., Zhu, W. M., Tsai, D. P. & Zheludev, N. I. Micromachined tunable 

metamaterials: a review. Journal Of Optics 14, doi:10.1088/2040-8978/14/11/114009 

(2012). 

[3] Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly Strained 

Compliant Optical Metamaterials with Large Frequency Tunability. Nano Letters 10, 

4222-4227, doi:10.1021/nl102684x (2010). 

[4] Tao, H. et al. Reconfigurable Terahertz Metamaterials. Physical Review Letters 103, 

147401, doi:10.1103/Physrevlett.103.147401 (2009). 

[5] Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable Photonic Metamaterials. 

Nano Letters 11, 2142-2144, doi:10.1021/n1200791r (2011). 

[6] Ou, J. Y., Plum, E., Zhang, J. F. & Zheludev, N. I. An electromechanically reconfigurable 

plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology 8, 252-

255, doi:10.1038/nnano.2013.25 (2013). 

 



59 
 

 

[7] Dicken, M. J. et al. Electrooptic Modulation in Thin Film Barium Titanate Plasmonic 

Interferometers. Nano Letters 8, 4048-4052, doi:10.1021/nl802981q (2008). 

[8] Si, G. Y., Zhao, Y. H., Leong, E. S. P. & Liu, Y. J. Liquid-Crystal-Enabled Active 

Plasmonics: A Review. Materials 7, 1296-1317, doi:10.3390/ma7021296 (2014). 

[9] Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. 

Nature Photonics 4, 107-111, doi:10.1038/Nphoton.2009.265 (2010). 

[10] Gagnon, G., Lahoud, N., Mattiussi, G. A. & Berini, P. Thermally activated variable 

attenuation of long-range surface plasmon-polariton waves. Journal Of Lightwave 

Technology 24, 4391-4402, doi:10.1109/Jlt.2006.883683 (2006). 

[11] Roxworthy, B. J., Bhuiya, A. M., Yu, X., Chow, E. K. C. & Toussaint, K. C. 

Reconfigurable nanoantennas using electron-beam manipulation. Nature 

Communications 5, doi:10.1038/Ncomms5427 (2014). 

[12] Tokareva, I., Minko, S., Fendler, J. H. & Hutter, E. Nanosensors based on responsive 

polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance 

spectroscopy. Journal Of The American Chemical Society 126, 15950-15951, 

doi:10.1021/ja044575y (2004). 

[13] Tokarev, I., Tokareva, I. & Minko, S. Gold-nanoparticle-enhanced plasmonic effects in a 

responsive polymer gel. Advanced Materials 20, 2730-2734, 

doi:10.1002/adma.200702885 (2008). 

[14] Sanchez-Iglesias, A. et al. Synthesis of multifunctional composite microgels via in situ Ni 

growth on pNIPAM-coated Au nanoparticles. Acs Nano 3, 3184-3190, 

doi:10.1021/nn9006169 (2009). 

 



60 
 

 

[15] Gehan, H. et al. Thermo-induced electromagnetic coupling in gold/polymer hybrid 

plasmonic structures probed by surface-enhanced raman scattering. Acs Nano 4, 6491-

6500, doi:10.1021/nn101451q (2010). 

[16] Joshi, G. K., Johnson, M. A. & Sardar, R. Novel pH-responsive nanoplasmonic sensor: 

controlling polymer structural change to modulate localized surface plasmon resonance 

response. Rsc Advances 4, 15807-15815, doi:10.1039/c4ra00117f (2014). 

[17] Wang, Y., Brunsen, A., Jonas, U., Dostalek, J. & Knoll, W. Prostate Specific Antigen 

Biosensor Based on Long Range Surface Plasmon-Enhanced Fluorescence Spectroscopy 

and Dextran Hydrogel Binding Matrix. Analytical Chemistry 81, 9625-9632, 

doi:10.1021/ac901662e (2009). 

[18] Toma, M., Jonas, U., Mateescu, A., Knoll, W. & Dostalek, J. Active Control of SPR by 

Thermoresponsive Hydrogels for Biosensor Applications. Journal Of Physical Chemistry 

C 117, 11705-11712, doi:10.1021/jp400255u (2013). 

[19] Mesch, M., Zhang, C. J., Braun, P. V. & Giessen, H. Functionalized Hydrogel on 

Plasmonic Nanoantennas for Noninvasive Glucose Sensing. Acs Photonics 2, 475-480, 

doi:10.1021/acsphotonics.5b00004 (2015). 

[20] Jiang, H., Markowski, J. & Sabarinathan, J. Near-infrared optical response of thin film 

pH-sensitive hydrogel coated on a gold nanocrescent array. Optics Express 17, 21802-

21807, doi:10.1364/oe.17.021802 (2009). 

[21] Gehan, H. et al. Design and Optical Properties of Active Polymer-Coated Plasmonic 

Nanostructures. Journal Of Physical Chemistry Letters 2, 926-931, 

doi:10.1021/jz200272r (2011). 

 



61 
 

 

[22] Dong, L. & Jiang, H. Autonomous microfluidics with stimuli-responsive hydrogels. Soft 

Matter 3, 1223-1230, doi:10.1039/b706563a (2007). 

[23] Mao, D. P., Liu, P. & Dong, L. Multichannel Detection Using Transmissive Diffraction 

Grating Sensor. Journal Of Polymer Science Part B-polymer Physics 49, 1645-1650, 

doi:10.1002/polb.22365 (2011). 

[24] Karg, M. et al. Multiresponsive Hybrid Colloids Based on Gold Nanorods and 

Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon 

Resonance. Langmuir 25, 3163-3167, doi:10.1021/la803458j (2009). 

[25] Karg, M. et al. L. M. Nanorod-coated PNIPAM microgels: Thermoresponsive optical 

properties. Small 3, 1222-1229, doi:10.1002/smll.200700078 (2007). 

[26] Gupta, S., Agrawal, M., Uhlmann, P., Simon, F. & Stamm, M. Poly(N-isopropyl 

acrylamide)-Gold Nanoassemblies on Macroscopic Surfaces: Fabrication, 

Characterization, and Application. Chemistry Of Materials 22, 504-509, 

doi:10.1021/cm9031336 (2010). 

[27] Sundaramurthy, A. et al. Field enhancement and gap-dependent resonance in a system of 

two opposing tip-to-tip Au nanotriangles. Physical Review B 72, 

doi:10.1103/Physrevb.72.165409 (2005). 

[28] Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 

453, 757-760, doi:10.1038/nature07012 (2008). 

[29] Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a 

bowtie nanoantenna. Nature Photonics 3, 654-657, doi:10.1038/Nphoton.2009.187 

(2009). 

 



62 
 

 

[30] Suh, J. Y. et al. Plasmonic Bowtie Nanolaser Arrays. Nano Letters 12, 5769-5774, 

doi:10.1021/nl303086r (2012). 

[31] Roxworthy, B. J. et al. Application of Plasmonic Bowtie Nanoantenna Arrays for Optical 

Trapping, Stacking, and Sorting. Nano Letters 12, 796-801, doi:10.1021/nl203811q 

(2012). 

[32] Roxworthy, B. J. et al. Plasmonic Optical Trapping in Biologically Relevant Media. Plos 

One 9, doi:10.1371/journal.pone.0093929 (2014). 

[33] Kuckling, D., Harmon, M. E. & Frank, C. W. Photo-cross-linkable PNIPAAm 

copolymers. 1. Synthesis and characterization of constrained temperature-responsive 

hydrogel layers. Macromolecules 35, 6377-6383, doi:10.1021/ma0203041 (2002). 

[34] Richter, A. & Paschew, G. Optoelectrothermic Control of Highly Integrated Polymer-

Based MEMS Applied in an Artificial Skin. Advanced Materials 21, 979-983, 

doi:10.1002/adma.200802737 (2009). 

[35] Plunkett, K. N. et al. Leckband, D. E. PNIPAM chain collapse depends on the molecular 

weight and grafting density. Langmuir 22, 4259-4266, doi:10.1021/la0531502 (2006). 

[36] Malham, I. B. & Bureau, L. Density Effects on Collapse, Compression, and Adhesion of 

Thermoresponsive Polymer Brushes. Langmuir 26, 4762-4768, doi:10.1021/la9035387 

(2010). 

[37] Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Variable-focus liquid microlenses 

and microlens arrays actuated by thermoresponsive hydrogels. Advanced Materials 19, 

401-405, doi:10.1002/adma.200601561 (2007). 

[38] Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. 

Nature Materials 9, 101-113, doi:10.1038/NMAT2614 (2010). 



63 
 

 

 CHAPTER 4 

 NEMS-BASED INFRARED METAMATERIAL VIA TUNING NANOCANTILEVERS 

WITHIN COMPLEMENTARY SPLIT RING RESONATORS 

A paper published in Journal of Microelectromechanical Systems 

Qiugu Wang, Depeng Mao, Peng Liu, Tomas Koschny, Costas M. Souklious, and Liang Dong 

4.1 Abstract 

Dynamic control of the electromagnetic properties of metamaterials requires wide 

modulation bandwidth. Tunable metamaterials with large tunability and fast speed are thus 

highly desirable. Due to the small dimensions, subwavelength meta-atoms or resonant elements 

that constitute a metamaterial in the mid-to-near-infrared (IR) wavelength range are often not 

easy to be tuned at a high rate of several tens of megahertz (MHz). Here, we report on a 

nanoelectromechanical systems (NEMS)-based tunable IR metamaterial realized by unique 

embedding of nanocantilevers into complementary split ring resonators (c-SRRs) suspended over 

individual wells. The optical field confined in the air gap of the c-SRR is strongly influenced by 

electrostatically induced mechanical deflection of the nanocantilever, thus modulating the 

reflection spectrum of the metamaterial. With the easy-to-implement tunable meta-atom design, 

the IR metamaterial with 800 nm-long cantilevers provides an ultrahigh mechanical modulation 

frequency of 32.26 MHz for optical signal modulation at a wavelength of 2.1 µm and is rather 

easy to manufacture and operate. We envision a compact, efficient, and high-speed electro-optic 

modulation platform in the IR region using this tunable metamaterial technology. 

4.2 Introduction 

Metamaterials are artificially-engineered resonant structures that can be used to 

manipulate electromagnetic (EM) waves on subwavelength scales. They are promising for a 

variety of applications such as superlenses [1, 2], invisibility cloaks [3, 4], perfect absorbers [5, 
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6], and biochemical sensors [7-9]. The ever-increasing demand for active control of the EM 

properties of metamaterials has led to the development of tunable metamaterials [10], which are 

mainly realized by hybridizing meta-atoms or resonant elements with nonlinear materials such as 

phase-change media [11-13], liquid crystals [14-17] and semiconductors [18-20]. Alternatively, 

the microsystems technology has also enabled the realization of tunable metamaterials [21] by 

using thermally-actuated bimorph beams [22-25] and in-plane electrostatic comb drives [26-29]. 

This type of tunable metamaterials can be realized via the complementary-metal-oxide-

semiconductor (CMOS) fabrication process to enable flexible control with integrated circuits 

[21]. Nevertheless, both the optical resonance wavelength and mechanical modulation frequency 

of these metamaterials are usually limited by the relatively large size of the tunable meta-atoms. 

For example, tunable near-infrared (IR) metamaterial-based absorbers [30, 31] have recently 

been developed via constructing diffractive nanohole gratings on a diaphragm with dimensions 

of hundred microns. They rely on sophisticated CMOS-compatible fabrication processes but only 

have modulation frequencies of the order of kilohertz. In order to improve the modulation 

frequency, multiple pairs of tens-of-microns-long metallic strings were previously arranged in 

parallel, and electrostatic [32] or optical [33] forces were applied to control nanoscale strip 

displacements at a rate of 1-2 MHz. Despite these efforts, tuning metamaterials at a rate of 

several tens of MHz in the near-IR and shorter-wavelength spectral region remains very 

challenging. Here, we report on a nanoelectromechanical systems (NEMS)-based reconfigurable 

metamaterial operating in the near-to-mid-IR region which affords ultrafast electro-optic 

modulation and is rather easy to fabricate and operate.  
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4.3 Device Structure and Principle 

 

Figure 4.1 Schematic of the NEMS-enabled tunable metamaterial operating in the near-to-mid-
IR wavelength region.  

Fig. 4.1 schematically illustrates the working principle of the proposed metamaterial. The 

metamaterial is composed of an array of gold−silicon (Au−Si) bilayer complementary split ring 

resonators (c-SRRs) at the top and an array of Au solid SRRs (s-SRRs) at the bottom of SiO2 

wells. The c-SRR has an inverse shape to the s-SRR. An in-plane cantilever is embedded in the 

c-SRR and surrounded by a 200 nm-wide U-shaped air gap. The top c-SRRs are positioned 250 

nm above the bottom of the SiO2 well formed in a 1 m-thick buried SiO2 layer of a silicon-on-

insulator (SOI) substrate. The cantilever is composed of 20 nm-thick Si and 20 nm-thick Au 

layers. One end of the cantilever is anchored while the other end is free to move. The cantilever 

is 800 nm long and 500 nm wide. The entire top Au layer serves as an electrode, while the Si 

handling layer of the SOI substrate is the other electrode of an electrostatic actuator. Depending 

on the polarization direction of incident light, different eigenmodes of the c-SRR or s-SRR 

structures of the metamaterial can be excited. When a voltage is applied between the top Au and 

bottom Si handling layers, the generated electrostatic force bends the embedded nanocantilever 
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towards the bottom of the SiO2 well. The electrostatically induced mechanical deflection of the 

nanocantilever changes the shape of the U-shaped air gap, thus allowing tuning of the 

characteristics of the optical resonant modes of the c-SRR or s-SRR.  Profoundly, due to the 

compact design and small dimensions of the nanocantilever, the proposed metamaterial can be 

synchronously driven at modulation frequencies up to several tens of MHz to tune its reflection 

spectrum in the IR region, thus providing much faster electro-optic modulation than many other 

counterpart metamaterials [26-34]. Note that in this paper subwavelength meta-atoms refer to the 

c-SRR or s-SRR resonant units shown in Fig. 4.1. 

4.4 Methods 

4.4.1 Metamaterial Fabrication 

 

Figure 4.2. (a)-(f) Schematic of the fabrication process for the tunable IR metamaterial. (g)-(h) 
SEM images showing an unreleased cantilever after BOE etching of buried oxide for 3.5 min (g), 
and a released cantilever after BOE etching of oxide for 5 min. The length of the cantilever in (g) 
and (h) is 800 nm. 

The metamaterial design was implemented on a SOI wafer. Fig. 4.2 shows the schematic 

of the fabrication process for the metamaterial. The SOI wafer consisted of a 340-nm-thick 

device silicon layer, a 1-µm-thick buried oxide layer, and 580-µm-thick handling silicon wafer 

(Fig. 4.2(a)). First, the top silicon layer of the SOI substrate was thinned down to ~ 20 nm by 
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thermal oxidation, with subsequent wet-etching of SiO2 using a buffered oxide etch (BOE) 

solution (Fig. 4.2(b)). Subsequently, the thinned silicon layer was doped with phosphorous ions 

(5 × 1019 cm-3) to increase electrical conductivity for serving as a top electrode. U-shaped air 

gaps were then patterned in the thinned silicon layer by means of e-beam lithography (Fig. 

4.2(c)) and subsequent reactive-ion etching of silicon (Fig. 2(d)); thus, the patterns of the 

nanocantilever array were formed. Next, the wafer was immersed into the BOE solution for 5 

min to totally remove the SiO2 underneath the nanocantilevers, while retaining most of the SiO2 

underneath the frame structure between neighbouring c-SRRs (Fig. 4.2(e)). This design 

prevented possible collapse of the entire metamaterial surface under an applied voltage. Finally, 

a ~ 20-nm-thick Au thin film was evaporated onto the surface of the device through evaporation. 

Thus, the Au/Si c-SRRs on the top and Au solid SRRs at the bottom of the air cavities were 

formed (Fig. 4.2(f)). The resulting vertical separation between the c-SRRs and SRRs was ~250 

nm. Fig. 4.2(g) and (h) show the unreleased and released cantilever after BOE etching of the 

buried oxide for 3.5 min and 5 min, respectively. 

4.4.2 Numerical Simulation 

Optical simulations were carried out using finite-element-method-based software 

(COMSOL Multiphysics). The geometrical parameters used in the simulations were extracted 

from the SEM images of the fabricated device. In the simulations, the thick handling Si layer of 

the SOI substrate was not included in the computed region due to limited computation power. 

For simplicity, the rounded 90-degree corners and geometrical irregularities of the fabricated c-

SRRs occurring in the experiments were not considered.  

4.4.3 Electro-optical Characterization 

The reflection spectra of metamaterials were measured via the Fourier transform IR 

(FTIR) microscope system (Hyperion 2000, Bruker) for normal incidence of light. Transverse 
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magnetic (TM) and transverse electric (TE) polarizations were obtained using the built-in 

polarizers of the FTIR microscope. A D.C. voltage was applied between the gold-coated top 

surface of the device and the silicon handling layer of the SOI wafer to electrostatically tune the 

metamaterials during the reflection spectra measurement.  

Electro-optical modulation of the metamaterials was conducted by measuring the 

reflectance change in a 2.1 m laser beam (Ho: YAG end-pump laser) reflected from the 

metamaterials, while modulating the metamaterial with a function generator (FG; Agilent 

81101A) and a voltage amplifier. The reflected laser beam was detected by an InGaAs 

photodetector (818-BB-51, Newport) and a lock-in amplifier (SR830, Stanford Research). The 

whole optical setup for the electro-optical modulation is displayed in the Results and Discussion 

section.  

4.5 Results and Discussion 

Fig. 4.3 shows the SEM images of the metamaterial before and after gold coating at the 

surface of the device. Fig. 4.4(a) presents the measured and simulated optical reflection spectra 

of the metamaterial under TM and TE polarizations when no voltage is applied to the 

metamaterial. Conspicuous resonance dips are observed at different wavelengths. In general, 

when the incident field is polarized along the parallel (TM) or perpendicular (TE) directions to 

their gaps, odd or even eigenmodes will be excited for SRRs [35]. In contrast, even or odd 

eigenmodes of c-SRRs will be excited by TM- or TE-polarized fields, respectively. Therefore, 

for TM polarizations (Fig. 4.4(a); left panel), one even c-SRR mode and two odd s-SRR 

resonance modes appear as reflectance dips.  Here we mark these resonance modes with ‘1S’ at a 

wavelength of 6.8 m, ‘3S’ at 3.3 m, and ‘2C’ at 2.1 m in the spectrum, where the superscripts 

‘S’ and ‘C’ denote the modes of the s-SRR and c-SRR, respectively. The origins of these 



69 
 

 

resonances are unveiled by the computed field distributions in Fig. 4.4(c), where the orders of 

eigenmodes can be defined by the number of nodes in the electric- or magnetic-field component 

normal to the surface of the s-SRR or c-SRR structure [35, 36]. 

 

Figure 4.3 SEM images of the metamaterial before (a) and after (b) coating with a a 20 nm-thick 
Au layer. The scale bars represent 1 µm. In (a), the cantilevers are released. In (b), the 
metamaterial is formed. A closed-up of the c-SRR without an Au layer is displayed in (c).    

For TE polarizations, two odd-order c-SRR resonances (1C at 5.3 m and 3C at 2.5 m) 

are excited (Fig. 4.4(a); right panel), as confirmed by the magnetic field distributions in Fig. 

4.4(b). However, no distinct resonance dip associated with an even-order s-SRR resonance is 

observed. Actually, an asymmetric Fano line shape is exhibited near mode 3C. This originates 

from the plasmon mode overlap between modes 2S and 3C, as confirmed by the electric field 

distribution of mode 2S in Fig. 4.4(d), where two amplitude nodes of the electric field are 

observed. It is worthy to note that no obvious coupling is observed between 1C or 1S modes. This 

is because the s-SRRs are formed with the use of the c-SRRs as shadow masks during deposition 
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of the Au layer, the s-SRRs and c-SRRs are identically shaped and orientated as a solid-inverse 

structure [37].  

 

Figure 4.4 (a) Measured and simulated reflection spectra of the metamaterial under TM and TE 
polarizations. Notations 1S−3S and 1C−3C represent the different orders of the s-SRR and c-SRR 
modes, respectively. (b) Simulated field distributions of c-SRR and s-SRR modes. The intensity 
of incident electric field is E0 = 1 V/m. The units of the electric field strength (Ez) and magnetic 
field strength (Hz) are V/m and A/m, respectively. The arrows in the field distributions denote 
the electric field, where their directions indicate the vector directions of surface currents. 

It should be noted that the discrepancies between the simulated and experimental results 

may be caused by the imperfection of the simulation model. The modeling accuracy mainly 

depends on how accurate the extracted geometric parameters of the c-SRR and s-SRR are. The 
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geometric errors of the model influence the optical resonances of the device, particularly more 

significant for high-order resonances. The removal of the handling Si layer of the SOI substrate 

from the limited computed region also impacts the reflection intensity. In addition, due to the 

nanofabrication, the inevitable non-uniformity of the fabricated meta-atoms may be another 

cause of the discrepancies between the simulated and experimental spectra. Nevertheless, the 

simulations still provide a useful prediction in the wavelengths and line shapes of the resonances 

that help us to identify the origin of the resonance modes. 

We now discuss the influence of applied voltage on the resonance characteristics for the 

major resonance modes of the metamaterial. As shown in Fig. 4.5(a) and (b), as the voltage 

increases from 0 to 55 V, the reflectance dips, assigned to the 1C, 2C, and 3C modes, all exhibit 

positive changes consistently. The changes of optical signals are caused by the bending of 

nanocantilevers that change the shapes of c-SRRs. In order to highlight the voltage induced 

variations, we plot in Fig. 4.5(c) and (d) the relative changes in reflectance at different voltages: 

R/Ro = (R − Ro)/Ro, where R and Ro represent the reflection intensities at a given voltage and 

no voltage, respectively. Here one can see that the spectra of R/Ro show peak-like features. As 

voltage increases, all the c-SRR modes exhibit a positive change in reflectance. For example, 

when the applied voltage increases from 0 V to 55 V, the reflectance at the 2C mode 

progressively increases from 9.8% to 13.5% (Fig. 4.5(a)). This corresponds to a relative 

reflectance change of R/Ro = 38% (Fig. 4.5(c)). Accordingly, the values of R/Ro at the 1C and 

3C modes are 15% and 5% respectively when applying a voltage of 55 V (Fig. 4.5(d)). 
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Figure 4.5 NEMS-enabled tuning of spectral characteristics of the metamaterial using 0.8 µm-
long cantilevers.  (a, b) Reflection spectra for different applied voltages under TM (a) and TE (b) 
polarizations. At 65 V, the cantilevers of the metamaterial are in the pull-in state. (c, d) Spectra 
of relative reflectance change R/Ro for different applied voltages under TM (c) and TE (d) 
polarizations.  

At higher voltages, the pull-in effect of the nanocantilever occurs due to the strongly 

nonlinear increase in the electrostatic force, thus causing abrupt deflection and stiction of the 

nanocantilever to the bottom of the SiO2 well. The pull-in voltage VP for a bilayer nanocantilever 

beam with dimensions of L (length) × w (width) × t (thickness) can be estimated using the 

following equation [38, 39]:  

3
08 ( / ) / (27 )P eff oxide rV k d t wL     4.1 
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where keff represents the effective stiffness of the nanocantilever, d = 250 nm the distance 

between the nanocantilever and the bottom of the well, toxide = 750 nm is the thickness of the 

remaining SiO2 layer at the bottom of the well, r = 3.9 is the dielectric constant of SiO2, and o is 

the permittivity of vacuum. For the given design parameters of L = 800 nm, w = 500 nm, and t = 

40 nm, the calculated pull-in voltage was VP = 66 V, which is close to the experimental result of 

65 V. In the pull-in state of the nanocantilevers, the reflectance of the metamaterial at the 2C 

mode dramatically increases to 25.5% (Fig. 4.5(a)) and thus the corresponding value of R/Ro 

reaches 160% (Fig. 4.5(c)).  

In Fig. 4.6(a), we summarize the reflection intensity modulations for the resonance 

modes of the metamaterial for different applied voltages. Here one can see that, when applying 

voltages, the even-order (2C) c-SRR modes exhibit more significant changes in reflectance than 

odd-order modes (1C and 3C). As the s-SRR structure is unchanged, only minor reflectance 

changes are observed. For example, the 1S mode of s-SRR is hardly influenced by the applied 

voltage and the 3S mode exhibits only a 3% reduction in R/Ro.  

To understand the changes of the c-SRR modes caused by the deflection of the 

nanocantilever, we computed the field distributions corresponding to the 1C, 2C, and 3C 

resonance modes under different nanocantilever bending conditions, as shown in Fig. 4.6(b). The 

incident EM field leads to currents flowing in opposite directions on the concave and convex 

surfaces of the nanoapertures, thus forming a waveguide mode inside the nanoaperture [40]. 

Alternatively, the c-SRR resonances can essentially be understood as Fabry–Pérot resonances of 

guided waves propagating perpendicular to the nanoaperture [36]. The widening gap of the 

nanoaperture under an applied voltage leads to blue-shift of the resonance wavelength and 

reduced reflection intensity, owing to weakened near-field interactions around the sidewalls of 



74 
 

 

nanoaperture. The even-order c-SRR modes are more sensitive to the shape change of the 

nanoaperture compared to the odd-order modes. A plausible explanation for this observation is 

given below. The field strength is the highest at the amplitude node. 

 

Figure 4.6 Effect of applied voltage on resonance modes and field distributions. (a) Summary of 
the relative changes in reflection intensity for different c-SRR and s-SRR modes as functions of 
the applied voltage. (b) Magnetic field distributions in the 1C−3C modes on the sidewalls of the 
air nanoaperture under the initial state (left column), with 50 nm deflection (middle column), and 
the pull-in state (right column) of the nanocantilever. The arrows in the field distributions 
indicate the vector directions of surface currents. (c) SEM photographs of the metamaterial in the 
three states shown in (b). The scale bars present 500 nm. 

For the odd-order modes, the current flow starts at the front sidewall of the 

nanocantilever and ends at the opposite surface across the gap. The magnetic field intensities at 

these surfaces are low (close to zero). In contrast, for the even-order modes, the current flow 

starts and ends at the corners of the nanoaperture, and thus, the front sidewall of the 

nanocantilever serves as one of the amplitude nodes, where the nanocantilever has strong near-

field interactions with its opposite surface. As a result, these even-order modes are more 

sensitive to changes of the nanoaperture size. As shown in Fig. 4.6(b), a 50 nm deflection at the 
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tip of the nanocantilever causes significant changes in the current and magnetic field density in 

the 2C mode at the front sidewall of the nanocantilever, whereas very little change is observed in 

the 1C and 3C modes. In the pull-in state, both 1C and 3C c-SRR modes still exist but are 

insensitive to the deflection of the nanocantilever, as confirmed by the EM simulation. 

 

Figure 4.7 Normalized modulation depth of the tunable metamaterial as a function of driving 
frequency. The metamaterial utilizes 0.8 µm-long cantilevers. The inset illustrates the setup. MI 
– mirror; PL – polarizer; BS – beam splitter; PD – photodetector; LIA – lock-in amplifier; DAQ 
– data acquisition; FG – function generator; AMP – amplifier; PC – personal computer. 

Following the above discussions of the device tunability, we examine the electro-optical 

modulation of the IR metamaterial. As illustrated in the inset of Fig. 4.7, a 2.1 m-wavelength 

laser beam in mode 2C was made normally incident on the metamaterial. A square-wave driving 

voltage switching between 0 and 55 V was applied to the metamaterial. The incident laser beam 

was thus modulated by the metamaterial, and the reflected light was detected by a photodetector. 

Fig. 4.7 shows the frequency dependences of electro-optic modulation for the metamaterial. The 

spectral responses exhibit an initial roll-off until 10 MHz and the mechanical resonance 

frequency exhibits at 32.26 MHz, which agrees well with the simulated frequency of 31.35 MHz. 

Here, the normalized modulation depth at the mechanical resonance frequency is 24% (Fig. 4.7), 

in which the reflectance obtained at the mechanical resonance frequency of 31.35 MHz is 

normalized to the one obtained at 55 V DC input. The absolute modulation depth can be 
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calculated as (1+0.24) × (R/Ro) = 1.24 × 38% = 47%, where R/Ro = 38% is the relative 

reflectance change at the 2C resonance mode of the metamaterial (Fig. 4.5(c)). This result 

indicates that the metamaterial can be driven to its fundamental resonance frequency.  

 

Figure 4.8 Simulated mechanical deflection of the cantilevers with the length of 0.8 µm under 
various applied voltages. 

Note that in the electro-optic modulation experiment where a square-wave voltage 

switching between 0 and 55 V was applied, no stiction was observed. To explain the fact, 

mechanical simulations of cantilever deflections under various applied voltages are presented in 

Fig. 4.8. The result shows the deflection of the cantilever increases slowly below the pull-in 

voltage, but changes drastically when the voltage approaches the pull-in voltage. For the 800 nm-

long cantilevers, the pull-in voltage is 65 V. Note that the air cavity beneath the cantilever is 250 

nm deep. At 55 V, the deflection (see the red curve in Fig. 4.8) is ~ 20 nm and is insufficient to 

cause any stiction. 
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Figure 4.9 Tunable metamaterial using 1.6-µm-long cantilevers. (a) SEM photographs of the 
metamaterial with 1.6-m-long cantilevers before (left) and after (right) coating of Au layer. The 
scale bars represent 1 m. (b) Measured and simulated reflection spectra of the metamaterial for 
TM (left) and TE (right) polarizations. Notations 1S−3S and 1C−4C indicate the different orders of 
the s-SRR and c-SRR modes, respectively. (c) Simulated field distributions of the c-SRR or SRR 
resonance modes. The intensity of incident electric field is E0 = 1 V/m. The units of the electric 
field strength (Ez) and magnetic field strength (Hz) are V/m and A/m, respectively. The arrows in 
the field distributions indicate the electric field, where their directions indicate the phase relation.  

In essence, the electro-optic effect of the tunable metamaterial shown in Fig. 4.7 

originates from the electrostatically induced mechanical deformation of the c-SRRs, affecting the 

effective refractive index of each optical resonant element and thus the resonance characteristics 

of the metamaterial. In contrast, conventional electro-optic materials such as electrified crystals 

often have millimetre-scale dimensions and use birefringence-induced polarization effects with 

the aid of polarizers [41]. Meanwhile, liquid-crystal-based electro-optic modulators [15, 42, 43] 

provide slow responses due to the slow reorientation process of the liquid-crystal molecules, 



78 
 

 

which limits their modulation frequency. In contrast, via constructing c-SRRs with free-standing 

Au–Si nanocantilevers at the subwavelength scale, we can tune the optical resonances of the 

formed metamaterials to modulate the incident waves by applying an electrical potential. The 

complementary structural feature of the optical resonators also simplifies the nanomanufacturing 

processes and the driving method for electro-optic modulations in the near-to-mid-IR spectral 

regime. Further, the resulting small dimensions of the meta-atoms lead to high mechanical 

resonance frequencies of the order of several tens of MHz, i.e. one to three order of magnitude 

higher than almost all existing reconfigurable metamaterials [21-29]. An optomechanical 

dielectric metamaterial [44] was recently reported to exhibit a higher modulation frequency; 

however, owing to the weak optical force, the metamaterial provided a limited maximum 

modulation depth of 0.2% (normalized value) [44]. In comparison, our metamaterial, when 

operating at its mechanical resonance frequency, offers the normalized modulation depth of 24% 

(Fig. 4.7), about two orders of magnitude higher than the metamaterial using the optical force 

[44]. This is because the electrostatic actuation method used in our device allows larger 

deflections of the cantilever than the optomechanical actuation method.  

Although the nanocantilever stiction at pull-in is irreversible due to van der Waals 

interactions, the stiction could be avoided by some methods such as using closed-loop control 

and proper surface treatment to extend the range of travel for the nanocantilever [39]. In 

addition, to achieve larger tunability of the EM resonances with lower driving voltages, design 

improvements can be made. Possible optimization includes introducing appropriate structural 

symmetry breaking between the c-SRR and s-SRR structures to generate stronger coupled 

resonances in their fundamental modes [37, 45-47], thus improving resonance sensitivity of the 

cantilever deflection. The symmetry breaking could be achieved via formation of overlapping 
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shadow areas between the c-SRR and SRR. Moreover, it is flexible to adjust optical resonance 

wavelengths of the metamaterial by adjusting the geometries and dimensions of nanoapertures 

and cantilevers. For example, Fig. 4.9(a) shows the metamaterial with 1.6 m-long cantilevers 

embedded in the c-SRRs. The resonance wavelength of the 2C c-SRR mode for this metamaterial 

redshifts to a longer wavelength at 3.41 m (Fig. 4.9(b); left panel), compared to the mode 

wavelength of 2.1 m for the above-mentioned metamaterial using 0.8 m-long cantilevers. 

Similarly, to identify the origins of the resonance dips displayed in Fig. 4.9(b), we computed the 

field distributions of the c-SRR or SRR resonance modes in Fig. 4.9(c). 

 

Figure 4.10 Spectra of relative reflectance change R/Ro of the tunable metamaterial using 1.6 
µm-long cantilevers for TM (a) and TE (b) polarizations under different applied voltages. The 
voltages applied here are below the 20.5 V pull-in voltage of the embedded cantilever. 
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Further, Fig. 4.10 shows the TE and TM spectra for the relative reflectance change R/Ro of the 

metamaterial with 1.6 m-long cantilevers under different applied voltages before the pull-in 

effect occurs at 20.5 V. As expected, with increasing applied voltages from 0 to 17 V, the 1C and 

3C c-SRR modes for TE polarizations and the 1S s-SRR mode for TM polarizations exhibit 

relatively low sensitivities to the applied voltages. The maximum value of R/Ro is found to be 

58% at the 2C mode at 17 V (Fig. 4.10). The electro-optic modulation experiment indicates that 

due to the longer cantilevers embedded in the c-SRR structures, this metamaterial exhibits a 

lower mechanical modulation frequency of 5.32 MHz, compared to the above-described one 

using 0.8 m-long cantilevers (i.e., 32.26 MHz). 

Lastly, it should be noted that in this design, the length of the Au-coated cantilevers 

should be no more than 3 m to avoid significant initial bending. Fig. 4.11 shows that when the 

metamaterial has 3 m-long cantilevers, even in the absence of voltage application the thin 

cantilevers (20-nm-thick silicon and 20 nm-thick gold) are already bent into the wells, perhaps 

owing to the initial stress of the cantilevers. 

 

Figure 4.11 SEM photo of the metamaterial with 3-m-long cantilevers. 
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4.6 Conclusions 

In summary, we have demonstrated the NEMS-enabled tunable metamaterials operating 

in the near-to-mid-IR range by electromechanically tuning the nanocantilevers embedded in the 

c-SRR units. As the nanocantilevers bend downward towards the substrate, the U-shaped air 

gaps in the c-SRRs are geometrically changed, thus altering the surface-current flows on the 

sidewalls of the nanoapertures and varying the resonance intensity. The deflection of the 

nanocantilevers leads to significantly larger changes in the even c-SRR modes, while this change 

is less impactful in the odd c-SRR and SRR modes. With the compact and easy-to-implement 

meta-atom design, the present tunable metamaterial can provide fast electro-optic modulation at 

frequencies of several tens of MHz. In addition, this technology will find many applications in 

optical modulators, infrared sensors [48], and transformation optics [49]. Our tunable 

metamaterial design may also shed a light on a reconfigurable metamaterial where each resonant 

element may be individually controlled via integration of CMOS based integrated circuits within 

the top silicon device layer of SOI substrate.  
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CHAPTER 5 

 THERMO-MECHANICALLY TUNABLE ASYMMETRIC SPLIT RING RESONATORS FOR 

NEMS-BASED INFRARED METAMATERIALS 

A paper published in The 17th International Conference on Nanotechnology (IEEE NANO 2017) 

Qiugu Wang, Depeng Mao, and Liang Dong 

5.1 Abstract 

This paper presents a nanoelectromechanical systems (NEMS)-based tunable infrared 

(IR) metamaterial formed with an array of Au/Si bilayer split ring resonators (SRRs) having two 

asymmetric arms. The wider arm of the SRR is anchored on the device substrate, while the 

narrower arm is suspended above the substrate and can be thermally actuated to bend downward. 

The thermomechanical deflection of the thin arm can change the air gap between the two arms, 

thus modulating the optical resonance modes of the metamaterial. With the easy-to-implement 

tunable SRR design, the metamaterial is rather easy to manufacture, and provides up to 90% 

optical signal modulation at a wavelength of 3.6 µm. 

5.2 Introduction 

 Plasmonic metamaterials are artificially engineered resonant materials capable of 

manipulating light at a subwavelength scale. Their potential applications include superlenses, 

perfect absorbers, and biochemical sensors. Considerable efforts have been made towards the 

realization of tunable metamaterials at infrared (IR) wavelengths by hybridizing metamolecules 

with nonlinear materials such as phase-change media, liquid crystals and semiconductors [1-5]. 

This approach, however, often suffers from a small tuning range of light intensity and 

wavelength. On the other hand, micro-electro-mechanical systems (MEMS) technology has 

allowed lateral control of inter-metamolecular coupling of metamaterials, to achieve desired 
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tunability [6]. But, most existing MEMS-based tunable metamaterials resonate at relatively long 

wavelengths, because the introduction of MEMS actuators into metamolecules often has to 

sacrifice the compactness of the metamaterial. Therefore, smaller metamolecules were designed 

to realize reconfigurable IR metamaterial, consisting of alternating nonbendable and thermally 

bendable bridge structures [7]. Another reported tunable IR metamaterial was formed by pairs of 

parallel metallic strings and actuated by electrostatic forces [8].  

In this paper, we report on a nano-electro-mechanical systems (NEMS)-based tunable 

metamaterial in the near- to mid-IR spectral range with structural simplicity and compactness, 

easy fabrication, and large spectral tunability. The central idea of the metamaterial is to form an 

array of bilayer metal/dielectric (Au/Si) asymmetric split ring resonators (SRRs). The SRR is 

unique in that one arm of the SRR is suspended from the device substrate acting as a thermally 

bendable element, while the other arm is anchored on the substrate. The capability to tune the 

optical properties of the SRR arises from the fact that mechanical deflection of the bendable arm 

not only alters the air gap between the two arms, but perturbs optical modes excited by the 

complementary SRR (c-SRR) formed on the substrate.  

As shown in Fig. 5.1(a)-(c) the metamaterial is formed on a silicon-on-insulator (SOI) 

substrate, and composed of an array of gold/silicon (Au/Si) bilayer (20 nm-thick Au and 20 nm-

thick Si) SRRs at the top and an array of Au-based c-SRRs at the bottom. There is a 100 nm 

vertical separation between the SRRs and c-SRRs. Each SRR unit has two 900 nm-long arms 

with different widths and separated by an air gap. The wider arm sits on an anchor of SiO2. The 

other arm is free to bend in vertical direction (Fig. 5.1(b)). When the metamaterial is heated up, 

the slimmer free arm of the SRR bends towards the c-SRR due to differences in coefficients of 

thermal expansion between Au and Si. Therefore, different eigenmodes of the c-SRR or c-SRR 
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can be excited, depending on the polarization direction of incident light. As the deflection of the 

nanocantilever changes the air gap of the SRR, the optical properties of the eigenmodes will be 

tuned. 

5.3 Methods 

Fabrication of the metamaterial started with a SOI substrate (Fig. 5.1(d)). First, the top Si 

layer of the SOI substrate was thinned down to 20 nm by thermal oxidation and subsequent wet 

chemical etching. Next, SRRs were patterned on the surface of the thinned Si layer via e-beam 

lithography and subsequent reactive-ion etching. The resulting wafer was then immersed into a 

buffered oxide etch solution for 2 min to remove the SiO2 layer from underneath the slimmer 

arms of the SRRs, while retaining most of the SiO2 underneath the wider arms of the SRRs. 

Finally, a 20 nm thick Au film was evaporated onto the device surface to form Au/Si bilayer 

SRRs on the top and Au c-SRRs at the bottom. 

Fourier transform infrared spectroscopy microscope (Hyperion 2000; Bruker; Billerica, 

MA) was used to obtain reflection spectra of the fabricated metamaterial under normal incidence 

of light. To change temperature of the metamaterial, the metamaterial was emplaced on the top 

of a microheater pad (PH-G4-1; Micropyretics Heaters International; Cincinnati, OH).  

5.4 Results and Discussion 

5.3.1 Optical properties of the metamaterial 

Fig. 5.2(a) presents the measured reflection spectra of the metamaterials under transverse 

magnetic or TM (p) and transverse electric or TE (s) polarizations at room temperature (21 oC). 

Conspicuous resonance dips are observed at different wavelengths. For example, when the SRRs 

have a gap separation of g = 170 nm between the two arms (bottom curves in Fig. 5.2(a)), under 
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p-polarization two odd s-SRR resonance modes appear as the reflectance dips. Here we mark 

these resonance modes with ‘1S’ at a wavelength of 6 m, and ‘3S’ at 3.4 m in the spectrum,  

 

Figure 5.1 (a) Schematic of the NEMS-based tunable IR metamaterial before and after heating. 
(b) Scanning electron microscopy (SEM) image of tunable s-SRR. (c) SEM image of an array of 
s-SRRs. (d) Fabrication process flow for the tunable IR metamaterial. 

where the superscripts ‘S’ denote the modes of the s-SRR. For s-polarization, two odd-order c-

SRR resonances (1C at 6.1 m and 3C at 3.6 m) are excited, where the superscripts ‘C’ denote the 

modes of the c-SRR. Knowing that odd or even eigenmodes will be excited for SRRs under p- or 

s-polarized fields, to identify the order of these modes, their electric field distributions are plotted 

in Fig. 5.2(d). For 1S mode, only one electric field node is seen while 3S mode exhibits three nodes, 

which confirms the order of these modes. Likewise, because the bottom c-SRRs are totally 
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inversed structure created from top SRRs, the spectrum of the c-SRR structures under s-

polarizations are very similar to that of the SRRs under p-polarizations, which are expected 

according to the Babinet principle.  

To see how the air gap separation g between the two SRR arms influence the SRR and c-

SRR resonances, we have increased the gap separation to 220 nm. It is seen that all the resonance 

modes exhibit slight redshifts and the levels of shift are greater for the resonances at shorter 

wavelengths. This also hints that the alteration of the air gap between the two arms of SRR can 

tune the optical properties of the metamaterial. 

5.3.2 Thermomechanical tunable metamaterials 

 

Figure 5.2 Measured (a) and Simulated (b) reflection spectra of the metamaterials under p- and s-
polaritions for two devices with the gap separation of 170 nm (bottom) and 220 nm (top), 
respectively. (c) SEM images on 30o tilt view of the SRRs with two different gap separations. (d) 
Normalized electric field distributions of the modes as denoted in (b). The unit of the electric 
field strength is V/m. 
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We now discuss the influence of temperature on the characteristics of resonance modes 

of the metamaterial. As shown in Fig. 5.3(a) and (b), when the temperature increases from room 

temperature (21 oC), all the reflectance dips exhibit positive changes consistently. The changes 

of the optical properties are caused by the bending of the slimmer SRR arm that changes the air 

gap of SRR. To highlight the temperature induced variations in reflection intensity, we plot 

relative reflectance changes at different temperatures: R/Ro = (R − Ro)/Ro, where R and Ro 

represent the reflection intensities at an applied temperature and the room temperature, 

respectively. Here one can see that the spectra of R/Ro show peak-like features. As the 

temperature increases, 3S mode at p-polarization or 3C at s-polarization presents the greatest 

change while other resonances show almost no changes. For example, when the temperature rise 

increases from 0 to 173 oC, the reflectance at the 3S mode progressively increases from 11.9% to 

20.5% (top curves in Fig. 5.3(a)). This corresponds to a relative reflectance change of R/Ro = 

77% (bottom curves in Fig. 5.3(a)). Accordingly, the value of R/Ro at the 3C is 91% when the 

temperature rise is 173 oC (Fig. 5.3(b)). In contrast, the lower order modes present much less 

changes, which are almost zero for 1S mode and 11.8% for 1C mode. 

In Fig. 5.3(c), we summarize the reflection intensity modulations for the resonance 

modes of the metamaterial at different temperatures. Here one can see that, when temperature 

increases, for both metamaterial devices, the resonance modes for the smaller gap separation of 

the two SRR arms are more significant. For instance, in respond to the temperature rise of 173 

oC, the values of R/Ro at the 3C (s-polarization) are 91% and 62% for g = 170 nm and 220 nm, 

respectively. Also, with the same temperature increase, the corresponding R/Ro at the 3S (p-

polarization) are 77% and 49% for two devices, which agrees with the result of 3C mode.  
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Figure 5.3 (a, b) Measured reflection spectra (top panels) of the metamaterial (g = 170 nm) under 
TM (a) and TE (b) polarizations. The bottom panels show the corresponding R/Ro spectra at 
different temperature rises ΔT above a 21 oC room temperature. The device temperature was 
changed by a mini heater placed below the metamaterial. Temperature was monitored by a 
thermocouple. (c) Summary of the changes in reflection intensity as a function of ΔT for 
different resonances. 

Another noticeable fact is that the c-SRR modes excited under s-polarization exhibit 

greater changes in reflectance than corresponding s-SRR modes under p-polarization. For 

example, for the device with g = 220 nm, the relative changes for 3S mode are 62% greater than 

49% for 3C mode at the temperature rise of 173 oC. One possible explanation is that the 

difference in the mechanisms that change the optical properties of 3S and 3C modes. For 3S mode, 

the optical changes originate from the geometrical gap variations caused by the bending of the 

slimmer arm of SRRs while for 3C mode assumed to have no change because of the fixed 

structure, the optical changes are a result of downward slimmer arm that interfere the optical 

fields of 3C mode. Thus, it is reasonable to assume that the latter one has a greater impact to the 

optical properties of the mode considering the larger effective refractive index changes it causes. 

5.5 Conclusions 
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In summary, we developed a NEMS tunable IR metamaterial by thermally actuating the 

asymmetric SRR structures. This is achieved by fabricating bilayer SRRs with asymmetric arms, 

one of which is a slimmer freestanding bilayer while the other is anchored by oxide support. By 

increasing the temperature, the difference in thermal expansion coefficient of the materials 

results in the deflection of slimmer arms of SRRs and modulate the optical properties of the 

metamaterials. This tunable metamaterial will have many potential applications in transformation 

optics, spectral filters, switches, and many other tunable photonic devices. 
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CHAPTER 6 

 GRAPHENE “MICRODRUMS” ON FREESTANDING PERFORATED THIN MEMBRANE 

FOR HIGH SENSITVITY MEMS PRESSURE SENSOR 

A paper published in Nanoscale 

Qiugu Wang, Wei Hong, and Liang Dong 

6.1 Abstract 

We present a microelectromechanical systems (MEMS) graphene-based pressure sensor 

realized by transferring a large area, few-layered graphene on a suspended silicon nitride thin 

membrane perforated by a periodic array of micro-through-holes. Each through-hole is covered 

by a circular drum-like graphene layer, namely graphene “microdrum”. The uniqueness of the 

sensor design is that introducing the through-hole arrays into the supporting nitride membrane 

allows generating an increased strain in the graphene membrane over the through-hole array by 

local deformations of the holes under an applied differential pressure. Further reasons 

contributing to increased strain in the devised sensitive membrane include larger deflection of 

the membrane than that of its imperforated counterpart membrane, and direct bulging of the 

graphene microdrum under an applied pressure. Electromechanical measurements show a gauge 

factor of 4.4 for the graphene membrane and a sensitivity of 2.8×10-5 mbar-1 for the pressure 

sensor with a good linearity over a wide pressure range. The present sensor outperforms most 

existing MEMS-based small footprint pressure sensors using graphene, silicon, and carbon 

nanotubes as sensitive materials, due to the high sensitivity.  

6.2 Introduction 

Graphene is a promising material for applications in micro-electro-mechanical systems 

(MEMS) owing to its atomic thickness, fast electron mobility [1, 2] and high Young’s modulus 
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[3-5]. Because a single layer of graphene is impermeable to standard gases including helium [6, 

7] and has strong adhesion to silicon oxide (SiO2) substrate [8], graphene has been suggested as 

an atomic thick pressure sensor [7], a separation barrier between two distinct regions [9, 10] and 

a high-performance drumhead resonator [11]. Recently, chemical vapor deposition (CVD) has 

enabled large-area uniform formation of single and few-layer graphene sheets on different 

substrates [12-14]. This ability, in conjunction with well-developed patterning and transferring 

methods for graphene sheets [15-23], have opened up new opportunities of developing graphene-

based sensors and actuators. Strain induced electrical-mechanical coupling in graphene are 

widely reported [17, 24-29]. At present a few MEMS-based graphene pressure sensors have been 

demonstrated [7, 30-32]. In a pioneering work on graphene pressure sensors, a graphene 

membrane was suspended over a shallow well etched into a SiO2 layer grown on a silicon 

substrate, where the piezoresistive effect provided direct electrical readout of pressure to strain 

transduction and was demonstrated to be independent of crystallographic orientation [7]. Another 

remarkable pressure sensor design involved forming a graphene membrane on a silicon nitride 

(SiNx) membrane suspended over a micromachined silicon base [30, 31]. Also, a different 

pressure transducer was developed by using graphene flakes to cover an array of wells engraved 

into a fixed SiO2 layer grown on a silicon substrate [32]. The aforementioned graphene-based 

MEMS pressure sensors have a compact footprint of sub-mm2 and even smaller. In another 

category of graphene-based pressure sensors, large area graphene-polymer composite and laser-

scribed graphene foam have been used as sensitive materials [33, 34]. These sensors provided 

tremendous sensitivity, but had a large sensing area on the order of square centimeters and even 

larger. 
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Figure 6.1 (a) Schematic of the proposed MEMS pressure sensor using a graphene membrane on a 
perforated SiNx thin membrane formed on a micromachined silicon base. (b) Optical image of the 
fabricated pressure sensor. (c) Simulated deformation of the membrane and shape distortion of the 
through-holes. (d, e) SEM images of the graphene membrane on the perforated SiNx membrane. The 
white arrows in (e) indicate the locations of some pinholes in the graphene. The inset of (e) shows the 
standalone circular graphene microdrums. (f) Optical images of the sensor before and after applying a 
differential pressure of 400 mbar. (g) Measured surface profile of the graphene-perforated SiNx composite 
membrane along the line A-A’ across the center of the membrane. The measurement was conducted using 
Ambios XP-100 Stylus contact surface profiler. 

In this paper, we report on a high sensitivity, small area MEMS pressure sensor using 

few-layered graphene on a flexible perforated SiNx thin membrane (Fig. 6.1(a) and (b)). The 
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SiNx membrane acts as a supporting layer for the graphene membrane and has a periodic array of 

microsized through-holes (Fig 6.1(d)). Therefore, an array of circular drum-like graphene 

structures, namely graphene “microdrums”, are formed above these through-holes (Fig. 6.1(e)). 

Compared to the previously reported sensor designs of using a standalone graphene membrane 

[7] and an imperforated nitride-graphene composite membrane [31] as sensing elements, the 

introduction of the microsized through-hole array into the supporting membrane allows 

generating an increased membrane strain locally in the graphene layer over the holes (Fig. 

6.1(c)). Further reasons which add to obtain a large strain change in graphene and thus a high 

pressure sensitivity of the sensor include the facts that the perforated membrane deflects more 

than an imperforated counterpart membrane of the same dimensions, and that the graphene 

microdrums are pressurized to bulge up under an applied pressure. 

To proof this device concept, we fabricated a perforated SiNx square membrane (490 × 

490 µm2) by depositing 200 ± 2.7 nm thick nitride on a silicon substrate and patterning with 2.5 

µm-diameter holes, followed by removing silicon below the membrane. Subsequently, a few-

layered graphene membrane (~ 2 nm thick or ~ 6 atomic layers) was transferred on the 

perforated nitride membrane [18]. The nitride membrane was pretreated with oxygen plasma to 

improve van der Waals interactions between the graphene and nitride membrane [35-37]. After 

that, the graphene resistor pattern was patterned with the help of a metal shadow mask. Lastly, 

metal contacts were formed by using shadow mask evaporation of gold. See Methods section for 

details of device fabrication. To test the fabricated device, the backside of the device was 

adhered to the outlet of a plexiglass-based air channel. Air pressure was applied from the inlet of 

the air channel using a programmable syringe pump. A commercial differential pressure sensor 
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was used to measure differential pressures applied across the sensitive membrane. See Methods 

section for details of the testing setup.  

Fig. 6.1(d) shows the surface coverage of graphene on the perforated nitride membrane 

suspended over the micromachined silicon base. Only a few pinholes were observed in the 

graphene membrane (see arrows in Fig. 6.1(e)), which may be introduced during the graphene 

deposition and/or the transfer process. To confirm that the graphene membrane stayed bonded 

with the nitride membrane within a range of applied pressures, we performed contact profile 

measurement (Fig. 6.1(f)). Fig. 6.1(g) shows that the measured maximum deflection of the 

composite membrane is 14.1 µm at a differential pressure of 400 mbar. Let us assume that the 

pressurized graphene is totally detached from the supporting membrane. Then, according to 

mechanical simulations, the maximum deflection of 46 µm will be expected at the center of the 

membrane, which is much larger than the measured deflection mentioned above. Therefore, it 

was likely that the graphene adhered well with the nitride membrane. In fact, no detachment of 

the graphene from the perforated nitride membrane was observed even when the membrane 

popped out under the air pressure of ~ 600 mbar.  

The piezoresistive effect of the graphene sensor was measured with a Wheatstone bridge 

circuit (Fig. 6.2 (a)). A small input voltage of 20 mV was applied across the junctions of two 

shunt resistive circuits. The total resistance of the graphene sensor Rtot is composed of Rg of the 

graphene on the suspended square membrane, Rg1, Rg2, Rg3 and Rg4 of graphene in the 

surrounding regions, and the contact resistance Rc between the metal contacts and graphene. The 

measured Rtot for twelve devices varied between 1170 Ω and 1290 Ω, which presumably arose 

from slight manufacturing inconsistency during graphene patterning and transferring steps for 
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these devices. The device given in Fig. 6.2(a) had Rtot = 1215 Ω at room temperature. The 

relative resistance change of the sensor ∆Rtot/Rtot can be related to the output and input voltages  

 

Figure 6.2 (a) Schematic of the equivalent circuit of the graphene sensing element connected into a 
Wheatstone bridge circuit. (b) Voltage response of the device to step like increasing differential pressures. 
(c) Voltage response of the device to rapid increase and gradual decrease in applied differential pressure.  

(Vout and Vin) of the sensor by Eq. 6.1:  

𝑉୭୳୲ = 𝑉୧୬ ቀ
ோయ
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−
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where R1 and R2 were chosen to be the same and R3 was adjusted till a balanced bridge circuit 

was obtained. The output voltage variation is quasi-linearly proportional to ∆Rtot and described 

as: 
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Based on the equivalent circuit of the sensor shown in Fig. 6.2 (a), Rtot is expressed in Eq. 

6.3:  

𝑅୲୭୲ = 𝑅୥ଵ +
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ା
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ೃౝ
ା
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The dimensions of graphene resistors are obtained from Fig. 6.2 (a), which are 224 × 978 

µm2 for Rg1, 201 × 978 µm2 for Rg2, 500 × 261 µm2 for Rg3 and 500 × 246 µm2 for Rg4. As a 

result, the relationship between ∆Rtot and ∆Rg is obtained in Eq. 6.4: 

∆𝑅୲୭୲ ≈
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ା

ೃౝ
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                                        6.4 

Based on the dimensions of the resistors in Fig. 6.2(a), the graphene on the suspended 

square membrane is estimated to be Rg = 1473 Ω. The relative resistance change of this part of 

the graphene can be written as ∆Rg/Rg = 3.6 ∆Rtot/Rtot. As Rg3 and Rg4 are in parallel with Rg, their 

values can largely influence the measured electrical signal. If Rg3 and Rg4 become too low (or 

graphene in the side regions is too wide), the output voltage signal will be greatly suppressed. In 

our design, the two parallel resistors Rg3 and Rg4 are not totally removed. The reason for keeping 

Rg3 and Rg4 is from a practical standpoint as follows. As mentioned earlier, our fabrication 

process utilized the metal shadow mask to form the graphene pattern on the device surface. 

Although using the metal shadow mask simplified the device fabrication process, the accuracy of 

aligning the shadow mask and the suspended SiNx thin membrane was relatively low (~100 µm). 

To avoid misaligning the edges of graphene pattern into the perforated SiNx membrane region, 

we intended to keep the two side resistors Rg3 and Rg4 on the device surface. The present design 

scarified the sensitivity but gains the simplicity of device fabrication. By optimizing fabrication 

processes, it is possible to further increase the sensitivity of the device. 
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6.3 Results and Discussion 

Fig. 6.2(b) shows the output voltage normalized to the input voltage of the device 

responding to an increase in step-like differential pressure. The output voltage rose with 

increasing air pressure applied to the graphene-perforated membrane. At a differential pressure 

of 350 mbar, 0.067% relative change was observed at the output voltage, corresponding to 0.97% 

change in the resistance. The rapid rise of the output signal indicates an immediate piezoresistive 

response to the pressure applied to the membrane. Based on the noise floor of the output signal 

shown in Fig. 6.2 (b), the noise equivalent pressure resolution of the sensor is about 30 mbar, 

which can be further improved by optimizing the detection circuit, e. g., using a low-pass filter 

and a low-noise amplifier.  

Fig. 6.2(c) show the results of cyclic pressure testing for the device. The experiment 

involved rapidly applying differential air pressure to the sensitive membrane by pumping air and 

then gradually releasing the pressure. In Fig. 6.2(c), the pressure pump time was controlled from 

7 s to 1.5 s while the pressure release time was decreased from 18 s to 2 s by adjusting the air 

pumping and withdrawal speed of the pressure control apparatus. It is clear that upon applying an 

air pressure, the output voltage was able to quickly follow the sudden increase of the internal 

pressure and then go back to the baseline. The response time here is mainly determined by the 

pump and vent speed, so the actual response time is expected to be faster. 
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Figure 6.3 (a) Static voltage response of the sensor as function of applied differential pressure at the 
temperatures of 23oC, 40oC and 70oC. (b) The change of graphene resistance versus different temperature 
before applying differential pressure. The resistance of graphene Rg was measured to be 1215.43 Ω at 23 
oC. 

Fig. 6.3(a) shows the static response of Vout/Vin of the device with respect to applied 

pressure. In order to see the influence of temperature variation on the sensitivity, the device at 

different temperatures was measured. At 23 oC, a good linearity was observed and the sensitivity 

of 3.88×10-5 mV/mbar was obtained. The gauge factor G of graphene for the sensor was 

estimated by 𝐺 =
∆ோ/ோ

∆௅/௅
 = 4.4 at 350 mbar. Here, the average strain of the suspended square 

membrane was calculated to be 0.22% for 14.3 µm deflection at the center of the membrane [38]. 

The obtained gauge factor of the graphene used here is comparable to other reported CVD-grown 

graphene [7, 26, 31]. For example, the reported gauge factor is 2.92 for the standalone graphene 

[7], 6.1 for the graphene on poly(dimethylsiloxane) substrate [26], and 1.6 for the graphene on 

the SiNx membrane [31]. As the environmental temperature increased from room temperature to 

70 oC, the response of Vout/Vin showed an overall increase and had a good linear dependence on 

the applied pressure. The slopes of the linearly fitted curves at different temperatures were 

almost unchanged, indicating that within the tested temperature range, the temperature variations 
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actually did not degrade the sensitivity of the device. Fig. 6.3(b) plots the change of graphene 

resistance with increasing temperature. A nonlinear positive temperature coefficient of the 

graphene resistance is observed, which is similar to previously reported result [2]. At 70 oC, the 

resistance of graphene increased by 2.3% compared to that at 23 oC. 

 

Figure 6.4 (a) Measured 3D surface profile of the graphene coated perforated nitride membrane under 415 
mbar differential pressure. (b) Deflection profiles of the membrane across the middle line of the 
perforated membrane (parallel to the side of the membrane) under various differential pressures. (c) 
Maximum deflection at the center of the membrane as a function of differential pressure for the perforated 
and the imperforated membranes. The black and red dots are the experimental data. The black and red 
lines are the fitted curves obtained using Eq. 6.5. 

We studied the roles of the perforated SiNx membrane and the graphene microdrums over 

the through-holes in determining the sensitivity of the sensor. First, mechanical responses of the 

graphene coated perforated nitride membrane to different applied pressures were visualized 

using a 3D optical surface profiler (ZYGO Newview, Middlefield, CT). As shown in Fig. 6.4(a), 

under 415 mbar differential pressure, the membrane was deformed into a convex shape with a 
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maximum out-of-plane deflection of 14.3 µm at its center. The measured surface profiles of the 

membrane under other differential pressures were also given in Fig. 6.4(b). For a square 

imperforated nitride membrane, the maximum out-of-plane deflection δ with respect to 

differential pressure P can be described with the following equation [39, 40]: 

𝑃 =
஻భ௧ఙబ

(௔/ଶ)మ
𝛿 +

஻మ௙(௩)௧ா

(௔/ଶ)ర(ଵି௩)
𝛿ଷ                        6.5 

where B1 and B2 are dimensionless constants, σ0 is the initial stress, E is Young’s modulus, a is 

the side length of the square membrane, ν is the Poisson ratio, f(ν) is a geometry function, and t 

is the thickness of the membrane. B1 = 3.45, B2 = 1.994, ν = 0.22, and E = 239 GPa were taken 

from Refs [40, 41]. Previous research shows that perforated membrane can be replaced with 

imperforated one with modified elastic modulus in the numerical calculation [42]. Thus, the Eq. 

6.5 can also be applied to perforated membrane. Fig. 6.4(c) shows the fitted results for the 

graphene coated perforated membrane, as well as the graphene coated imperforated counterpart 

membrane with the same dimensions for comparison purpose. It was obtained that σ0 = 58 MPa 

and f(ν) = 0.32 for the perforated membrane, while σ0 = 41 MPa and f(ν) = 0.65 for the 

imperforated one. By using the obtained deflection equations for both of the perforated and 

imperforated membrane, the ratio of maximum deflection between the perforated and 

imperforated membrane can be expressed by Eq. 6.6: 

ௗ౦౛౨౜౥౨౗౪౛ౚ

ௗ౟ౣ౦౛౨౜౥౨౗౪౛ౚ
= 0.533 × 𝑃଴.଴଼                        6.6 
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Figure 6.5 (a) Simulated areal strain under a differential pressure of 500 mbar for the imperforated (left) 
and perforated (right) membranes.  The z coordinate and the color scale show the amplitude of the areal 
strain. (b) The areal strain along the line across the center of the perforated and imperforated membranes. 
(c) Deflection and average areal strain along the line across the center of the membrane versus different 
filling factor of the device. The filling factor is defined as the ratio between the area of holes and the 
membrane. The period of the holes is fixed to be 4.5 µm or 8.0 µm while the diameter of the hole is 
gradually increased. 

Under the differential pressure of 415 mbar, the imperforated membrane with graphene 

had the maximum deflection of 11.7 µm, which was 2.6 µm less than that the perforated 

membrane with graphene. The Eq. 6.6 also indicates that further increasing differential pressure 

will not significantly improve the deflection of the graphene coated perforated membrane 

compared to the imperforated counterpart membrane, and therefore, will have some but limited 

effect to improve pressure sensitivity of the device. 
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Next, we conducted mechanical simulations to illustrate strain distributions in both of the 

perforated and imperforated SiNx membranes, each including the ~ 2 nm thick graphene layer.  

The simulations were carried out through finite element method based commercial package 

(COMSOL Multiphysics). Limited by computational power, a reduced model of side length 200 

µm was calculated for the purpose of illuminating the working mechanism. According to Eq. 6.5, 

assuming that there is zero initial stress in the SiNx membrane, the maximum out-of-plane 

deflection of the membrane will be proportional to a4/3/t1/3. Therefore, under the same differential 

pressure, the stain developed in the SiNx membrane with the real side length a = 490 µm should 

be higher than that simulated with the reduced model of side length a = 200 µm. While the strain 

of the membrane can be further increased by using a larger and thinner membrane, the increased 

strain will also lead to local cracks or even pop-out of the membrane under a low differential 

pressure, thus lowering the allowed maximum pressure of the sensor. Also, in our device 

fabrication, when the perforated thin SiNx membrane had a side length more than 750 µm, the 

membrane was not able to initially stay flat but tended to bend downward, possibly due to the 

initial stress of the thin and relatively complex membrane perforated by an array of through 

holes. Therefore, we set the side length to 500 µm for the membrane, with which the maximum 

allowed pressure was around 600 mbar. Under 500 mbar differential pressure, the imperforated 

membrane had the maximum areal strain of 0.14% at the center of the membrane with the 

deflection of 3.49 µm (Fig. 6.5(a)).  For the perforated membrane, a similar strain distribution 

was observed. In the non-hole areas of the membrane the maximum areal strain was found to be 

0.15%, which was only slightly higher than that observed in the imperforated counterpart 

membrane. However, the maximum areal strain in the graphene layer over the holes reached 

0.34% at the center of the membrane with the maximum deflection of 4.13 µm. Therefore, the 
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maximum strain in the hole areas was as high as 2.27 times that occurred in the non-hole areas of 

the perforated membrane. Furthermore, the average areal strain along the line across the center of 

the perforated and imperforated membranes was 0.203% and 0.12%, respectively (Fig. 6.5(c)). 

Although the maximum deflection of the perforated and imperforated membranes differed only 

by 18.3% (3.49 µm vs. 4.13 µm), the average strain in the perforated membrane increases by 

62.4% (0.203 % vs. 0.12 %) due to the introduction of the through-holes into the SiNx 

membrane.  

We further investigated the effect of the hole diameter and period on the mechanical 

properties of the membrane. Here, filling factor is defined as the ratio of the area of all the holes 

to the area of the whole membrane. As shown in Fig. 6.5(c), given the same filling factor, the 

period of holes has almost no influence on the deflection and average areal strain of the 

membrane. As the filling factor or the total hole area increases, the deflection and the average 

areal strain of the membrane continuously grows. For example, with increasing filling factor 

from 0.28 (of the present device) to 0.46, the average areal strain only increases from 0.20 % to 

0.24 %. A significant increase in areal strain is observed from 0.24 % to 0.40 % as the filling 

factor increases from 0.46 to 0.72. To achieve the filling factor of 0.72 for the device with the 

period of 4.5 µm, the hole diameter should increase from the present 2.5 µm to 4 µm. However, 

two practical issues have played to restrict the hole size. First, the larger size holes may induce 

more pinholes in the graphene drums when transferring the graphene onto the membrane [23], 

thus resulting in more air leakage. Second, with the filling factor of 0.72, the distance of two 

neighboring holes would be only 500 nm, which may lead to easy cracking or even pop-out of 

the membrane under an applied differential pressure. Therefore, while the sensitivity of the 

device can be improved further by introducing larger size holes in the SiNx membrane, the 
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current design with 2.5 µm-diameter through-holes is considered safe and conservative and able 

to compromise the sensitivity and robustness of the device. 

Furthermore, as the differential pressure was applied to the graphene coated perforated 

membrane, the graphene microdrums over the holes also bulged into a curved shape. To illustrate 

how this bulging factor affected the pressure sensitivity of the device compared to the in-plane 

membrane strain, let us imagine a state when the strain in the pressurized SiNx membrane is 

suppressed, i.e., the holes stay in the plane and maintain the original circular shape with a 

diameter of 2.5 µm. Simulations showed that, under 500 mbar differential pressure, the graphene 

microdrum will deflect by 9.1 nm at its center and the average strain of 0.0035% will be obtained 

over the whole microdrum. The magnitude of this strain is about two orders of magnitude lower 

than the aforementioned maximum strain of 0.34% in the microdrum. Therefore, the bulging of 

the pressurized circular graphene had a limited influence on the overall strain change of the 

microdrum. As a matter of fact, the previously reported graphene-based pressure sensors 

Table 6.1 Performance comparison among MEMS pressure sensors 

Device structure Dimensions (µm2) Sensitivity (mbar-1) Reference 

Graphene on 200 nm thick 
perforated SiNx membrane 

490×490  2.8×10-5 This work 

Suspended graphene 6×64  2.96×10-6 Smith et al., Nano Lett. 2013 [7] 

Graphene meander on 100 nm 
thick SiNx membrane 

280×280 6.67×10-6 Zhu et al., Appl. Phys. Lett. 2013 [31] 

Graphene on fixed perforated 
layer on silicon substrate 

110×220  0.88×10-6 Hurst et al., Transducers, 2013 [32] 

Carbon nanotubes 100×100 1.06×10-6 Hierold et al., Sens. Actuator A, 2007 [44] 

100 µm thick polysilicon 
membrane 

100×100 1.5×10-6 Kalvesten et al., MEMS, 1998 [43] 

30 µm thick silicon membrane 470×470 3.2×10-6 Zhang et al., IEEE Sens. J., 2007 [45] 

4 µm thick polysilicon 
membrane  

400×400 1.29×10-6 Yang, et al.,Tamkang J. Sci. Eng., 2005 [46] 
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employed the bulging effect of the graphene suspended over the wells in the fixed substrate, thus 

offering relatively low sensitivity [32]. Comparison between the effects of membrane strain and 

bulging, it is evident that the inhomogeneous membrane strain of the perforated membrane was 

the key to the improved pressure sensitivity of the device. 

Table 6.1 compares our device with the recently reported graphene-based MEMS or 

NEMS pressure sensors. Generally, the sensitivity of piezoresistive pressure sensors can be 

calculated using S =
∆ோ

ோ×௉
. Our sensor has the sensitivity of 2.8×10-5 mbar-1 which outperforms 

most of the reported graphene, silicon, and polysilicon based MEMS/NEMS pressure sensors [7, 

31, 32, 38, 43-46]. Specifically, the present sensitivity is higher than 2.96×10-6 mbar-1 of the 

standalone graphene membrane-based sensor [7] and 6.67×10-6 mbar-1 of the sensor using the 

graphene meander patterns on imperforated SiNx membrane [31]. As mentioned above, another 

previous pressure sensor used a graphene membrane suspended over the wells made in a SiO2 

layer on the bulk silicon substrate, where the resistance variation only came from the bugling 

effect of the graphene. The resulting sensitivity of that sensor was about 32 times of magnitude 

lower compared to our sensor. 

6.4 Methods and Experimental Details 

6.4.1 Device Fabrication 
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Figure 6.6 Schematic of the fabrication processes for the device. 

The device fabrication started with a 3-in double side polished silicon wafer (p-type). A 

200 nm thick SiNx layer was formed on both sides of the wafer by plasmon enhanced chemical 

vapor deposition (Fig. 6.6(a)). Etch windows were then created on the back side of the wafer 

with photolithography and reactive ion etching of SiNx (Fig. 6.6(b)). Subsequently, an array of 

2.5 µm diameter holes were patterned in the SiNx layer on the front side of the wafer with the 

same method as that used in the last step (Fig. 6.6(c)). After that, an anisotropic etch of silicon 

substrate with tetramethylammonium hydroxide (20.0 wt %, 78oC, Sigma-Aldrich, St. Louis, 

MO) was performed to create a suspended nitride membrane (490×490 µm2) (Fig. 6.6(d)). The 

wafer was then diced into 6×6 mm2 pieces for the following processes. Commercially available 

CVD-grown graphene film on a 25 µm thick nickel foil (1×1 cm2, University Wafer, Boston, 

MA) was used as the sensitive material of the device. Only one side of the foil was coated with 
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graphene. To transfer the graphene film to the suspended nitride membrane, we used the 

poly(methyl methacrylate) or PMMA based transfer method following the protocol given in Ref. 

[18]. In this step, the nickel foil with graphene was drop-coated with PMMA (molecular weight 

∼996 000 by GPC, Sigma-Aldrich, dissolved in chlorobenzene with a concentration of 46 

mg/mL) (Fig. 6.6(e)). The foil was then cured at 180 °C for 1 min, followed by etching away the 

nickel substrate by FeCl3 solution (0.1 g/ml, Sigma-Aldrich, St. Louis, MO) for 20 hr (Fig. 

6.6(f)). After that, the PMMA-graphene stack was picked up and washed with deionized water, 

and then, was placed on the SiNx membrane treated with oxygen plasma (Fig. 6.6(g)). Finally, 

the PMMA substrate of the graphene film was etched by PMMA remover (Nano remover PG, 

MicroChem, Westborough, MA) (Fig. 6.6(i)). Next, the graphene resistor was patterned in an 

oxygen plasma etcher with the help of a shadow mask made of aluminum prefabricated by a 

high-precision milling machine (Supra CNC Mill, CNC Masters, Irwindale, CA) (Fig. 6.6(j)). 

Then, another aluminum shadow mask was machined and placed on the device to make gold 

contacts by e-beam evaporation of a 200 nm gold layer (Fig. 6.6(k)). In these shadow mask 

based patterning, careful alignment between the shadow mask and the device was needed. 

Finally, the device was realized (Fig. 6.6(l)). 

6.4.2 Measurement Setup 

The backside of the device was adhered to the outlet of an acrylic glass based 

microfluidic channel with structural adhesives. Air pressure was applied from the inlet of the air 

channel using a programmable syringe pump (KDS210P, KD Scientific, Holliston, MA). A 

commercial differential pressure sensor (MPX5500DP, Freescale Semiconductor, Austin, TX) 

was used to measure differential pressures applied across the sensing membrane. A feedback 

circuit was used to enhance stability of the pressure control system. The output voltage signal of 
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the commercial sensor was recorded by a data acquisition device (DI-245, DATAQ Instruments, 

Akron, OH) and then was converted to a differential pressure. The graphene sensor was 

connected into a Wheatstone bridge circuit as shown in Fig. 6.6(a). An input DC voltage of 20 

mV was applied across the bridge circuit. The small voltage was applied to avoid excessive 

heating of graphene. The output voltage from the graphene sensor was recorded with a digital 

multimeter (34401A, Agilent Technologies, Santa Clara, CA). 

6.5 Conclusions 

In conclusion, we have demonstrated a graphene based small area MEMS pressure sensor 

formed by transferring large area CVD-grown graphene onto a suspended SiNx membrane 

perforated by an array of through-holes. The large voltage response of the sensor was majorly 

due to the large strain change of the graphene suspended over the through-holes under applied 

differential pressure across the membrane. The measured sensitivity has demonstrated that the 

devised new pressure sensor structure excels in providing high sensitivity that outperforms many 

other existing graphene based counterpart sensors. Future work includes optimizing fabrication 

processes to reduce number of pinholes in graphene, improving yield of transferring graphene 

membrane to suspended nitride membrane, and designing a low-noise electronic readout circuit 

for the sensor.  
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CHAPTER 7 

 A MEMS FLOW SENSOR USING PERFORATED GRAPHENE MEMBRANE 

Qiugu Wang, Yifei Wang and Liang Dong 

A paper in preparation 

7.1 Abstract 

This paper reports on a graphene-based piezoresistive air flow sensor by transferring and 

patterning a large-area graphene on a suspended silicon nitride thin membrane perforated by a 

periodic array of micro-through-holes. The patterned graphene sheet flows air at the milliliter-

scale and transduces the air flow induced mechanical deformation of graphene into the electrical 

readout. The present sensor is able to detect the flow velocity in the range of 0−40 m/s with a 

high sensitivity ~ 1×10-6(mL/min)-1.  

7.2 Introduction 

The gas flowrate measurement is critical in many industrial and commercial applications, 

such as environmental monitoring, medical instruments, and process control. Small footprint 

microelectromechanical systems (MEMS)-based flow sensors outperform the conventional ones 

in low power consumption, better dynamic performance and cost-effectiveness thanks to the 

compatibility with integrated circuit technologies. MEMS gas flow sensors are generally 

classified as either thermal or non-thermal [1, 2]. The non-thermal flow sensors are mainly based 

on the mechanical working principle such as deflection of cantilevers [3, 4], lift-force [5] and 

differential pressure [6]. Graphene materials are very suitable for MEMS applications owing to 

their excellent electrical and mechanical properties and strain induced electrical-mechanical 

coupling in graphene are widely reported. Sophisticated techniques are already developed to 

allow large-area uniform growth and transfer of graphene sheets onto various substrates [7, 8]. 

As a result, the prospect of merging graphene with micromachining technologies opens the path 
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for developing high sensitivity graphene-based sensors and actuators. At present a few MEMS-

based graphene pressure sensors have been demonstrated [9-11]. In our recent work, we 

demonstrated a graphene-based MEMS pressure sensor with a high sensitivity because of the 

significantly increased strain induced by the micro-through-holes. It outperforms most existing 

MEMS pressure sensors using graphene, silicon, and nanotubes as sensitive materials [11]. In 

this paper, we present a MEMS flow sensor based on the piezoresistive effect of perforated 

graphene sheet.  

7.3 Results and Discussion 

 

Figure 7.1: (a) Schematic of graphene-based air flow sensor. (b) Surface profiler measurement of 
the deflection of the membrane at the flow velocity of 35 m/s. The thickness of the membrane is 
200 nm and the area is 490 × 490 µm2. (c) Deflection of the membrane at the line marked in (c). 
(d, e) SEM images before and after oxygen plasma etching. The diameter of holes are 2.5 µm. (e) 
Fabrication process for patterning graphene sheets. 
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As illustrated in Fig. 7.1(a), the flow sensor is a few-layered graphene (~ 1 nm) supported 

by a 200-nm-thick suspended silicon nitride (SiNx) membrane with perforated micro-through-

holes in both layers. Upon the air flow, a pressure drop occurs inside and outside the SiNx 

membrane and deflects the membrane. Due to the strain applied on the graphene, the flow rate 

can be measured from the resistance variations of the deflected graphene using a Wheatstone 

bridge setup. The surface profiler measurement in Fig. 7.1 (a) and (b) shows that an air volume 

flow rate of 300 mL/min (i.e., flow velocity of 35 m/s) leads to the 12 µm deflection of the 

membrane. Fabrication of the graphene flow sensor (Fig. 7.1(f)) starts from a freestanding SiNx 

membrane perforated with arrays of microholes covered by a large-area graphene sheet on the 

top (Fig. 7.1(d)) [11]. To pattern the graphene layer with micro-holes, we use the SiNx 

membrane as the shadow mask by adhering topside of the device to a silicon wafer coated with 

AZ photoresist. After oxygen plasma treatment from the backside of the device, a graphene sheet 

with perforated micro-holes (Fig. 7.1(e)) is formed.  

 

Figure 7.2 Deflection and pressure drop of the membrane as a function of volume flow rate. The 
black and blue curves are polynomial fitted results. The inset is the simulated areal strain 
distribution of the membrane under a pressure drop of 400 mbar. The side length of simulated 
membrane is 200 µm. 
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We summarize the deflection of the perforated membrane as a function of volume flow 

rate in Fig.7.2. The membrane deflection approximately follows quadratic growth to the increasing 

flow rate. To determine the pressure drop across the membrane with air flow, the measured 

membrane deflection in Fig. 7.2 can be directly converted to pressure drop using the equation in 

our previous work [11]. For example, at a volume flow rate of 300 mL/min, the membrane deflects 

12 µm and causes a pressure drop of 400 mbar. To illustrate the strain distribution of the perforated 

membrane upon the deflection, mechanical simulations are conducted for a reduced model with 

side length of 200 µm due to limited computational power. Under 400 mbar differential pressure 

shown as inset in Fig. 7.2, the membrane had the maximum areal strain of 0.126% at the center of 

the membrane with the deflection of 3.34 µm.  

 

Figure 7.3 Voltage response of the device to different flow rates. The inset shows the optical 
image of the device and schematic of graphene sensing element connected to the Wheatstone 
bridge circuit. The central yellowish membrane is the sensing area. Vin = 10 mV. 

Fig. 7.3 presents the dynamic electrical readout in response to the variations of flow rate. 

The output voltage rises with increasing rate of air flowing through the perforated membrane. At 

an increase in step-like volume rate of ~ 400 mL/min, 0.058% relative change is observed for 
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output voltage. The rapid rise of the output signal indicates an immediate piezoresistive response 

to air flow through the membrane.  

 

Figure 7.4 The voltage response from the graphene device under different flow velocities, 
respectively. Back lines are polynomial fitted results. 

Fig. 7.4 summarizes the output voltage as a function of the flow rate. Based on the noise 

floor of the output voltage shown in Fig. 7.2, the noise equivalent pressure resolution of the sensor 

is 40 mL/min, which can be further improved by optimizing the detection circuit, e. g., using a 

low-pass filter and a low-noise amplifier. The sensitivity of this piezoresistive flow sensor can be 

calculated as 6 11 10 ( / min)v
flowrate

V
S mL

Vv
 

    or 6 13.33 10p
drop

V
S mbar

Vp
 

   in terms of the 

pressure drop. In contrast to the sensitivity of 2.8×10-5 mbar-1 for our previous pressure sensor with 

imperforated graphene membrane, the introduction of through-holes in the graphene sheet reduces 

the sensitivity of the device but are still higher than 2.96×10-6 mbar-1 of the standalone graphene 

membrane-based sensor [9] and 6.67×10-6 mbar-1 of the sensor using the graphene meander patterns 

on imperforated SiNx membrane [10].  
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Small volume flow rate measurement at µL/min scale can be realized by fabricating devices 

with much smaller size and number of through-holes. For the fluid flow through a porous medium 

with circular holes, volume flow rate (Q) at the given pressure drop (p) can be simplified using the 

Darcy’s law:
4

0

8

Nr p
Q

t




 , where N is the number of holes, r0 is the radius of holes, µ is dynamic 

viscosity of fluidic medium, t is the thickness of membrane. For example, a freestanding nanohole 

film with 30×30 arrays of 200-nm-diameter holes has been reported to flow water at the rate of 

0.06 µL/min.  

7.4 Conclusion 

In summary, we have developed a small footprint graphene-based MEMS flow sensor. 

The piezoresistive graphene with perforated micro-holes act as sensing materials to flow air and 

convert mechanical signals into electrical readout. The present device provides a broad velocity 

detection range of 0−40 m/s with a sensitivity ~ 1×10-6(mL/min)-1.  
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CHAPTER 8 

 TAPE-BASED FLEXIBLE METALLIC AND DIELECTRIC NANPHOTONIC DEVICES 

AND METAMATERIALS 

A paper published in the 17th International Conference on Nanotechnology (IEEE NANO 2017) 

Qiugu Wang, Weikun Han, Yifei Wang, Meng Lu and Liang Dong 

8.1 Abstract 

This paper describes a multifunctional nanotransfer printing (nTP) method based on a 

simple stick-and-peel procedure that allows fast production of multiple optical nanodevices using 

Scotch tape. In addition to the capabilities of forming single- and multi-layer nanopatterned films 

on a tape, the present technique facilitates the transfer of nanostructures onto unconventional 

substrates (such as cleaved fiber facets and curved fiber sides) and fabrication of more complex 

optical devices, including Fabry-Perot cavities. Moreover, our stick-and-peel method can be 

applicable to various metallic and dielectric structures, including metamaterials with the feature 

size below 100 nm and TiO2 nanopatterned films. 

8.2 Introduction 

Nanotransfer printing (nTP) is a cost-effective and high-throughput technology, which 

allows manufacturing of large-area nanopatterns [1]. This approach enables the transfer of 

functional nanopatterned metal or dielectric films from a stamp onto a variety of flexible or 

stretchable substrates for inexpensive thin-film transistors, integrated circuits, epidermal 

electronics, surface-enhanced Raman spectroscopy substrates, negative-index three-dimensional 

(3D) metamaterials, and microelectromechanical devices. Adhesive tapes, often used to exfoliate 

graphene or MoS2 monolayers, have also been utilized in many nTP processes as intermediate 

transfer media or sacrificial layers. Because the adhesion strength of some functional adhesive 
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materials can be varied using heat [2] or solvents [3], thermal adhesive tapes have been used for 

transferring nanotube transistors from quartz to plastic substrates, owing to the dramatic decrease 

in the tape adhesion strength at high temperatures. In addition, the presence of a thin adhesive 

polymer layer, whose adhesion strength can be controlled by using a plasticizing solvent, can 

promote high-fidelity replication and on-demand release of Au nanowires onto various supports. 

Apart from functioning as sacrificial layers, adhesive tapes have also been utilized for 

planarizing nanopatterned substrates to generate large-area nanogaps [4], and serving as a 

substrate for the transfer of Al nanohole films from compact discs under a critical temperature 

[5].  

In this work, we present a Scotch tape based nTP process that enables easy transfer of 

nanopatterned films and cost-effective manufacture of multiple optical nanodevices.  Noble 

metals such as Au and Ag are suitable materials for implementing tape-based nTP process 

because of the poor adhesion to polydimethylsiloxane (PDMS) or Si. This feature, combined 

with simple replica nanomolding process using PDMS or Si stamps, makes it possible to build 

large-area, low-cost and ready-to-use optical devices on flexible tapes.  

As illustrated in Fig. 8.1(a), the method of direct tape pasting (stick and peel off) of 

nanohole films from PDMS stamps forms the basis of other processes. This simple procedure 

also applies to multi-layer metal-dielectric-metal (MIM) and all-dielectric films as well as 

metamaterials from Si wafers. In addition, solvents-assisted transfer of Au nanohole films onto 

optical fibers are presented. In particular, the described taping method also allows fast and more 

cost-effective generation of advanced optical devices, such as the tape-supported Fabry-Perot 

(FP) cavities. The resulting tape-supported nanostructures can retain excellent electrical and 
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optical performance, which can be potentially useful for disposable electronic and optical sensors 

as well as in ready-to-use microscopic applications. 

8.3 Methods 

8.3.1 Fabrication of PDMS stamps 

During fabrication of PDMS stamps, a soft lithography-based replica molding process [6-

8] has been utilized to produce a polymer nanopost array from PDMS elastomer. In this step, a Si 

template (LightSmyth Technologies Inc., OR, USA) is used as a solid master mold, which is 

composed of 9 patterns with areas of 8 mm × 8 mm. The Si mold exhibits the following three 

pattern types: 1D grating, 2D nanopost arrays, and 2D nanohole arrays. In contrast to the patterns 

observed for the Si mold, PDMS stamps obtained after replica molding exhibit the inverse 

structures. 

8.3.2 Fabrication of complementary metamaterials 

The complementary metamaterial has been fabricated on a SOI wafer. First, the top Si 

layer of the SOI substrate is thinned down to around 20 nm by thermal oxidation with subsequent 

wet etching. After that, U-shaped air gaps are patterned on the thinned Si layer surface via e-

beam lithography and subsequent reactive-ion etching. The resulting wafer is immersed into a 

buffered oxide etch solution for 5 min to remove the SiO2 layer underneath the top Si membrane, 

while retaining most of the SiO2 film underneath the frame structure between neighboring c-

SRRs. Consequently, the Si c-SRR membrane is suspended above the air cavities. Finally, a 40 

nm thick Au film is evaporated onto the device surface to form Au/Si c-SRRs on the top and Au 

solid SRRs on the bottom of the air wells. 

8.3.3 Electron beam evaporation  
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An electron beam evaporator Temescal (BJD1800) has been used to deposit single-layer 

multilayer films with thicknesses of 40 nm onto the stamp surface at an average chamber 

pressure of around 1×10-6 Torr and deposition rate of around 1 Å/s. No additional layers are 

deposited between the Au and SiO2 components. 

8.3.4 Optical measurements and simulation 

Optical spectra of the nanohole arrays on the tape surface or nanodisks embedded into the 

PDMS layer have been recorded using a spectroscopic measurement setup. The white light 

emitted from a 150 W quartz halogen lamp is coupled into a multimode fiber collimated by an 

objective lens and directed onto the sample surface. Reflection spectra of the complementary 

metamaterials on the tape surface are recorded via Fourier transform infrared spectroscopy 

(Hyperion 2000, Bruker) under normal incidence of light. Optical simulations have been 

performed using the finite element method of the COMSOL Multiphysics commercial software 

[9]. The geometrical parameters used in the simulations are obtained from the SEM images of 

the studied samples. 

8.4 Results and Discussion 

8.4.1 Stick-and-peel taping procedure 

Fig. 8.1(a) schematically illustrates the taping procedure consisting of sticking and 

peeling off Au films patterned with nanohole arrays from a PDMS nanostamp. PDMS stamps 

containing periodic nanowells are generally fabricated from a Si master using a soft lithography-

based replica molding process (see the Methods section). After depositing a 40 nm thick Au 

layer onto a PDMS stamp, quasi-3D plasmonic crystals containing Au nanohole arrays at the top 

and PDMS-embedded nanodisks are formed. General-purpose transparent pressure-sensitive 
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adhesive tape (Scotch® Shipping packaging, 3M, MN, USA) is used for peeling off Au 

nanopatterned films. The tape with a total thickness of 79 µm is composed of 51 µm thick  

 

Figure 8.1 Stick-and-peel taping method of producing Au nanopatterned films on the Scotch tape 
surface. (a) A schematic illustration of the taping procedure utilized for stripping the Au 
nanohole array from the Au-coated PDMS stamp containing periodic nanowells with depths of 
350 nm. (b) A photograph of the stripped Au nanohole array on the tape substrate. The area of 
the Au film is approximately 8 × 8 mm2. (c) Photographs of the 1-layer Au and 3-layer 
Au/SiO2/Au films on the PDMS stamp before (left panel) and after (middle panel) taping. The 
right panel shows the nanohole arrays transferred onto the tape surface. (d) SEM images of the 
stripped single-layer Au nanohole array on the tape surface. (e) SEM images of the stripped 
Au/SiO2/Au films on the tape surface. (f) A cross-sectional view of the 3-layer Au/SiO2/Au film. 
The inset shows the magnified cross-sectional image containing the top and bottom Au layers. 
The nanohole arrays depicted in panels (d)(f) have a period of 600 nm and are arranged in a 
square pattern. 
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biaxially oriented polypropylene backing and 28 µm thick adhesive fabricated from hot-melt 

rubber resin. At 23 oC, a tape piece with dimensions of around 40 × 40 mm2 is directly applied to 

the surface of the Au-coated PDMS stamp and smoothed down with fingertips. Due to the poor 

adhesion strength between Au and PDMS, the Au nanopatterned films can be easily peeled off 

from the substrate surface (see inset in Fig. 8.1(a)), while the nanodisks remain embedded into 

the PDMS bulk. The scanning electron microscopy (SEM) images of the Au nanohole arrays on 

the tape surface depicted in Fig. 8.1(c) exhibit excellent uniformity over large areas despite the 

presence of micrometer-scale wrinkles. 

To further investigate the ability of the proposed taping method to form multilayers of 

nanohole arrays, the utilized PDMS stamp has been covered with alternating layers of Au and 

SiO2. In our experiment, a 5-layer film (Au/SiO2/Au/SiO2/Au; 40 nm thick each) is deposited 

onto the PDMS nanowell arrays without enhancing the adhesion between the Au and SiO2 

layers. As shown in Fig. 8.1(b), the 1-layer and 3-layer films are mostly peeled off from the 

PDMS substrate. The maximum number of layers that can be peeled off from the tape surface 

can be determined by the poor bonding strength between the Au and SiO2. The 3-layer 

alternating metal/dielectric film transferred onto the tape surface also exhibits high uniformity, as 

can be illustrated by Fig. 8.1(d), although its quality is not as good as that of the 1-layer Au film. 

It should be noted that other types of PDMS stamps as well as 2D periodic nanopost arrays can 

be used in the taping procedure. However, because the applied mechanical pressure deforms 

PDMS nanoposts during sticking, some nanodisks are also transferred along with metal films 

from the bottom of the PDMS stamp to the tape surface. 

8.4.2 Solvent-assisted transfer process 
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Figure 8.2 Solvent-assisted transfer of Au nanohole arrays from the adhesive tape onto the 
optical fiber surface. (a) A schematic of the release-and-transfer process of Au nanohole arrays 
onto the optical fiber surface. Chloroform solution is used to remove adhesives from the tape. 
The Au nanohole arrays can be transferred onto the fiber tip with a diameter of 210 µm by 
pushing the fibers through the holes in the metal grid (with dimensions of 500 × 500 µm2) 
covered with Au nanohole arrays. Alternatively, the Au nanohole arrays can be directly 
accommodated by an optical fiber to form a curved nanohole film on its surface. (b) Photographs 
of the released Au nanohole array and metal grid substrate. (c) SEM images of the Au nanohole 
array deposited on the fiber facet. (d) SEM images of the curved Au nanohole array on the fiber 
surface. 

One notable advantage of the proposed taping method is that it allows convenient transfer 

of Au nanopatterned films from the tape surface onto various substrates, which can be realized 

by wet etching of the tape adhesive with chloroform solvent. In this study, Au nanohole arrays  

are transferred onto the cleaved facet and curved side of an optical fiber, as schematically 

illustrated in Fig. 8.2(a). First, the tape containing Au nanohole surface arrays is fully immersed 

into chloroform until the Au film is completely detached from the tape. The time required for the 

delamination of the Au film depends on the number of the deposited layers and is equal to 40 s 

for the single-layer Au film and 2 min for the 3-layer Au/SiO2/Au film. Afterwards, the 

suspended Au film is picked by the metal grid with a hole size of 500 × 500 µm2, as shown in 
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Fig. 8.2(b). Before the chloroform layer on the metal grid surface completely dries out (in less 

than 20 s), an optical fiber is directly pushed through the hole covered with the nanopatterned 

film from the grid downside. As a result, the part of the Au nanopatterned film that is in contact 

with the fiber tip is transferred onto the fiber surface. Fig. 8.2(c) shows the SEM image of the 

transferred Au nanohole arrays on the cleaved fiber facet containing a large area of the uniform 

nanopatterned film. 

The majority of the existing patterning techniques directly produce nanopatterns on the 

fiber facet using lithographical or self-assembly methods, which are expensive or difficult to 

operate. Nanoskiving [10] is a convenient technique for manually transferring nanopatterns onto 

the fiber facet using an immersion procedure, the key part of which corresponds to sectioning 

nanostructures embedded in thin epoxy slabs and is time-consuming. In contrast, the proposed 

taping method of transferring nanopatterned films is relatively simple and fast. However, while 

the nanoskiving method uses epoxy slabs for supporting nanostructures, the nanopatterned films 

fabricated in this work are attached to freestanding metal grids; as a result, the surface tension 

produced by the chloroform evaporation causes the breakage and stacking of the Au films in 

some random areas with a yield of around 50%. Thus, the quality of the transferred nanopatterns 

is slightly lower than that obtained by the nanoskiving method. To reduce surface tension, Au 

films can be immersed into an ethanol solution immediately after the removal from the 

chloroform etching solution. Interestingly, after the complete ethanol evaporation, freestanding 

Au nanohole films with areas of tens of µm2 supported by the metal grid can be obtained. 

Another minor problem of the described transfer method is the breakage of fiber edges during 

pushing through the metal grid holes (Fig. 8.2(c)). Alternatively, the direct lift-up of the Au 

nanopatterned film supported on the fiber surface enables its attachment to the curved fiber sides. 
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In contrast to the former process of transferring nanopatterns on the fiber facets (without 

intermediate attachment to a metal grid), this process allows more uniform formation of 

nanopatterns on the curved fiber side, as shown in Figs. 8.2(d) and (e). 

8.4.3 Electrical and optical characterizations 

 

Figure 8.3 Electrical and optical performance of the Au nanohole arrays on the tape surface. (a) 
IV curves recorded for the nanopatterned Au film before and after taping. (b) Experimental 
(solid lines) and simulated (dash lines) reflection spectra obtained for the Au nanohole arrays on 
the tape surface. Both nanohole arrays have a period of 600 nm and are arranged in square and 
hexagonal patterns. A(1,0) and S(1,0) denote the (1,0) SPP excitations at the air/Au and tape/Au 
interfaces, respectively. (c) Bulk refractive index sensitivities measured for the tape-supported 
square Au nanohole arrays with a period of 600 nm. The inset shows the linear fit of the 
resonance wavelength plotted as a function of the refractive index.  

a) Electrical and refractive index sensitivity measurement 

Figs. 8.3(a)(c) describe the electrical and optical properties of the Au nanohole arrays 

on the Scotch tape surface. After their transfer, the arrays still exhibit high conductivity with a 

40% decrease from 0.1 S to 0.06 S (see Fig. 8.3(a)). Figure 3b shows the experimental and 

simulated reflection spectra obtained for the tape-supported square and triangular spaced 

nanohole arrays with periods of 600 nm. The optical resonances of these two arrays correspond 

to the reflectance dips detected at 600 nm and 637 nm. As indicated by the simulations, the two 

resonances denoted as A(1,0) and S(1,0) in Fig. 8.3(b) are due to the (1,0) SPP excitations 
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observed at the air/Au and tape/Au interfaces for the square and triangular spaced nanohole 

arrays, respectively. The bulk index sensitivity measured for the A(1,0) resonance of the square 

nanohole array is equal to 590 nm/RIU (see Fig. 8.3(c)), indicating excellent index sensing 

capabilities of the transferred arrays. 

b) Fabry-Perot cavities on the tape surface 

 

Figure 8.4 Fabry-Perot cavities formed on the tape surface. (a) Fabrication of FP cavities. After 
transferring Au nanoholes or plain films on the Scotch tape surface, it has been spin-coated with 
a SU8 photoresist layer with a thickness t followed by the deposition of a 15 nm thick Au layer. 
(c) Reflection spectra recorded for the FP cavities on the tape surface with and without 
nanoholes under normal light incidence. The studied Au nanohole array is arranged into a 
hexagonal pattern with a period of 600 nm. 

In this section, more complex optical structures based on the transferred Au nanohole 

films such as Fabry-Perot (FP) cavities on the tape surface have been investigated (their 

fabrication procedure is illustrated in Fig. 8.4(a)). First, a SU8 photoresist layer with a certain 

thickness is spin-coated onto the surface of the tape-supported Au nanohole film followed by the 

deposition of a 15 nm thick Au layer. Figure 4b shows the reflection spectra recorded for the 

devices with cavity lengths of 896 and 453 nm. For comparison purposes, the devices containing 
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plain Au films (without nanohole arrays) have been fabricated as well. At a cavity length of 896 

nm, the predicted second-order FP mode (which is estimated using the reflection coefficients 

derived in Ref. [11]) corresponds to a wavelength of 1550 nm, and higher orders of the FP 

resonance are also observed in the measured wavelength range. However, for the devices with a 

cavity length of 453 nm, the second-order FP mode is calculated at a wavelength of 850 nm, 

which agrees well with the observed dip at 860 nm depicted in Fig. 8.4(b). Hence, the devices 

containing nanohole arrays exhibit optical properties similar to those of the systems without 

nanohole arrays (with a slight redshift of all FP modes). 

8.4.4 Metasurface and dielectric nanohole films on the tap 

 

Figure 8.5 Taping method applied to quasi-3D metamaterials and dielectric nanopatterned films. 
(a) Schematic of a quasi-3D metamaterial. (b, c) SEM images of the tape-supported Au 
complementary metamaterials. The U-shape of the air apertures of both devices has a width of 500 
nm, and 100 nm wide air gaps are arranged in a rectangular pattern. The device depicted in panel 
(b) possesses an arm length of 800 nm and period of 1.6 µm in both directions, while the device 
depicted in panel (c) has a 1.6 µm long arm and periods of 1.6 µm and 2.6 µm in two orthogonal 
directions. (d, e) Reflection spectra recorded for two Au complementary metamaterials. 
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In addition to peeling off Au films from PDMS stamps, the described taping method can 

also be applied to stamps made of other materials or dielectric nanopatterned films supported by 

PDMS stamps. In this work, the following two examples are discussed: quasi-3D metamaterials 

on silicon-on-insulator (SOI) wafers (Fig. 8.5(a)) and TiO2 nanohole arrays on PDMS stamps 

(Fig. 8.5(a)). The utilized quasi-3D metamaterial is composed of an array of Au−Si bilayer 

complementary split ring resonators (c-SRRs) at the top and an array of Au SRRs at the bottom 

of the wells with depths of several hundred nanometers formed inside a 1 m thick SiO2 layer of 

the SOI substrate. Each c-SRR unit has an Au−Si nanocantilever surrounded by a U-shaped air 

gap. After the taping procedure, the top Au c-SRR arrays are transferred onto the tape surface, as 

shown in Figs. 8.5(b) and (c). The feature size of the air gap of c-SRRs is around 95 nm. The 

reflection spectra obtained for the c-SRR arrays depicted in Figs. 8.5(d) and (f) exhibit 

conspicuous resonance dips, which are associated with the excitations of even or odd c-SRR 

eigenmodes by transverse-magnetic (TM)- or transverse-electric (TE)-polarized fields. For 

example, under TM polarization, the second order c-SRR excitation mode of the device with an 

arm length of the U-shape air apertures of 1.6 µm is observed at 6 µm, while the device with a 

0.8 µm long arm exhibits the second order c-SRR excitation mode at 3.8 µm. Therefore, this 

infrared metasurface could be used for sensing of infrared radiation [12].  

The TiO2 nanohole arrays shown in Fig. 8.6(a) exhibit high uniformity, and their 

transmission spectra contain resonance features depending on the array period. In contrast to 

peeling off alternating metal and dielectric films, all-dielectric 5-layer TiO2/SiO2/TiO2/SiO2/TiO2 

films with enhanced bonding strengths between TiO2 and SiO2 can be easily removed from 

PDMS stamps. This stack of alternating index-contrast materials demonstrates clear thin-film 
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destructive interference at a wavelength of 400 nm (see the transmission spectra depicted in Fig. 

8.6(c)), confirming the complete transfer of the 5-layer film onto the tape surface. 

 

Figure 8.6 (a) An SEM image of the single-layer TiO2 nanohole array transferred onto the tape 
surface. (b) Transmission spectra recorded for the TiO2 nanohole arrays with different periods 
arranged in square and triangular patterns. (c) Photographs of the 5-layer 
TiO2/SiO2/TiO2/SiO2/TiO2 nanohole film on the tape surface. (d) Transmission spectra recorded 
for the transferred 5-layer TiO2/SiO2/TiO2/SiO2/TiO2 film with different periods and 5-layer film 
directly deposited on the glass slide. The transmission dip observed at 400 nm clearly indicates 
thin-film destructive interference. 

8.5 Conclusions 

In summary, a series of nanotransfer processes utilizing general adhesive tapes have been 

successfully demonstrated. Using a straightforward stick-and-peel method, both the 3-layer 

Au/SiO2/Au and 5-layer TiO2/SiO2/TiO2/SiO2/TiO2 nanohole films can be directly transferred 

from PDMS stamps onto the adhesive tape surfaces. In addition, wet etching of adhesives allows 

convenient transfer of the nanopatterned films onto unconventional substrates, while the 

nanoparticle-containing stamps remained after taping quasi-3D materials can also be used as 

tunable optical devices. 

8.6 Acknowledgement 

This work was supported by the U.S. National Science Foundation under Grant # ECCS-

0954765. 

8.7 References 



142 
 

 

[1] Carlson, A., Bowen, A. M., Huang, Y. G., Nuzzo, R. G. & Rogers, J. A. Transfer Printing 

Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced 

Materials 24, 5284-5318, doi:10.1002/adma.201201386 (2012). 

[2] Lee, C. H., Kim, D. R. & Zheng, X. L. Fabricating nanowire devices on diverse 

substrates by simple transfer-printing methods. Proceedings Of The National Academy Of 

Sciences Of The United States Of Ame 107, 9950-9955, doi:10.1073/pnas.0914031107 

(2010). 

[3] Jeong, J. W. et al. High-resolution nanotransfer printing applicable to diverse surfaces via 

interface-targeted adhesion switching. Nature Communications 5, doi: 

10.1038/ncomms6387 (2014). 

[4] Chen, X. S. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme 

confinement of electromagnetic waves. Nature Communications 4, doi: 

10.1038/ncomms3361 (2013). 

[5] Barrios, C. A. & Canalejas-Tejero, V. Compact discs as versatile cost-effective substrates 

for releasable nanopatterned aluminium films. Nanoscale 7, 3435-3439, 

doi:10.1039/c4nr06271j (2015). 

[6] Wang, Q. G., Han, W. K., Liu, P. & Dong, L. Electrically Tunable Quasi-3-D Mushroom 

Plasmonic Crystal. Journal Of Lightwave Technology 34, 2175-2181, 

doi:10.1109/Jlt.2016.2526634 (2016). 

[7] Liu, P. et al. Tunable meta-atom using liquid metal embedded in stretchable polymer. 

Journal Of Applied Physics 118, doi: 10.1063/1.4926417 (2015). 

 

 



143 
 

 

[8] Yang, S. et al. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable 

Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects. Scientific 

Reports 6, 21921, doi:10.1038/srep21921 (2016). 

[9] Wang, Q. G. et al. Tunable Optical Nanoantennas Incorporating Bowtie Nanoantenna 

Arrays with Stimuli-Responsive Polymer. Scientific Reports 5, 18567, doi: 

10.1038/Srep18567 (2015). 

[10] Lipomi, D. J. et al. Patterning the Tips of Optical Fibers with Metallic Nanostructures 

Using Nanoskiving. Nano Letters 11, 632-636, doi:10.1021/nl103730g (2011). 

[11] Huang, C. P. et al. Deep subwavelength Fabry-Perot-like resonances in a sandwiched 

reflection grating. Physical Review B 85, doi: 10.1103/PhysRevB.85.235410 (2012). 

[12] Dong, L., Yue, R. F., Liu, L. T. & Su, X. Design and fabrication of single-chip a-Si TFT-

based uncooled infrared sensors. Sensors And Actuators A-physical 116, 257-263, 

doi:10.1016/j.sna.2004.04.030 (2004). 

 

 

 

 

 

 

 

 

 

 



144 
 

 

CHAPTER 9 

 CONCLUSIONS AND OUTLOOK 

9.1 Conclusions 

In this thesis, we introduced the concepts of plasmonics, MEMS technologies, 

nanotransfer printing fabrications. The importance of acquiring tunability in optical devices and 

the emerging field of plasmonics and MEMS platform was discussed. We also reviewed recent 

literature on active media and MEMS-based tunable plasmonics, graphene materials-based 

MEMS device and non-lithographical nanopattern transfer techniques. Based on these case 

studies, we have gained insights regarding the cons and pros for each technology and proposed 

the solutions to make full use of current technologies. 

In Chapter 2, we developed a LC-based electrically tunable quasi-3D plasmonic crystal. 

A low operating electric field is required to align the LC molecules from partially to fully 

homeotropic state. The experiment and simulation results confirmed the coupled SPP-RA 

resonance, where its field is predominantly normal to the surface of the plasmonic nanostructure 

and penetrates into the surrounding LC which making the resonance sensitive to the molecular 

reorientation of the LC. Possible applications of the device are LC display, sensors and optical 

signal processing. 

In Chapter 3, we developed a temperature-responsive device by coating the plasmonic 

nanobowtie array with a thin layer of thermo-responsive hydrogel. The wettability of the 

hydrogels is varied under different temperature and thus changes the water content of hydrogel, 

resulting in the refractive index changes of hydrogel. We found that the hydrogels-coated BNAs, 

a 16.2 nm of resonance shift was observed with a temperature increase of 15 oC, compared to a 3 

nm shift for the uncoated bare BNAs, due to the large field enhancement of the plasmonic modes 



145 
 

 

confined in the gaps of the BNAs. Our study suggests the possibility of making environmental-

sensitive optical sensing devices via combining the plasmonic nanostructures and environmental-

responsive materials. 

In Chapter 4, we developed an easy-to-implement and compact NEMS-enabled tunable 

IR metamaterials operating by electrostatically actuating the nanocantilevers embedded in the c-

SRR units. The present device can provide fast electro-optic modulation at frequencies of several 

tens of MHz. Possible applications of the device include optical modulators, infrared sensors, 

and transformation optics.  

In Chapter 5, based on the same process flow introduced in Chapter 4, we further 

developed a NEMS thermo-mechanically tunable IR metamaterial by actuating the biomaterial 

asymmetric SRR structures. By increasing the temperature, the difference in thermal expansion 

coefficient of the two materials results in the deflection of slimmer arms of SRRs and modulate 

the optical properties of the metamaterials. The device provides up to 90% optical signal 

modulation at a wavelength of 3.6 µm. 

In Chapter 6, we developed a graphene-based small footprint MEMS pressure sensor 

formed by transferring large area CVD-grown graphene onto a suspended SiNx membrane 

perforated by an array of through-holes. The measured sensitivity provides high sensitivity that 

outperforms many other existing graphene based counterpart sensors.  

In Chapter 7, based on the high sensitivity graphene MEMS pressure sensor in Chapter 6, 

we developed a flow sensor by selectively etching the graphene suspended over the holes region 

to allow air flow through. The present sensor is able to detect the high velocity in the range of 

0−40 m/s with a high sensitivity ~ 0.039 µV/(mL/min).  
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In Chapter 8, we developed a nanotransfer process utilizing general adhesive tapes. Using 

a straightforward stick-and-peel method, metallic and dielectric photonic devices and 

metamaterials were transferred onto the tape while retaining their excellent optical properties. 

The ability of further transferring onto other unconventional substrates such as optical fibers 

were also demonstrated. Possible applications of present techniques include wearable electronic 

and optical sensors. 

9.2 Outlook 

The general future aspects of tunable plasmonic devices include the search of appropriate 

applications for each developed tuning method, improving the sensitivity of the devices and 

integrating NMES-based device with IC technologies. For LC-based electrically tunable device, 

further improvement can be made towards a high-contrast switching performance with a low 

power consumption. For hydrogel-based tunable device, future work can emphasize on the 

application aspect by developing a variety of sensing devices, such as biosensors and chemical 

sensors. For NEMS-based tunable devices, improvements include the optimization of the 

structural design to achieve better sensitivity at a low operating voltage or low temperature, the 

design of new actuating method to further shrink working wavelength.  

For the graphene-based MEMS pressure sensor, future work includes packaging with IC 

wire bonding techniques to stabilize the signal detection, optimizing fabrication processes to 

reduce number of pinholes in graphene, and improving an electronic readout circuit to reduce the 

noise level. For the graphene-base flow sensor, aside from the aspects mentioned in pressure 

sensors, future work includes the µL scale volumetric gas flow by further reducing the diameter 

or the number of holes. Future tape-based nTP process can focus on applications in wearable and 

flexible nanophotonic devices for biochemical sensors. 
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