57 research outputs found

    Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025

    Get PDF
    Policies associated with the central heating supply system affect the livelihoods of people in China. With the extensive consumption of energy for central heating, large quantities of CO2 emissions are produced each year. Coal-fired heating boiler plants are the primary source of emissions; however, thermal power plants are becoming much more prevalent, and gas-fired heating boiler plants remain uncommon. This study quantified the amount of CO2 emitted from the central heating supply system in China using a mass balance method with updated emission factors from the IPCC. Emissions increased from 189.04 Tg to 319.39 Tg between 2006 and 2015. From a spatial perspective, regions with larger central heating areas, durations and coverages produced more CO2 emissions. The central heating method depends on the level of electric power consumption, policies and regulations, and resource reserves at the local scale. Compared with the use of only coal-fired heating boiler plants to provide central heating, using thermal power plants and gas-fired heating boiler plants reduced CO2 emissions by 98.19 Tg in 2015 in China. A comparison of the CO2 emissions under various central heating scenarios showed that emissions will be 520.97 Tg, 308.79 Tg and 191.86 Tg for business as usual, positive and optimal scenarios through 2025, respectively. China has acknowledged the considerable potential for reducing central heating and will make efforts to pursue improved heating strategies in the future

    The Global N20 Model Intercomparison Project

    Get PDF
    Nitrous oxide (N2O) is an important greenhouse gas and also an ozone-depleting substance that has both natural and anthropogenic sources. Large estimation uncertainty remains on the magnitude and spatiotemporal patterns of N2O fluxes and the key drivers of N2O production in the terrestrial biosphere. Some terrestrial biosphere models have been evolved to account for nitrogen processes and to show the capability to simulate N2O emissions from land ecosystems at the global scale, but large discrepancies exist among their estimates primarily because of inconsistent input datasets, simulation protocol, and model structure and parameterization schemes. Based on the consistent model input data and simulation protocol, the global N2O Model Intercomparison Project (NMIP) was initialized with 10 state-of-the-art terrestrial biosphere models that include nitrogen (N) cycling. Specific objectives of NMIP are to 1) unravel the major N cycling processes controlling N2O fluxes in each model and identify the uncertainty sources from model structure, input data, and parameters; 2) quantify the magnitude and spatial and temporal patterns of global and regional N2O fluxes from the preindustrial period (1860) to present and attribute the relative contributions of multiple environmental factors to N2O dynamics; and 3) provide a benchmarking estimate of N2O fluxes through synthesizing the multimodel simulation results and existing estimates from ground-based observations, inventories, and statistical and empirical extrapolations. This study provides detailed descriptions for the NMIP protocol, input data, model structure, and key parameters, along with preliminary simulation results. The global and regional N2O estimation derived from the NMIP is a key component of the global N2O budget synthesis activity jointly led by the Global Carbon Project and the International Nitrogen Initiative

    Detecting One-Hundred-Year Environmental Changes in Western China Using Seven-Year Repeat Photography

    Get PDF
    Due to its diverse, wondrous plants and unique topography, Western China has drawn great attention from explorers and naturalists from the Western World. Among them, Ernest Henry Wilson (1876 –1930), known as ‘Chinese’ Wilson, travelled to Western China five times from 1899 to 1918. He took more than 1,000 photos during his travels. These valuable photos illustrated the natural and social environment of Western China a century ago. Since 1997, we had collected E.H. Wilson's old pictures, and then since 2004, along the expedition route of E.H. Wilson, we took 7 years to repeat photographing 250 of these old pictures. Comparing Wilson's photos with ours, we found an obvious warming trend over the 100 years, not only in specific areas but throughout the entire Western China. Such warming trend manifested in phenology changes, community shifts and melting snow in alpine mountains. In this study, we also noted remarkable vegetation changes. Out of 62 picture pairs were related to vegetation change, 39 indicated vegetation has changed to the better condition, 17 for degraded vegetation and six for no obvious change. Also in these photos at a century interval, we found not only rapid urbanization in Western China, but also the disappearance of traditional cultures. Through such comparisons, we should not only be amazed about the significant environmental changes through time in Western China, but also consider its implications for protecting environment while meeting the economic development beyond such changes

    From plant functional types to plant functional traits : a new paradigm in modelling global vegetation dynamics

    No full text
    Dynamic global vegetation models (DGVMs) typically track the material and energy cycles in ecosystems with finite plant functional types (PFTs). Increasingly, the community ecology and modelling studies recognize that current PFT scheme is not sufficient for simulating ecological processes. Recent advances in the study of plant functional traits (FTs) in community ecology provide a novel and feasible approach for the improvement of PFT-based DGVMs. This paper reviews the development of current DGVMs over recent decades. After characterizing the advantages and disadvantages of the PFT-based scheme, it summarizes trait-based theories and discusses the possibility of incorporating FTs into DGVMs. More importantly, this paper summarizes three strategies for constructing next-generation DGVMs with FTs. Finally, the method’s limitations, current challenges and future research directions for FT theory are discussed for FT theory. We strongly recommend the inclusion of several FTs, namely specific leaf area (SLA), leaf nitrogen content (LNC), carbon isotope composition of leaves (Leaf δ¹³C), the ratio between leaf-internal and ambient mole fractions of CO₂ (Leaf Ci/Ca), seed mass and plant height. These are identified as the most important in constructing DGVMs based on FTs, which are also recognized as important ecological strategies for plants. The integration of FTs into dynamic vegetation models is a critical step towards improving the results of DGVM simulations; communication and cooperation among ecologists and modellers is equally important for the development of the next generation of DGVMs.22 page(s

    Enhanced mechanical, thermal and biocompatible nature of dual component electrospun nanocomposite for bone tissue engineering

    Get PDF
    Traditionally, in the Asian continent, oils are a widely accepted choice for alleviating bone-related disorders. The design of scaffolds resembling the extracellular matrix (ECM) is of great significance in bone tissue engineering. In this study, a multicompo-nent polyurethane (PU), canola oil (CO) and neem oil (NO) scaffold was developed using the electrospinning technique. The fabricated nanofibers were subjected to various physicochemical and biological testing to validate its suitability for bone tissue engineering. Morphological analysis of the multicomponent scaffold showed a reduc-Tion in fiber diameter (PU/CO 853 141.27 nm and PU/CO/NO 633 137.54 nm) compared to PU (890 116.911 nm). The existence of CO and NO in PU matrix was confirmed by an infrared spectrum (IR) with the formation of hydrogen bond. PU/CO displayed a mean contact angle of 108.7 0.58 while the PU/CO/NO exhibited hydrophilic nature with an angle of 62.33 2.52. The developed multicomponent also exhibited higher thermal stability and increased mechanical strength compared to the pristine PU. Atomic force microscopy (AFM) analysis depicted lower surface roughness for the nanocomposites (PU/CO 389 nm and PU/CO/NO 323 nm) than the pristine PU (576 nm). Blood compatibility investigation displayed the anticoagulant nature of the composites. Cytocompatibility studies revealed the non-Toxic nature of the developed composites with human fibroblast cells (HDF) cells. The newly developed porous PU nanocomposite scaffold comprising CO and NO may serve as a potential candidate for bone tissue engineering

    Temporal and Spatial Variation of Wetland CH4 Emissions from the Qinghai–Tibet Plateau under Future Climate Change Scenarios

    No full text
    Wetlands are an important natural source of methane (CH4), so it is important to quantify how their emissions may vary under future climate change conditions. The Qinghai–Tibet Plateau contains more than a third of China’s wetlands. Here, we simulated temporal and spatial variation in CH4 emissions from natural wetlands on the Qinghai–Tibet Plateau from 2008 to 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5. Based on the simulation results of the TRIPLEX-GHG model forced with data from 24 CMIP5 models of global climate, we predict that, assuming no change in wetland distribution on the Plateau, CH4 emissions from natural wetlands will increase by 35%, 98% and 267%, respectively, under RCP 2.6, 4.5 and 8.5. The predicted increase in atmospheric CO2 concentration will contribute 10–28% to the increased CH4 emissions from wetlands on the Plateau by 2100. Emissions are predicted to be majorly in the range of 0 to 30.5 g C m−2·a−1 across the Plateau and higher from wetlands in the southern region of the Plateau than from wetlands in central or northern regions. Under RCP8.5, the methane emissions of natural wetlands on the Qinghai–Tibet Plateau increased much more significantly than that under RCP2.6 and RCP4.5

    Large-scale detection of vegetation dynamics and their potential drivers using MODIS images and BFAST: A case study in Quebec, Canada

    No full text
    Monitoring vegetation dynamics at global scale is equally important in the context of terrestrial ecosystem carbon exchange and climate-biosphere, interactions. The Breaks For Additive Seasonal and Trend (BFAST) method and Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day Normalized Difference Vegetation Index (NDVI) at a spatial resolution of 250 m were used to detect vegetation dynamics in Quebec during 2000-2011. The overall agreement between BFAST detected breaks and observed disturbances was about 64% with the highest agreement up to 80% for "Fire" disturbance. The results presented in this study indicated that 25.7% of the total study area experienced NDVI trend changes with one or more breaks during 2000-2011, most of which were detected in the Boreal Shield eco-zone along the coastline of the Gulf of St. Lawrence. Abrupt vegetation changes barely varied under different eco-zones while considerably varied with different land cover types. The abrupt changes areas in 2002 and 2009 were the two greatest, with area percentages of 17.4% and 29.1% of the whole area, respectively. The area percentages of years with abrupt trend changes indicated that abrupt vegetation greening occurred in 2008 and 2009, especially in 2009, with 58.3% of the overall abrupt greening. Abrupt vegetation browning occurred in 2002, 2003, 2005 and 2007, especially in 2002, with 28.2% of the overall abrupt browning. Moreover, our results indicated that the detected vegetation trends varied temporally and spatially. Disturbances from existing field observations or remotely sensed images could only interpret < 40% of the vegetation changes. The impact of climate change on vegetation dynamic is particularly worth being investigated in the future work. To our knowledge, this study is one of the few attempting to explore large-scale detection of vegetation dynamics and their potential drivers in eastern Canada
    corecore