97 research outputs found

    Study on the methods for predicting the performance of a hybrid solar-assisted ground-source heat pump system

    Get PDF
    It is critical to find suitable setting parameters for designing a hybrid solar-assisted ground-source heat pump system in the practical engineering application, but the heat pump performance is unpredictable after many years of operation. This paper used 2000 sets of performance data collected from solar-assisted GSHP systems that keep operating over 20 years to simulate long term used heat pump with a professional software called GeoStar. Adopted the classification and regression tree (CART) method, the design of solar energy collector areas can be predicted. The multi-linear regression is also utilized to predict average monthly per meter borehole heat exchange. Seasonal factor decomposition and exponential smoothing are used to analyze the average monthly temperature of the circulating fluid, circulating fluid inlet and outlet temperatures of the heat pump after 20 years when we perform the time series prediction. Experimental results demonstrate that CART, multi-linear regression, seasonal factor decomposition and exponential smoothing are promising for practical applications

    Research on control methods of roof radiant cooling system

    Get PDF
    Taking the capillary ceiling radiation air conditioning system in radiation cooling Laboratory of comprehensive experimental building in Shandong Jianzhu University as an example, research the two different control methods which are room temperature control and water temperature control. The roof cooling model was established by using TRNSYS simulation software, two typical summer days were selected to explore the stability of the room temperature and the supply and return water temperature, research the comfort of human body and system energy consumption under two control methods. The results show that the indoor temperature of the two control methods can be stable at the design temperature of 27℃ under outdoor high temperature environment in summer. When the maximum outdoor temperature does not exceed 30℃, the temperature stability of the room temperature control method is better, the comfort of the two control methods can meet the requirements, but the water temperature control method is more comfortable. The room temperature control method is 20% ~ 25% energy saving than the water temperature control method in the two typical selected days, and is 40.5% energy saving in the whole cooling season

    Research on the cooling characteristics in building interior zones using displacement ventilation system

    Get PDF
    The outdoor low temperature fresh air can be used as a free cold source to eliminate waste heat for the building interior zones during the transition season and winter. This paper takes a project in Hunan as an example, and the project building interior zones is 25m×7m×3.9m(L×W×H). Using Fluent software to simulate the temperature field and velocity field both the interior and exterior zones of the engineering offices. The simulation results show that using the displacement ventilation system to take the outdoor air into inner rooms not only cooling but also improving the air quality and adding comfort. According to the simulation results and outdoor air dry bulb temperature and enthalpy values, the h − d diagram is divided into three air conditioning conditions (summer, winter, transition season), and three different operation adjustment methods have been proposed corresponding to each air conditioning condition, which will reduce the energy consumption of air conditioning system

    TAT-Modified Gold Nanoparticles Enhance the Antitumor Activity of PAD4 Inhibitors

    Get PDF
    Purpose: Histone citrullination by peptidylarginine deiminases 4 (PAD4) regulates the gene expression of tumor suppressor. In our previously study, YW3-56 (356) was developed as a potent PAD4 inhibitor for cancer therapy with novel function in the autophagy pathway. To enhance the antitumor activity, the PAD4 inhibitor 356 was modified by the well-established cationic penetrating peptide RKKRRQRRR (peptide TAT) and gold nanoparticles to obtain 356-TAT-AuNPs which could enhance the permeability of chemical drug in solid tumor. Methods: 356-TAT-AuNPs were prepared, and their morphology were characterized. The antitumor activity of 356-TAT-AuNPs was evaluated in vitro and in vivo. Results: 356-TAT-AuNPs exhibited higher anticancer activity against HCT-116, MCF-7 and A549 cells than 356 and 356-AuNPs. Compared with 356 and 356-AuNPs, 356-TAT-AuNPs entered the cytoplasm and nuclear, exhibited stronger anticancer activity by increasing apoptosis, inducing autophagy and inhibiting of histone H3 citrullination, and in HCT-116 xenograft mouse model, 356-TAT-AuNPs could improve the antitumor activity. Conclusion: The modified AuNPs with peptide TAT as drug delivery system are potent in delaying tumor growth and could be a powerful vehicle for profitable anticancer drug development. We believe that peptide TAT modification strategy may provide a simple and valuable method for improving antitumor activity of PAD4 inhibitors for clinical use.publishedVersio

    Chrysophanol administration alleviates bleomycin-induced pulmonary fibrosis by inhibiting lung fibroblast proliferation and Wnt/β-catenin signaling

    Get PDF
    Purpose: To determine the functional effect of chrysophanol (CH) on bleomycin (BLM)-induced pulmonary fibrosis (PF) and reveal its mechanism of action.Methods: A mouse model of PF was established by intratracheal instillation of BLM (5 mg/kg), prior to CH administration. Masson’s trichrome staining was used to analyze interstitial fibrosis and collagen deposition. Hydroxyproline (HYP) content was measured, and lung fibroblast viability determined by MTT assay. Bronchoalveolar lavage fluid (BALF) was collected, and levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and interferon-γ (IFN-γ) were evaluated using enzyme-linked immunosorbent assays (ELISA). Expression of cell signaling, adhesion, and apoptotic proteins were determined by western blotting.Results: Administration of CH reduced collagen deposition and HYP content, downregulated α-smooth muscle actin, upregulated E-cadherin, and decreased the levels of TNF-α, IL-1β, IL-6, and IFN-γ in BLM-treated mice. The viability of lung fibroblasts was also reduced, and Bcl-2-associated X protein and cleaved caspase-3 were upregulated after CH treatment in BLM-treated mice. In addition, CH treatment in BLM-treated mice significantly increased levels of cytoplasmic β-catenin but decreased its expression in the nucleus.Conclusion: Administration of CH alleviated BLM-induced PF by inhibiting lung fibroblast proliferation and nuclear translocation of β-catenin. Thus, this study provides a potential therapeutic strategy for PF. Keywords: Chrysophanol, Bleomycin, Pulmonary fibrosis, Hydroxyproline, E-cadheri

    Research on the association mechanism and evaluation model between fNIRS data and aesthetic quality in product aesthetic quality evaluation

    Get PDF
    Aesthetic quality evaluation has been an important research question in the field of user experience in product design. However, the feasibility and accuracy of using fNIRS data for product aesthetic quality evaluation are unknown. In this paper, we analyze the correlation and association between fNIRS data and aesthetic quality and designed a product aesthetic quality evaluation model to answer this question. We find that HBO2 data in the prefrontal (S19-D11), frontal (S4-D3), temporal (S3-D1), and parietal (S8-D8) regions of the brain have significant correlations and logistic relationships with high visual product aesthetic quality, whereas HBO2 data in the prefrontal (S19-D11) and parietal (S8-D8) regions of the brain have significant correlations and association relationships. These data can be used for products aesthetic quality evaluation. Importantly, the overall prediction accuracy of the model to evaluate products’ aesthetic quality is 84.1%. The model is therefore able to better distinguish and evaluate the aesthetic quality of products. This study demonstrates the feasibility of using fNIRS data to evaluate the aesthetic quality of products and shows that the product aesthetic quality evaluation model can provide an objective and accurate decision-making reference to help designers evaluate and improve the aesthetic quality of products

    Ginsenoside Rg3 Attenuates Lipopolysaccharide-Induced Acute Lung Injury via MerTK-Dependent Activation of the PI3K/AKT/mTOR Pathway

    Get PDF
    Acute lung injury (ALI) is a common clinical disease with high morbidity in both humans and animals. Ginsenoside Rg3, a type of traditional Chinese medicine extracted from ginseng, is widely used to cure many inflammation-related diseases. However, the specific molecular mechanism of the effects of ginsenoside Rg3 on inflammation has rarely been reported. Thus, we established a mouse model of lipopolysaccharide (LPS)-induced ALI to investigate the immune protective effects of ginsenoside Rg3 and explore its molecular mechanism. In wild type (WT) mice, we found that ginsenoside Rg3 treatment significantly mitigated pathological damages and reduced myeloperoxidase (MPO) activity as well as the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6); furthermore, the production of anti-inflammatory mediators interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), polarization of M2 macrophages and expression levels of the phosphorylation of phosphatidylinositol 3-hydroxy kinase (PI3K), protein kinase B (PKB, also known as AKT), mammalian target of rapamycin (mTOR) and Mer receptor tyrosine kinase (MerTK) were promoted. However, there were no significant differences with regards to the pathological damage, MPO levels, inflammatory cytokine levels, and protein expression levels of the phosphorylation of PI3K, AKT and mTOR between the LPS treatment group and ginsenoside Rg3 group in MerTK-/- mice. Taken together, the present study demonstrated that ginsenoside Rg3 could attenuate LPS-induced ALI by decreasing the levels of pro-inflammatory mediators and increasing the production of anti-inflammatory cytokines. These processes were mediated through MerTK-dependent activation of its downstream the PI3K/AKT/mTOR pathway. These findings identified a new site of the specific anti-inflammatory mechanism of ginsenoside Rg3

    Neuroprotective Effects of Ginsenoside-Rg1 Against Depression-Like Behaviors via Suppressing Glial Activation, Synaptic Deficits, and Neuronal Apoptosis in Rats

    Get PDF
    Depression is considered a neuropsychiatric disease associated with various neuronal changes within specific brain regions. We previously reported that ginsenoside-Rg1, a potential neuroprotective agent extracted from ginseng, significantly alleviated depressive-like disorders induced by chronic stress in rats. However, the mechanisms by which ginsenoside-Rg1 exerts its neuroprotective effects in depression remain largely uncharacterized. In the present study we confirm that ginsenoside-Rg1 significantly prevented the antidepressant-like effects in a rat model of chronic unpredictable mild stress (CUMS) and report on some of the underlying mechanisms associated with this effect. Specifically, we found that chronic pretreatment with ginsenoside-Rg1 prior to stress exposure significantly suppressed inflammatory pathway activity via alleviating the overexpression of proinflammatory cytokines and the activation of microglia and astrocytes. These effects were accompanied with an attenuation of dendritic spine and synaptic deficits as associated with an upregulation of synaptic-related proteins in the ventral medial prefrontal cortex (vmPFC). In addition, ginsenoside-Rg1 inhibited neuronal apoptosis induced by CUMS exposure, increased Bcl-2 expression and decreased cleaved Caspase-3 and Caspase-9 expression within the vmPFC region. Furthermore, ginsenoside-Rg1 could increase the nuclear factor erythroid 2-related factor (Nrf2) expression and inhibit p38 mitogen-activated protein kinase (p-p38 MAPK) and nuclear factor κB (NF-κB) p65 subunit activation within the vmPFC. Taken together, these results suggest that the neuroprotective effects of ginsenoside-Rg1, which may assume the antidepressant-like effect in this animal model of depression, appears to result from amelioration of a CUMS-dependent neuronal deterioration within the vmPFC. Moreover, they also provide support for the therapeutic potential of ginsenoside-Rg1 in the treatment of stress-related mental disorders

    Loss of PDZK1 expression activates PI3K/AKT signaling via PTEN phosphorylation in gastric cancer

    Get PDF
    Phosphorylation of PTEN plays an important role in carcinogenesis and progression of gastric cancer. However, the underlying mechanism of PTEN phosphorylation regulation remains largely elusive. In the present study, PDZK1 was identified as a novel binding protein of PTEN by association of PTEN through its carboxyl terminus and PDZ domains of PDZK1. By direct interaction with PTEN, PDZK1 inhibited the phosphorylation of PTEN at S380/T382/T383 cluster and further enhanced the capacity of PTEN to suppress PI3K/AKT activation. PDZK1 suppressed gastric cancer cell proliferation by diminishing PI3K/AKT activation via inhibition of PTEN phosphorylation in vitro and in vivo. The expression of PDZK1 was frequently downregulated in gastric cancer specimens and correlated with progression and poor prognosis of gastric cancer patients. Downregulation of PDZK1 was associated with PTEN inactivation, AKT signaling and cell proliferation activation in clinical specimens. Thus, low levels of PDZK1 in gastric cancer specimens lead to increase proliferation of gastric cancer cells via phosphorylation of PTEN at the S380/T382/T383 cluster and constitutively activation of PI3K/AKT signaling, which results in poor prognosis of gastric cancer patients

    Plin4-Dependent Lipid Droplets Hamper Neuronal Mitophagy in the MPTP/p-Induced Mouse Model of Parkinson’s Disease

    Get PDF
    Epidemiological studies have shown that both lipid metabolism disorder and mitochondrial dysfunction are correlated with the pathogenesis of neurodegenerative diseases (NDDs), including Parkinson’s disease (PD). Emerging evidence suggests that deposition of intracellular lipid droplets (LDs) participates in lipotoxicity and precedes neurodegeneration. Perilipin family members were recognized to facilitate LD movement and cellular signaling interactions. However, the direct interaction between Perilipin-regulated LD deposition and mitochondrial dysfunction in dopaminergic (DA) neurons remains obscure. Here, we demonstrate a novel type of lipid dysregulation involved in PD progression as evidenced by upregulated expression of Plin4 (a coating protein and regulator of LDs), and increased intracellular LD deposition that correlated with the loss of TH-ir (Tyrosine hydroxylase-immunoreactive) neurons in the MPTP/p-induced PD model mouse mesencephalon. Further, in vitro experiments showed that inhibition of LD storage by downregulating Plin4 promoted survival of SH-SY5Y cells. Mechanistically, reduced LD storage restored autophagy, leading to alleviation of mitochondrial damage, which in turn promoted cell survival. Moreover, the parkin-poly-Ub-p62 pathway was involved in this Plin4/LD-induced inhibition of mitophagy. These findings were further confirmed in primary cultures of DA-nergic neurons, in which autophagy inhibitor treatment significantly countermanded the ameliorations conferred by Plin4 silencing. Collectively, these experiments demonstrate that a dysfunctional Plin4/LD/mitophagy axis is involved in PD pathology and suggest Plin4-LDs as a potential biomarker as well as therapeutic strategy for PD
    • …
    corecore