22 research outputs found

    Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System

    No full text
    Methanol is considered a sustainable alternative energy source due to its ease of storage and high-octane rating. However, the conventional methanol production process is accompanied by resource consumption and significant greenhouse gas emissions. The electrochemical reaction of electrochemically reacted hydrogen (H2) with captured carbon dioxide (CO2) offers an alternative route to methanol production. This paper presents a new green poly-generation system consisting of a parabolic trough solar collector (PTC) unit, an organic Rankine cycle (ORC) unit, a CO2 capture unit, an alkaline electrolysis unit, a green methanol synthesis and distillation unit, and a double-effect lithium bromide absorption refrigeration (ARC) unit. The system mainly produced 147.4 kmol/h of methanol at 99.9% purity, 283,500 kmol/h of domestic hot water, and a cooling load of 1341 kW. A total 361.34 MW of thermal energy was supplied to the ORC by the PTC. The alkaline electrolysis unit generated 464.2 kmol/h of H2 and 230.6 kmol/h of oxygen (O2) while providing H2 for methanol synthesis. Thermodynamic and economic analysis of the system was carried out. The energy and exergy efficiency of the whole system could reach 76% and 22.8%, respectively. The internal rate of return (IRR) for the system without subsidies was 11.394%. The analysis for the methanol price showed that the system was economically viable when the methanol price exceedsed$363.34/ton. This new proposed poly-generation system offers more options for efficiently green methanol production

    Synthesis of Pyrimethanil-Loaded Mesoporous Silica Nanoparticles and Its Distribution and Dissipation in Cucumber Plants

    No full text
    Mesoporous silica nanoparticles are used as pesticide carries in plants, which has been considered as a novel method to reduce the indiscriminate use of conventional pesticides. In the present work, mesoporous silica nanoparticles with particle diameters of 200–300 nm were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure of the nanoparticles was observed by scanning electron microscopy. The loading content of pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the concentrations of pyrimethanil were determined in different parts of cucumber over a period of 48 days using high performance liquid chromatography tandem mass spectrometry. It was shown that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal, rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low risk of pyrimethanil accumulating in the edible part of the plant

    Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis.

    No full text
    Graphene reportedly exerts positive effects on plant root growth and development, although the corresponding molecular response mechanism remains to be elucidated. Maize seeds were randomly divided into a control and experimental group, and the roots of Zea mays L. seedlings were watered with different concentrations (0-100 mg/L) of graphene to explore the effects and molecular mechanism of graphene on the growth and development of Z. mays L. Upon evaluating root growth indices, 50 mg/L graphene remarkably increased total root length, root volume, and the number of root tips and forks of maize seedlings compared to those of the control group. We observed that the contents of nitrogen and potassium in rhizosphere soil increased following the 50 mg/L graphene treatment. Thereafter, we compared the transcriptome changes in Z. mays roots in response to the 50 mg/L graphene treatment. Transcriptional factor regulation, plant hormone signal transduction, nitrogen and potassium metabolism, as well as secondary metabolism in maize roots subjected to graphene treatment, exhibited significantly upregulated expression, all of which could be related to mechanisms underlying the response to graphene. Based on qPCR validations, we proposed several candidate genes that might have been affected with the graphene treatment of maize roots. The transcriptional profiles presented here provide a foundation for deciphering the mechanism underlying graphene and maize root interaction

    Honokiol Attenuates Choroidal Neovascularization by Inhibiting the Hypoxia-Inducible Factor-α/Vascular Endothelial Growth Factor Axis via Nuclear Transcription Factor-Kappa B Activation

    No full text
    Honokiol is a lignan isolated from Magnolia officinalis and exhibits anti-angiogenic properties. This study was conducted to investigate the role of honokiol in choroidal neovascularization. C57BL/6 mice were treated with honokiol at 10–20 mg/kg by daily intraperitoneal injection from day 1 to 6 after laser photocoagulation. ARPE-19 cells were cultured under hypoxic conditions with or without the presence of honokiol. After laser photocoagulation and honokiol treatment, hematoxylin and eosin staining, immunofluorescence and fundus fluorescein angiography were used to analyze the effect of honokiol on choroidal neovascularization formation. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay, immunofluorescence, luciferase assay, and chromatin immunoprecipitation were performed to explore the mechanism of honokiol in the pathological process of choroidal neovascularization. Finally, the role of honokiol on the human choroidal vascular endothelial cells was detected by using 5-ethynyl-20-deoxyuridine assay, Transwell and Tube formation assays. The results of hematoxylin and eosin staining and immunofluorescence suggested that honokiol reduced the thickness, length, and area of choroidal neovascularization lesions in laser-induced choroidal neovascularization mouse model. Fundus fluorescein angiography showed that choroidal neovascularization leakage was reduced in honokiol group and the concentration of 20 mg/kg showed better effects. Mechanism studies have shown that honokiol exerted inhibitory effects on choroidal neovascularization by inactivating hypoxia-inducible factor-1α/vascular endothelial growth factor axis through the nuclear transcription factor-kappa B signaling pathway. The same results were obtained in ARPE-19 cells under hypoxic conditions. Furthermore, the conditional medium of retinal pigmented epithelial cells promoted the proliferation, migration, and tube formation of human choroidal vascular endothelial cells, while honokiol reversed these. We demonstrated that honokiol attenuated choroidal neovascularization formation by inactivating the hypoxia-inducible factor-1α/vascular endothelial growth factor axis through nuclear transcription factor-kappa B signaling pathway.</p

    Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma.

    No full text
    Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi's sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus
    corecore