426 research outputs found

    Using surface sensitivity from mesh adjoint solution for transonic wing drag reduction

    Get PDF
    Shock control bumps are a promising device for improving the aerodynamic efficiency of transonic aircraft. From the literature, the peak location and bump height are the most sensitive parameters, therefore the deployment position and size of the shock control bump are key factors. When placing a flow control device it is highly dependent on the designers’ experience and their view of the area where the device will be most effective. In this paper, the mesh adjoint approach is employed to identify the regions where the drag coefficient is sensitive to a change of the wing surface. An array of shock control bumps are then deployed in the areas of sensitivity and optimized using a gradient based approach. In addition to the sensitivity in the shock regions a non-shock region is identified using the sensitivity map on the wing. This region is not identified in other plots such as pressure or skin friction and could be overlooked by a designer without the sensitivity map. The results show that the mesh adjoint approach successfully identifies the drag sensitive areas on the upper wing and assists in the deployment of the bump arrays quickly, and the class/shape function transformation (CST) bump provides a highly flexible design space, with a large number of design variables, to achieve an optimal solution

    Nonconsistent mesh movement and sensitivity calculation on adjoint aerodynamic optimization

    Get PDF
    This paper presents an investigation of the influence of a nonconsistent approach in terms of mesh movement and mesh sensitivity calculationin a discrete adjoint-based optimization. Some mesh movement methods are more robust or of higher quality, whereas others can be more efficient for calculating mesh sensitivity. It is found that a nonconsistent approach gives comparable results when compared to a consistent approach. Therefore, an appropriate combination of nonconsistent approaches can be achieved for efficient adjoint optimization. This paper investigates and compares various consistent and nonconsistent combinations by using linear elasticity, Delaunay graph mapping, and radial basis function mesh movement methods. An investigation is presented, using a liftconstrained drag minimization, to assess which step of the chain introduces a deviation, if any, and to which degree this affects the final result

    Effects of chitosan addition on growth performance, diarrhoea, anti-oxidative function and serum immune parameters of weaned piglets

    Get PDF
    The present experiment was designed to determine the efficacy of a commercial source of chitosan (CS) to enhance performance, anti-oxidative function, and immune response in weaned pigs. A total of 60 crossbreed piglets (Duroc × Landrace × Yorkshire), with average live bodyweight of 8.85 ± 1.52 kg, were weaned at 28 ± 2 days and randomly assigned to five treatment groups, which were fed maize-soybean meal diets containing 0 (basal diet, control) and 250, 500, 1000, and 2000 mg/kg CS. The experiment lasted for two weeks. Body weight was recorded and daily feed intake was calculated. Faecal consistency was monitored for the overall period. After two weeks, blood samples were collected and anti-oxidative and immune parameters were determined. The results showed that CS improved average daily gain and daily gain: daily feed intake during the experiment. Mean faecal score values for the second week were improved by CS, which showed decreased values compared with the control diet. The CS increased the total antioxidant capacity and the activities of superoxide dismutase, catalase and glutathione peroxidase and the content of reduced glutathione in serum, and decreased the malondialdehyde and cortisol contents of serum. Furthermore, CS increased the levels of serum IL-1β,IL-2 and IgG. These findings suggested that the use of CS improved performance and anti-oxidative function, and regulated the immune response of weaned pigs.Keywords: Anti-oxidative capability, chitosan, immunity, performance, piglet

    Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    Get PDF
    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0-200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m(3). Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE

    Nonequilibrium stabilization of charge states in double quantum dots

    Full text link
    We analyze the decoherence of charge states in double quantum dots due to cotunneling. The system is treated using the Bloch-Redfield generalized master equation for the Schrieffer-Wolff transformed Hamiltonian. We show that the decoherence, characterized through a relaxation Ď„r\tau_{r} and a dephasing time Ď„Ď•\tau_{\phi}, can be controlled through the external voltage and that the optimum point, where these times are maximum, is not necessarily in equilibrium. We outline the mechanism of this nonequilibrium-induced enhancement of lifetime and coherence. We discuss the relevance of our results for recent charge qubit experiments.Comment: 5 pages, 5 figure

    Dietary Patterns and Cognitive Decline among Chinese Older Adults

    Get PDF
    Background: Prospective evidence of associations of dietary patterns with cognitive decline is limited and inconsistent. We examined how cognitive changes among Chinese older adults relate to either an adapted Mediterranean diet score or factor analysis-derived dietary patterns. Methods: This prospective cohort study comprised 1,650 adults ≥55 years of age, who completed a cognitive screening test at two or more waves of the China Health and Nutrition Survey in 1997, 2000, or 2004. Outcomes were repeated measures of global cognitive scores, composite cognitive z scores (standardized units [SU]), and standardized verbal memory scores (SU). Baseline diet was measured by 24-hour recalls over 3 days. We used linear mixed effects models to evaluate how changes in cognitive scores were associated with adapted Mediterranean diet score and two dietary pattern scores derived from factor analysis. Results: Among adults ≥65 years of age, compared with participants in the lowest tertile of adapted Mediterranean diet, those in the highest tertile had a slower rate of cognitive decline (difference in mean SU change/year β = 0.042; 95% confidence interval [CI]: 0.002, 0.081). A wheat-based diverse diet derived by factor analysis shared features of the adapted Mediterranean diet, with the top tertile associated with slower annual decline in global cognitive function (β = 0.069 SU/year; 95% CI: 0.023, 0.114). We observed no associations among adults <65 years of age. Conclusions: Our findings suggest that an adapted Mediterranean diet or a wheat-based, diverse diet with similar components may reduce the rate of cognitive decline in later life in the Chinese population

    Compatibility of localized wave packets and unrestricted single particle dynamics for cluster formation in nuclear collisions

    Get PDF
    Antisymmetrized molecular dynamics with quantum branching is generalized so as to allow finite time duration of the unrestricted coherent mean field propagation which is followed by the decoherence into wave packets. In this new model, the wave packet shrinking by the mean field propagation is respected as well as the diffusion, so that it predicts a one-body dynamics similar to that in mean field models. The shrinking effect is expected to change the diffusion property of nucleons in nuclear matter and the global one-body dynamics. The central \xenon+\tin collisions at 50 MeV/nucleon are calculated by the models with and without shrinking, and it is shown that the inclusion of the wave packet shrinking has a large effect on the multifragmentation in a big expanding system with a moderate expansion velocity.Comment: 16 pages, 7 figure

    Nonlinear cotunneling through an artificial molecule

    Full text link
    We study electron transport through a system of two lateral quantum dots coupled in series. We consider the case of weak coupling to the leads and a bias point in the Coulomb blockade. After a generalized Schrieffer-Wolf transformation, cotunneling through this system is described using methods from lowest-order perturbation theory. We study the system for arbitrary bias voltages below the Coulomb energy. We observe a rich, non-monotonic behavior of the stationary current depending on the internal degrees of freedom. In particular, it turns out that at fixed transport voltage, the current through the system is largest at weak-to-intermediate inter-dot coupling.Comment: 4 pages, 5 figure

    Formation of Nanopits in Si Capping Layers on SiGe Quantum Dots

    Get PDF
    In-situ annealing at a high temperature of 640°C was performed for a low temperature grown Si capping layer, which was grown at 300°C on SiGe self-assembled quantum dots with a thickness of 50 nm. Square nanopits, with a depth of about 8 nm and boundaries along 〈110〉, are formed in the Si capping layer after annealing. Cross-sectional transmission electron microscopy observation shows that each nanopit is located right over one dot with one to one correspondence. The detailed migration of Si atoms for the nanopit formation is revealed by in-situ annealing at a low temperature of 540°C. The final well-defined profiles of the nanopits indicate that both strain energy and surface energy play roles during the nanopit formation, and the nanopits are stable at 640°C. A subsequent growth of Ge on the nanopit-patterned surface results in the formation of SiGe quantum dot molecules around the nanopits

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure
    • …
    corecore