106 research outputs found

    Designing Proof of Transaction Puzzles for Cryptocurrency

    Get PDF
    One of the Bitcoin\u27s innovations is the Proof of Work puzzle (aka scratch-off puzzle) as a consensus protocol for anonymous networks without pre-established PKI. Bitcoins based on the Proof of Work puzzle have been harshly blamed today for problems such as energy wasted and not easily scalable. In this paper, we construct a novel Proof of Transaction(PoT) puzzle, and prove that PoT puzzle satisfies the basic construction conditions of scratch-off puzzle. We also show construction of PoTcoin as application. PoTcoin has many advantage but not limited as strengthening the network topology, promoting currency circulation, anti-outsourcing computing and environment-friendly

    Effect of proton pump inhibitor on microbial community, function, and kinetics in anaerobic digestion with ammonia stress

    Get PDF
    The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited beta-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 +/- 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 +/- 8.93% and 2.37 +/- 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress

    Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery

    Get PDF
    Sodium-ion battery (SIB) is significant for grid-scale energy storage. However, a large radius of Na ions raises the difficulties of ion intercalation, hindering the electrochemical performance during fast charge/discharge. Conventional strategies to promote rate performance focus on the optimization of ion diffusion. Improving interface capacitive-like storage by tuning the electrical conductivity of electrodes is also expected to combine the features of the high energy density of batteries and the high power density of capacitors. Inspired by this concept, an oxide-metal sandwich 3D-ordered macroporous architecture (3DOM) stands out as a superior anode candidate for high-rate SIBs. Taking Ni-TiO2 sandwich 3DOM as a proof-of-concept, anatase TiO2 delivers a reversible capacity of 233.3 mAh g^-1 in half-cells and 210.1 mAh g^-1 in full-cells after 100 cycles at 50 mA g^-1. At the high charge/discharge rate of 5000 mA g^-1, 104.4 mAh g^-1 in half-cells and 68 mAh g^-1 in full-cells can also be obtained with satisfying stability. In-depth analysis of electrochemical kinetics evidence that the dominated interface capacitive-like storage enables ultrafast uptaking and releasing of Na-ions. This understanding between electrical conductivity and rate performance of SIBs is expected to guild future design to realize effective energy storage

    Computationally Efficient Overmodulation Methods for Synchronous Motor Drive Systems

    Get PDF
    This paper presents two computationally efficient methods for selecting the optimal modulated voltage that can achieve superior dynamic performance for surface-mounted permanent magnet synchronous motors (SPMSMs). Specifically, when an SPMSM suffers a large reference or sudden load change, the controller might command a voltage reference which is beyond the range of voltages that a modulator can synthesize. In such cases, the transient behavior of the motor can deteriorate when the demanded voltage is not properly limited to the voltage boundary. To address this issue, a simple overmodulation method based on common-mode-saturation injection (CMSI) is proposed. This strategy comes with very low computational cost and can easily find the voltage vector on the boundary which is nearest to the reference voltage vector. Moreover, an alternative control method, referred to as quadratic program (QP) based deadbeat (DB) control, is proposed that also ensures optimal system performance during overmodualtion. According to this strategy, the control problem is formulated as a constrained QP, which is solved with an efficient solver based on an active-set method. Finally, extensive simulative and experimental investigations for an SPMSM are presented to demonstrate the effectiveness of the proposed overmodulation methods.acceptedVersionPeer reviewe
    corecore