24 research outputs found

    Pterostilbene Activates the Nrf2-Dependent Antioxidant Response to Ameliorate Arsenic-Induced Intracellular Damage and Apoptosis in Human Keratinocytes

    Get PDF
    The NF-E2 p45-related factor 2 (Nrf2), a transcription factor that regulates the cellular adaptive response to oxidative stress, is a target for limiting tissue damage from exposure to environmental toxins, including arsenic. In the current study, we determine whether Pterostilbene (Pts), as a potent activator of Nrf2, has a protective effect on arsenic-induced cytotoxicity and apoptosis in human keratinocytes. Human keratinocytes (HaCaT) or mouse epidermal cells (JB6) were pretreated with Pts for 24 h prior to arsenic treatment. Harvested cells were analyzed by MTT, DCFH-DA, commercial kits, Flow cytometry assay and western blot analysis. Our results demonstrated that Pts effectively regulated the viability in HaCaT and JB6 cells, decreased the reactive oxygen species (ROS) generation and lipid peroxidation (MDA), and improved the NaAsO2-induced depletion of superoxide dismutase (SOD). Moreover, Pts treatment further dramatically inhibited NaAsO2-induced apoptosis, specifically the mitochondrial mediation of apoptosis, which coincided with the effective recovery of NaAsO2-induced mitochondrial membrane potential (ΔΨm) depolarization and cytochrome c release from the mitochondria. Furthermore, arsenic-induced decrease of anti-apoptotic factor Bcl-2 and Bcl-xl, and increase of pro-apoptotic factor Bax and Bad, as well as survival signal related factor caspase 3 activation were reversed by Pts treatment. Further mechanistic studies confirmed that Pts increased antioxidant enzyme expression in a dose-dependent manner, which was related to Nrf2 nuclear translocation. In addition, the effects of Pts on NaAsO2-induced cell viability were largely weakened when Nrf2 was knocked down. Together, our results provide evidence for the use of Pts to activate the Nrf2 pathway to alleviate arsenic-induced dermal damage

    Farrerol Enhances Nrf2-Mediated Defense Mechanisms against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial Cells by Activating Akt and MAPK

    No full text
    Oxidative stress of the retinal pigment epithelium (RPE) is an essential element contributing to the progression of age-related macular degeneration (AMD). Notably, the activation of Nrf2 is regarded as an effective strategy for controlling oxidation. The novel 2,3-dihydroflavonoid compound farrerol, which is extracted from Rhododendron, possesses antioxidant properties. In this study, we investigated the mechanism by which farrerol protects against oxidative damage mediated by hydrogen peroxide (H2O2) in adult retinal pigment epithelial cell line 19 (ARPE-19) cells. Farrerol supplementation conspicuously reversed H2O2-related cell damage through declining the generation of intracellular reactive oxygen species (ROS) and MDA and increasing the concentrations of GSH and SOD. According to the results of the apoptosis assay, a farrerol pretreatment decreased the protein expression of the Bax/Bcl-2, cleaved caspase-3, PARP, caspase-8, and caspase-9 proteins. Furthermore, farrerol markedly activated Nrf2, thereby increasing the levels of antioxidant enzymes downstream of Nrf2, such as HO-1, NQO1, and GCLM. Knockdown of Nrf2 with a specific siRNA successfully suppressed farrerol-mediated HO-1 transcription and partially abolished the cytoprotective effect on ARPE-19 cells. Meanwhile, farrerol induced Akt and MAPK phosphorylation in a dose-related way. However, inhibiting Akt and MAPK substantially blocked the cytoprotective functions of farrerol. Therefore, farrerol enhanced Nrf2-mediated cytoprotection of oxidative damage caused by H2O2, which may be inseparable from the activation of Akt and MAPK

    ROR1-AS1 might promote in vivo and in vitro proliferation and invasion of cholangiocarcinoma cells

    No full text
    Abstract Long non-coding RNAs (lncRNAs) play important roles in many pathophysiological processes, including cancer progression. Namely, lncRNA Receptor-tyrosine-kinase-like orphan receptor-1 antisense 1 (ROR1-AS1) is crucial for cancer occurrence and progression in organs such as the liver or bladder. However, its expression and role in cholangiocarcinoma (CCA) have not been thoroughly explored. Firstly, we assessed cell viability, proliferation, invasion, and migration using three cell lines (HuCCT-1, QBC399, and RBE) to explore the biological characteristics of ROR1-AS1 in CCA. Secondly, to determine the in vivo effect of ROR1-AS1 on tumor growth, ROR1-AS1 knockdown (KD) HuCCT-1 cells were subcutaneously injected into nude mice to evaluate tumor growth. Finally, we conducted a bioinformatic analysis to confirm the role of ROR1-AS1 in the prognosis and immunity of CCA. In this study, we found that lncRNA ROR1-AS1 was increased in CCA samples and patients with higher ROR1-AS1 expression had a shorter overall survival period. siRNA-mediated KD of ROR1-AS1 significantly reduced cell proliferation and inhibited the migration of CCA cells. In addition, ROR1-AS1 KD HuCCT-1 cells injected into nude mice grew slower than normal CCA cells. In summary, our results show that ROR1-AS1 can promote CCA progression and might serve as a new target for diagnosis and treatment of CCA

    Determination of the number of ψ(3686)\psi(3686) events at BESIII

    No full text
    The numbers of ψ(3686) events accumulated by the BESIII detector for the data taken during 2009 and 2012 are determined to be and , respectively, by counting inclusive hadronic events, where the uncertainties are systematic and the statistical uncertainties are negligible. The number of events for the sample taken in 2009 is consistent with that of the previous measurement. The total number of ψ(3686) events for the two data taking periods is
    corecore