48 research outputs found

    On the Quantum Theory of Massless Spin-3/2 Field in Minkowski Spacetime

    Full text link
    From the modern viewpoint and by the geometric method, this paper provides a concise foundation for the quantum theory of massless spin-3/2 field in Minkowski spacetime, which includes both the one-particle's quantum mechanics and the many-particle's quantum field theory. The explicit result presented here is useful for the investigation of spin-3/2 field in various circumstances such as supergravity, twistor programme, Casimir effect, and quantum inequality.Comment: 11 pages, typos corrected, accepted for publication in Int.J.Geom. Methods Mod. Phy

    Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program

    Get PDF
    BACKGROUND: Large amounts of microarray expression data have been generated for the Apicomplexan parasite Toxoplasma gondii in an effort to identify genes critical for virulence or developmental transitions. However, researchers’ ability to analyze this data is limited by the large number of unannotated genes, including many that appear to be conserved hypothetical proteins restricted to Apicomplexa. Further, differential expression of individual genes is not always informative and often relies on investigators to draw big-picture inferences without the benefit of context. We hypothesized that customization of gene set enrichment analysis (GSEA) to T. gondii would enable us to rigorously test whether groups of genes serving a common biological function are co-regulated during the developmental transition to the latent bradyzoite form. RESULTS: Using publicly available T. gondii expression microarray data, we created Toxoplasma gene sets related to bradyzoite differentiation, oocyst sporulation, and the cell cycle. We supplemented these with lists of genes derived from community annotation efforts that identified contents of the parasite-specific organelles, rhoptries, micronemes, dense granules, and the apicoplast. Finally, we created gene sets based on metabolic pathways annotated in the KEGG database and Gene Ontology terms associated with gene annotations available at http://www.toxodb.org. These gene sets were used to perform GSEA analysis using two sets of published T. gondii expression data that characterized T. gondii stress response and differentiation to the latent bradyzoite form. CONCLUSIONS: GSEA provides evidence that cell cycle regulation and bradyzoite differentiation are coupled. Δgcn5A mutants unable to induce bradyzoite-associated genes in response to alkaline stress have different patterns of cell cycle and bradyzoite gene expression from stressed wild-type parasites. Extracellular tachyzoites resemble a transitional state that differs in gene expression from both replicating intracellular tachyzoites and in vitro bradyzoites by expressing genes that are enriched in bradyzoites as well as genes that are associated with the G1 phase of the cell cycle. The gene sets we have created are readily modified to reflect ongoing research and will aid researchers’ ability to use a knowledge-based approach to data analysis facilitating the development of new insights into the intricate biology of Toxoplasma gondii. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-515) contains supplementary material, which is available to authorized users

    On the Quantum Mechanics for One Photon

    Full text link
    This paper revisits the quantum mechanics for one photon from the modern viewpoint and by the geometrical method. Especially, besides the ordinary (rectangular) momentum representation, we provide an explicit derivation for the other two important representations, called the cylindrically symmetrical representation and the spherically symmetrical representation, respectively. These other two representations are relevant to some current photon experiments in quantum optics. In addition, the latter is useful for us to extract the information on the quantized black holes. The framework and approach presented here are also applicable to other particles with arbitrary mass and spin, such as the particle with spin 1/2.Comment: 15 pages, typos corrected, references added, corrections and improvements made owing to the anonymous referee's responsible and helpful remarks, accepted for publication in Journal of Mathematical Physics:

    Bio::NEXUS: a Perl API for the NEXUS format for comparative biological data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary analysis provides a formal framework for comparative analysis of genomic and other data. In evolutionary analysis, observed data are treated as the terminal states of characters that have evolved (via transitions between states) along the branches of a tree. The NEXUS standard of Maddison, et al. (1997; <it>Syst. Biol</it>. 46: 590–621) provides a portable, expressive and flexible text format for representing character-state data and trees. However, due to its complexity, NEXUS is not well supported by software and is not easily accessible to bioinformatics users and developers.</p> <p>Results</p> <p>Bio::NEXUS is an application programming interface (API) implemented in Perl, available from CPAN and SourceForge. The 22 Bio::NEXUS modules define 351 methods in 4229 lines of code, with 2706 lines of POD (Plain Old Documentation). Bio::NEXUS provides an object-oriented interface to reading, writing and manipulating the contents of NEXUS files. It closely follows the extensive explanation of the NEXUS format provided by Maddison et al., supplemented with a few extensions such as support for the NHX (New Hampshire Extended) tree format.</p> <p>Conclusion</p> <p>In spite of some limitations owing to the complexity of NEXUS files and the lack of a formal grammar, NEXUS will continue to be useful for years to come. Bio::NEXUS provides a user-friendly API for NEXUS supplemented with an extensive set of methods for manipulations such as re-rooting trees and selecting subsets of data. Bio::NEXUS can be used as glue code for connecting existing software that uses NEXUS, or as a framework for new applications.</p

    Quantum Entanglement of Electromagnetic Fields in Non-inertial Reference Frames

    Get PDF
    Recently relativistic quantum information has received considerable attention due to its theoretical importance and practical application. Especially, quantum entanglement in non-inertial reference frames has been studied for scalar and Dirac fields. As a further step along this line, we here shall investigate quantum entanglement of electromagnetic fields in non-inertial reference frames. In particular, the entanglement of photon helicity entangled state is extensively analyzed. Interestingly, the resultant logarithmic negativity and mutual information remain the same as those for inertial reference frames, which is completely different from that previously obtained for the particle number entangled state.Comment: more explanatory material added in the introduction, version to appear in Journal of Physics

    Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network

    Get PDF
    Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3'-5')-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world—the input stimuli—into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility—the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions

    Primordial origin and diversification of plasmids in Lyme disease agent bacteria

    Full text link
    Abstract Background: With approximately one-third of their genomes consisting of linear and circular plasmids, the Lyme disease agent cluster of species has the most complex genomes among known bacteria. We report here a comparative analysis of plasmids in eleven Borreliella (also known as Borrelia burgdorferi sensu lato) species. Results: We sequenced the complete genomes of two B. afzelii, two B. garinii, and individual B. spielmanii, B. bissettiae, B. valaisiana and B. finlandensis isolates. These individual isolates carry between seven and sixteen plasmids, and together harbor 99 plasmids. We report here a comparative analysis of these plasmids, along with 70 additional Borreliella plasmids available in the public sequence databases. We identify only one new putative plasmid compatibility type (the 30th) among these 169 plasmid sequences, suggesting that all or nearly all such types have now been discovered. We find that the linear plasmids in the non-B. burgdorferi species have undergone the same kinds of apparently random, chaotic rearrangements mediated by non-homologous recombination that we previously discovered in B. burgdorferi. These rearrangements occurred independently in the different species lineages, and they, along with an expanded chromosomal phylogeny reported here, allow the identification of several whole plasmid transfer events among these species. Phylogenetic analyses of the plasmid partition genes show that a majority of the plasmid compatibility types arose early, most likely before separation of the Lyme agent Borreliella and relapsing fever Borrelia clades, and this, with occasional cross species plasmid transfers, has resulted in few if any species-specific or geographic region-specific Borreliella plasmid types. Conclusions: The primordial origin and persistent maintenance of the Borreliella plasmid types support their functional indispensability as well as evolutionary roles in facilitating genome diversity. The improved resolution of Borreliella plasmid phylogeny based on conserved partition-gene clusters will lead to better determination of gene orthology which is essential for prediction of biological function, and it will provide a basis for inferring detailed evolutionary mechanisms of Borreliella genomic variability including homologous gene and plasmid exchanges as well as nonhomologous rearrangements

    A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Get PDF
    A disposable organophosphorus pesticides (OPs) enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE) has been developed. Firstly, an acetylcholinesterase (AChE)-coated Fe3O4/Au (GMP) magnetic nanoparticulate (GMP-AChE) was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs)/nano-ZrO2/prussian blue (PB)/Nafion (Nf) composite membrane by an external magnetic field. Thus, the biosensor (SPCE│CNTs/ZrO2/PB/Nf│GMP-AChE) for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM) and X-ray fluorescence spectrometery (XRFS) and its electrochemical properties were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The degree of inhibition (A%) of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh). In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10−3–10 ng·mL−1 with a detection limit of 5.6 × 10−4 ng·mL−1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC) method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis

    Persistent sulfate formation from London Fog to Chinese haze

    Get PDF
    Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world
    corecore