487 research outputs found

    Exploring the properties of the phases of QCD matter - research opportunities and priorities for the next decade

    Full text link
    This document provides a summary of the discussions during the recent joint QCD Town Meeting at Temple University of the status of and future plans for the research program of the relativistic heavy-ion community. A list of compelling questions is formulated, and a number of recommendations outlining the greatest research opportunities and detailing the research priorities of the heavy-ion community, voted on and unanimously approved at the Town Meeting, are presented. They are supported by a broad discussion of the underlying physics and its relation to other subfields. Areas of overlapping interests with the "QCD and Hadron Structure" ("cold QCD") subcommunity, in particular the recommendation for the future construction of an Electron-Ion Collider, are emphasized. The agenda of activities of the "hot QCD" subcommunity at the Town Meeting is attached.Comment: 34 pages of text, 254 references,16 figure

    Flow fluctuations and long-range correlations: elliptic flow and beyond

    Full text link
    These proceedings consist of a brief overview of the current understanding of collective behavior in relativistic heavy-ion collisions. In particular, recent progress in understanding the implications of event-by-event fluctuations have solved important puzzles in existing data -- the "ridge" and "shoulder" phenomena of long-range two-particle correlations -- and have created an exciting opportunity to tightly constrain theoretical models with many new observables.Comment: 10 pages, 2 figures, Proceedings for the 22nd International Conference On Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2011), Annecy, France, May 23 - 28, 2011; includes Fig. 2 which was omitted from journal submission for lack of spac

    Flow in heavy-ion collisions - Theory Perspective

    Full text link
    I review recent developments in the field of relativistic hydrodynamics and its application to the bulk dynamics in heavy-ion collisions at the Relativistic Heavy- Ion Collider (RHIC) and the Large Hadron Collider (LHC). In particular, I report on progress in going beyond second order relativistic viscous hydrodynamics for conformal fluids, including temperature dependent shear viscosity to entropy density ratios, as well as coupling hydrodynamic calculations to microscopic hadronic rescattering models. I describe event-by-event hydrodynamic simulations and their ability to compute higher harmonic flow coefficients. Combined comparisons of all harmonics to recent experimental data from both RHIC and LHC will potentially allow to determine the desired details of the initial state and the medium properties of the quark-gluon plasma produced in heavy-ion collisions.Comment: 8 pages, Invited plenary talk at the 22nd International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2011), May 23-28 2011, Annecy, Franc

    Thermal Dileptons at LHC

    Get PDF
    We predict dilepton invariant-mass spectra for central 5.5 ATeV Pb-Pb collisions at LHC. Hadronic emission in the low-mass region is calculated using in-medium spectral functions of light vector mesons within hadronic many-body theory. In the intermediate-mass region thermal radiation from the Quark-Gluon Plasma, evaluated perturbatively with hard-thermal loop corrections, takes over. An important source over the entire mass range are decays of correlated open-charm hadrons, rendering the nuclear modification of charm and bottom spectra a critical ingredient.Comment: 2 pages, 2 figures, contributed to Workshop on Heavy Ion Collisions at the LHC: Last Call for Predictions, Geneva, Switzerland, 14 May - 8 Jun 2007 v2: acknowledgment include

    Fluctuations around Bjorken Flow and the onset of turbulent phenomena

    Full text link
    We study how fluctuations in fluid dynamic fields can be dissipated or amplified within the characteristic spatio-temporal structure of a heavy ion collision. The initial conditions for a fluid dynamic evolution of heavy ion collisions may contain significant fluctuations in all fluid dynamical fields, including the velocity field and its vorticity components. We formulate and analyze the theory of local fluctuations around average fluid fields described by Bjorken's model. For conditions of laminar flow, when a linearized treatment of the dynamic evolution applies, we discuss explicitly how fluctuations of large wave number get dissipated while modes of sufficiently long wave-length pass almost unattenuated or can even be amplified. In the opposite case of large Reynold's numbers (which is inverse to viscosity), we establish that (after suitable coordinate transformations) the dynamics is governed by an evolution equation of non-relativistic Navier-Stokes type that becomes essentially two-dimensional at late times. One can then use the theory of Kolmogorov and Kraichnan for an explicit characterization of turbulent phenomena in terms of the wave-mode dependence of correlations of fluid dynamic fields. We note in particular that fluid dynamic correlations introduce characteristic power-law dependences in two-particle correlation functions.Comment: 40 pages, 5 figures, published versio

    Production of doubly-charged Δ\Delta baryon in e+ee^{+}e^{-} annihilation at energies from 2.3094 to 2.6464 GeV

    Full text link
    The processes e+eΔ++Δˉe^{+}e^{-} \to \Delta^{++}\bar{\Delta}^{--} and e+eΔ++pˉπ+c.c.e^{+}e^{-}\to \Delta^{++} \bar{p} \pi^{-} + c.c. are studied for the first time with 179 pb1179~{\rm pb}^{-1} of e+ee^{+}e^{-} annihilation data collected with the BESIII detector at center-of-mass energies from 2.30942.3094 GeV to 2.64642.6464 GeV. No significant signal for the e+eΔ++Δˉe^{+}e^{-}\to \Delta^{++}\bar{\Delta}^{--} process is observed and the upper limit of the Born cross section is estimated at each energy point. For the process e+eΔ++pˉπ+c.c.e^{+}e^{-} \to \Delta^{++} \bar{p} \pi^{-} + c.c., a significant signal is observed at center-of-mass energies near 2.6454 GeV and the corresponding Born cross section is reported.Comment: 10 pages, 4 figure

    Measurements of the electric and magnetic form factors of the neutron for time-like momentum transfer

    Full text link
    We present the first measurements of the electric and magnetic form factors of the neutron in the time-like (positive q2q^2) region as function of four-momentum transfer. We explored the differential cross sections of the reaction e+enˉne^+e^- \rightarrow \bar{n}n with data collected with the BESIII detector at the BEPCII accelerator, corresponding to an integrated luminosity of 354.6 pb1^{-1} in total at twelve center-of-mass energies between s=2.02.95\sqrt{s} = 2.0 - 2.95 GeV. A relative uncertainty of 18% and 12% for the electric and magnetic form factors, respectively, is achieved at s=2.3935\sqrt{s} = 2.3935 GeV. Our results are comparable in accuracy to those from electron scattering in the comparable space-like (negative q2q^2) region of four-momentum transfer. The electromagnetic form factor ratio RemGE/GMR_{\rm em}\equiv |G_E|/|G_M| is within the uncertainties close to unity. We compare our result on GE|G_E| and GM|G_M| to recent model predictions, and the measurements in the space-like region to test the analyticity of electromagnetic form factors.Comment: main paper: 9 pages, 6 figures, 3 tables; supplement: 9 pages, 28 table

    Measurements of the branching fractions of the inclusive decays D0(D+)→π+π+π−X

    Get PDF
    Using eþe− annihilation data corresponding to an integrated luminosity of 2.93 fb−1 taken at a center-of mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the branching fractions of the inclusive decays D0 → πþπþπ−X and Dþ → πþπþπ−X, where pions from K0 S decays have been excluded from the πþπþπ− system and X denotes any possible particle combination. The branching fractions of D0ðDþÞ → πþπþπ−X are determined to be BðD0 → πþπþπ−XÞ¼ð17.60 0.11 0.22Þ% and BðDþ → πþπþπ−XÞ¼ð15.25 0.09 0.18Þ%, where the first uncertainties are statistical and the second systematic

    Search for an axion-like particle in J/ψJ/\psi radiative decays

    Full text link
    We search for an axion-like particle (ALP) aa through the process ψ(3686)π+πJ/ψ\psi(3686)\rightarrow\pi^+\pi^-J/\psi, J/ψγaJ/\psi\rightarrow\gamma a, aγγa\rightarrow\gamma\gamma in a data sample with (2708.1±14.5)×106(2708.1\pm14.5)\times10^6 ψ(3686)\psi(3686) events collected by the BESIII detector. No significant ALP signal is observed over the expected background, and the upper limits on the branching fraction of the decay J/ψγaJ/\psi\rightarrow\gamma a and the ALP-photon coupling constant gaγγg_{a\gamma\gamma} are set at the 95\% confidence level in the mass range of 0.165\leq m_a\leq2.84\,\mbox{GeV}/c^2. The limits on B(J/ψγa)\mathcal{B}(J/\psi\rightarrow\gamma a) range from 8.3×1088.3\times10^{-8} to 1.8×1061.8\times10^{-6} over the search region, and the constraints on the ALP-photon coupling are the most stringent to date for 0.165\leq m_a\leq1.468\,\mbox{GeV}/c^2.Comment: 10 pages, 5 figure

    Observation and branching fraction measurement of the decay J ⁣/ ⁣ψpˉΣ+KS0+c.c.J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} + c.c.

    Full text link
    The first observation of the decays J ⁣/ ⁣ψpˉΣ+KS0J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} and J ⁣/ ⁣ψpΣˉKS0J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0} is reported using (10087±44)×106(10087\pm44)\times10^{6} J ⁣/ ⁣ψJ\!/\!\psi events recorded by the BESIII detector at the BEPCII storage ring. The branching fractions of each channel are determined to be B(J ⁣/ ⁣ψpˉΣ+KS0)=(1.361±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0})=(1.361 \pm 0.006 \pm 0.025) \times 10^{-4} and B(J ⁣/ ⁣ψpΣˉKS0)=(1.352±0.006±0.025)×104\mathcal{B}(J\!/\!\psi \rightarrow p \bar{\Sigma}^{-} K_{S}^{0})=(1.352 \pm 0.006 \pm 0.025) \times 10^{-4}. The combined result is B(J ⁣/ ⁣ψpˉΣ+KS0+c.c.)=(2.725±0.009±0.050)×104\mathcal{B}(J\!/\!\psi \rightarrow \bar{p} \Sigma^{+} K_{S}^{0} +c.c.)=(2.725 \pm 0.009 \pm 0.050) \times 10^{-4}, where the first uncertainty is statistical and the second systematic. The results presented are in good agreement with the branching fractions of the isospin partner decay J ⁣/ ⁣ψpKΣˉ0+c.c.J\!/\!\psi \rightarrow p K^- \bar\Sigma^0 + c.c.
    corecore