61 research outputs found

    Programmed cell death 4 (PDCD4) suppresses metastastic potential of human hepatocellular carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is a lethal malignancy with high rate of metastasis and poor prognosis. There are no effective managements to block metastasis of HCC. Programmed cell death 4 (PDCD4) is found to be a tumor transformation suppressor. Among investigations on effects of PDCD4, little is about the metastatic potentials of HCC cells. This study was to investigate the role of PDCD4 on metastatic potential of human HCC cells.</p> <p>Methods</p> <p>We examined the expression of PDCD4 in three HCC cell lines with different metastatic potentials, MHCC-97H (high metastatic potential), MHCC-97L (low metastatic potential) and Hep3B (no metastatic potential). A plasmid encoding PDCD4 gene was constructed and then transfected into HCC cells with the lowest PDCD4 expression level. Effects of PDCD4 on cell proliferation, cell apoptosis, gene expression of metastasis tumor antigen 1 (MTA1) and in vitro migration and invasion capacity were assessed after transfection.</p> <p>Results</p> <p>Our results showed that the expression level of PDCD4 was inversely correlated to the metastatic potential of HCC cells. After transfection with the PDCD4 gene, HCC cell proliferation rate was significantly decreased, cell apoptosis rate was significantly increased, the expression of MTA1 gene, HCC cell migration and Matrigel invasion were also remarkably inhibited.</p> <p>Conclusion</p> <p>PDCD4 expression is inversely correlated to the metastatic potential of HCC cells. PDCD4 can effectively suppress the metastatic potential of HCC cells.</p

    Dynamic Changes in the Global MicroRNAome and Transcriptome Identify Key Nodes Associated With Ovarian Development in Chickens

    Get PDF
    The analysis of gene expression patterns during ovarian follicle development will advance our understanding of avian reproductive physiology and make it possible to improve laying performance. To gain insight into the molecular regulation of ovarian development, a systematic profiling of miRNAs and mRNAs at four key stages was conducted, using ovarian tissues from hens at 60 days of age (A), 100 days (B), 140 days-not yet laying (C), and 140 days-laying (D). Comparisons of consecutive stages yielded 73 differentially expressed miRNAs (DEMs) (14 for B vs. A, 8 for C vs. B, and 51 for D vs. C) and 2596 differentially expressed genes (DEGs) (51 for B vs. A, 20 for C vs. B, and 2579 for D vs. C). In addition, 174 DEMs (22 for C vs. A, 74 for D vs. A, and 78 for D vs. B) and 3205 DEGs (118 for C vs. A, 2284 for D vs. A, and 2882 for D vs. B) were identified between nonconsecutive stages. Some DEGs are involved in the Wnt and TGF-beta signaling pathways, which are known to affect ovarian development and ovulation. An integrative analysis of the miRNA and mRNA profiles identified 3166 putative miRNA-mRNA regulatory pairs containing 84 DEMs and 1047 DEGs. Functional annotation of the networks provides strong evidence that the miRNA regulatory networks may play vital roles in ovarian development and ovulation. Ten DEMs and 10 genes were validated by real-time quantitative PCR. The candidate miRNA-mRNA pairs gga-miR-200a-3p-SFRP4, gga-miR-101-3p-BMP5, gga-miR-32-5p-FZD4, and gga-miR-458b-5p-CTNNB1 potentially associated with ovarian development

    The Beneficial Effects of Bisphosphonate-enoxacin on Cortical Bone Mass and Strength in Ovariectomized Rats

    Get PDF
    Osteoporosis is a major age-related bone disease characterized by low bone mineral density and a high risk of fractures. Bisphosphonates are considered as effective agents treating osteoporosis. However, long-term use of bisphosphonates is associated with some serious side effects, which limits the widespread clinical use of bisphosphonates. Here, we demonstrate a novel type of bone-targeting anti-resorptive agent, bisphosphonate-enoxacin (BE). In this study, ovariectomized rat model was established and treated with PBS, zoledronate (50 μg/kg) and different dose of BE (5 mg/kg and 10 mg/kg), respectively. The rats subjected to sham-operation and PBS treatment were considered as control group. Then, micro-computed tomography scanning, biomechanical tests, nano-indentation test and Raman analysis were used to compare the effects of zoledronate and BE on cortical bone mass, strength, and composition in ovariectomized rats. We found that both zoledronate and BE were beneficial to cortical bone strength. Three-point bending and nano-indentation tests showed that zoledronate- and BE-treated groups had superior general and local biomechanical properties compared to the ovariectomized groups. Interestingly, it seemed that BE-treated group got a better biomechanical property than the zoledronate-treated group. Also, BE-treated group showed significantly increased proteoglycan content compared with the zoledronate-treated group. We hypothesized that the increased bone strength and biomechanical properties was due to altered bone composition after treatment with BE. BE, a new bone-targeting agent, may be considered a more suitable anti-resorptive agent to treat osteoporosis and other bone diseases associated with decreased bone mass

    Human Antigen-Specific Regulatory T Cells Generated by T Cell Receptor Gene Transfer

    Get PDF
    Therapies directed at augmenting regulatory T cell (Treg) activities in vivo as a systemic treatment for autoimmune disorders and transplantation may be associated with significant off-target effects, including a generalized immunosuppression that may compromise beneficial immune responses to infections and cancer cells. Adoptive cellular therapies using purified expanded Tregs represents an attractive alternative to systemic treatments, with results from animal studies noting increased therapeutic potency of antigen-specific Tregs over polyclonal populations. However, current methodologies are limited in terms of the capacity to isolate and expand a sufficient quantity of endogenous antigen-specific Tregs for therapeutic intervention. Moreover, FOXP3+ Tregs fall largely within the CD4+ T cell subset and are thus routinely MHC class II-specific, whereas class I-specific Tregs may function optimally in vivo by facilitating direct tissue recognition.To overcome these limitations, we have developed a novel means for generating large numbers of antigen-specific Tregs involving lentiviral T cell receptor (TCR) gene transfer into in vitro expanded polyclonal natural Treg populations. Tregs redirected with a high-avidity class I-specific TCR were capable of recognizing the melanoma antigen tyrosinase in the context of HLA-A*0201 and could be further enriched during the expansion process by antigen-specific reactivation with peptide loaded artificial antigen presenting cells. These in vitro expanded Tregs continued to express FOXP3 and functional TCRs, and maintained the capacity to suppress conventional T cell responses directed against tyrosinase, as well as bystander T cell responses. Using this methodology in a model tumor system, murine Tregs designed to express the tyrosinase TCR effectively blocked antigen-specific effector T cell (Teff) activity as determined by tumor cell growth and luciferase reporter-based imaging.These results support the feasibility of class I-restricted TCR transfer as a promising strategy to redirect the functional properties of Tregs and provide for a more efficacious adoptive cell therapy

    A compendium of genetic regulatory effects across pig tissues

    Get PDF
    The Farm Animal Genotype-Tissue Expression (FarmGTEx) project has been established to develop a public resource of genetic regulatory variants in livestock, which is essential for linking genetic polymorphisms to variation in phenotypes, helping fundamental biological discovery and exploitation in animal breeding and human biomedicine. Here we show results from the pilot phase of PigGTEx by processing 5,457 RNA-sequencing and 1,602 whole-genome sequencing samples passing quality control from pigs. We build a pig genotype imputation panel and associate millions of genetic variants with five types of transcriptomic phenotypes in 34 tissues. We evaluate tissue specificity of regulatory effects and elucidate molecular mechanisms of their action using multi-omics data. Leveraging this resource, we decipher regulatory mechanisms underlying 207 pig complex phenotypes and demonstrate the similarity of pigs to humans in gene expression and the genetic regulation behind complex phenotypes, supporting the importance of pigs as a human biomedical model.</p

    Role of Plant-Growth-Promoting Rhizobacteria in Plant Machinery for Soil Heavy Metal Detoxification

    No full text
    Heavy metals migrate easily and are difficult to degrade in the soil environment, which causes serious harm to the ecological environment and human health. Thus, soil heavy metal pollution has become one of the main environmental issues of global concern. Plant-growth-promoting rhizobacteria (PGPR) is a kind of microorganism that grows around the rhizosphere and can promote plant growth and increase crop yield. PGPR can change the bioavailability of heavy metals in the rhizosphere microenvironment, increase heavy metal uptake by phytoremediation plants, and enhance the phytoremediation efficiency of heavy-metal-contaminated soils. In recent years, the number of studies on the phytoremediation efficiency of heavy-metal-contaminated soil enhanced by PGPR has increased rapidly. This paper systematically reviews the mechanisms of PGPR that promote plant growth (including nitrogen fixation, phosphorus solubilization, potassium solubilization, iron solubilization, and plant hormone secretion) and the mechanisms of PGPR that enhance plant–heavy metal interactions (including chelation, the induction of systemic resistance, and the improvement of bioavailability). Future research on PGPR should address the challenges in heavy metal removal by PGPR-assisted phytoremediation

    Defect-regulated charge carrier dynamics in two-dimensional ZnO/MoS2 heterostructure

    No full text
    Van der Waals ZnO/MoS2 heterostructure has been experimentally demonstrated as one of the potential candidates for photocatalyst, however, the charge carrier dynamics upon photoexcitation still remains unclear. By using nonadiabatic molecular dynamics simulations, we mainly focus on the influences of interfacial point defects on photogenerated charge separation in the ZnO/MoS2. The results reveal that oxygen vacancy in ZnO layer can induce a higher hole transfer efficiency compared to the pristine ZnO/MoS2, which attributes to the enhanced nonadiabatic coupling, originating from an out-of-plane vibration mode of S atoms, a decreased energy gap for intralayer hole transfer and stronger energy state oscillation. Alternatively, S vacancy in MoS2 introducing additional energy states in the band gap of ZnO/MoS2, serves as charge carrier recombination channels, and significantly reduces charge carrier lifetime, while doping O atom in S vacancy can compensate this effect. This study provides helpful guidance to design functional devices for solar energy photovoltaic conversion, based on two-dimensional ZnO/MoS2 heterostructures

    Multidimensional privacy preservation in location-based services

    Full text link
    Le Rire du pauvre 10e Colloque international CORHUM (Association pour le développement de la recherche sur le Comique, le Rire et l’Humour) Université Paris Ouest Nanterre La Défense (UPOND) Coorganisé par l’EA 369 « Etudes romanes » Approche pluridisciplinaire du comique populaire dans les cultures de langues romanes : des modèles anciens aux représentations contemporaines (XVIe-XXIe siècles) 21-22 novembre 2013 Salle des conférences Bât. B / Université Paris Ouest Nanterre La Défense 23..
    • …
    corecore