8 research outputs found

    Vitamin B1 Helps to Limit Mycobacterium tuberculosis Growth via Regulating Innate Immunity in a Peroxisome Proliferator-Activated Receptor-γ-Dependent Manner

    No full text
    It is known that vitamin B1 (VB1) has a protective effect against oxidative retinal damage induced by anti-tuberculosis drugs. However, it remains unclear whether VB1 regulates immune responses during Mycobacterium tuberculosis (MTB) infection. We report here that VB1 promotes the protective immune response to limit the survival of MTB within macrophages and in vivo through regulation of peroxisome proliferator-activated receptor γ (PPAR-γ). VB1 promotes macrophage polarization into classically activated phenotypes with strong microbicidal activity and enhanced tumor necrosis factor-α and interleukin-6 expression at least in part by promoting nuclear factor-κB signaling. In addition, VB1 increases mitochondrial respiration and lipid metabolism and PPAR-γ integrates the metabolic and inflammatory signals regulated by VB1. Using both PPAR-γ agonists and deficient mice, we demonstrate that VB1 enhances anti-MTB activities in macrophages and in vivo by down-regulating PPAR-γ activity. Our data demonstrate important functions of VB1 in regulating innate immune responses against MTB and reveal novel mechanisms by which VB1 exerts its function in macrophages

    Identification of a KCNE2 Gain-of-Function Mutation in Patients with Familial Atrial Fibrillation

    No full text
    Atrial fibrillation (AF) is the most common cardiac arrhythmia encountered in clinical practice. We first reported an S140G mutation of KCNQ1, an α subunit of potassium channels, in one Chinese kindred with AF. However, the molecular defects and cellular mechanisms in most patients with AF remain to be identified. We evaluated 28 unrelated Chinese kindreds with AF and sequenced eight genes of potassium channels (KCNQ1, HERG, KCNE1, KCNE2, KCNE3, KCNE4, KCNE5, and KCNJ2). An arginine-to-cysteine mutation at position 27 (R27C) of KCNE2, the β subunit of the KCNQ1-KCNE2 channel responsible for a background potassium current, was found in 2 of the 28 probands. The mutation was present in all affected members in the two kindreds and was absent in 462 healthy unrelated Chinese subjects. Similar to KCNQ1 S140G, the mutation had a gain-of-function effect on the KCNQ1-KCNE2 channel; unlike long QT syndrome–associated KCNE2 mutations, it did not alter HERG-KCNE2 current. The mutation did not alter the functions of the HCN channel family either. Thus, KCNE2 R27C is a gain-of-function mutation associated with the initiation and/or maintenance of AF
    corecore