
Designing Proof of Transaction Puzzles for
Cryptocurrency

Taotao Li1,2, Parhat Abla1,2and Mingsheng Wang1, Qianwen Wei1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China

litaotao,parhat,wangmingsheng,weiqianwen@iie.ac.cn
2 University of Chinese Academy Sciences, Beijing 100049, China

Abstract. One of the Bitcoin’s innovations is the Proof of Work puzzle
(aka scratch-off puzzle) as a consensus protocol for anonymous networks
without pre-established PKI. Bitcoins based on the Proof of Work puzzle
have been harshly blamed today for problems such as energy wasted
and not easily scalable. In this paper, we construct a novel Proof of
Transaction(PoT) puzzle, and prove that PoT puzzle satisfies the basic
construction conditions of scratch-off puzzle. We also show construction
of PoTcoin as application. PoTcoin has many advantage but not limited
as strengthening the network topology, promoting currency circulation,
anti-outsourcing computing and environment-friendly.

Keywords: consensus, proof of transaction, sequential aggregate signa-
ture, blockchain

1 Introduction

Since 2008, the Bitcoin[33] becomes the most popular cryptocurrency in the
world. The most attractive part is a decentralized, distributed consensus mech-
anism (aka. Nakamoto consensus), that enables all participants in a peer-to-
peer(P2P) network to reach consensus on a distributed public ledger (blockchain).
In other words, the consensus is that thousands of independent nodes follow the
simple rules that follows a spontaneously,asynchronous interactions.All Bitcoin’s
attributes, including currency, transactions, and security models that do not rely
on central agencies and trust, are all derivatives of this mechanism.

Nakamoto consensus mechanism is as follows: In the Bitcoin network, a node
(aka. miner) initiates a transaction and broadcasts it to the network. Other nodes
receive the transaction and validate the transaction according to the verification
algorithm. The transaction that satisfies the verification standard is temporarily
saved to the node’s transaction pool and broadcasts to other nodes again. Miners
compete with others to solve a puzzle for obtaining the opportunity of adding
confirmed transactions to the Bitcoin’s public ledger of past transactions. Then,
the solution will be broadcasted to other miners in the P2P network. If the so-
lution is correct, miners will add the new block to the corresponding blockchain
and continue to mine the new block. At the same time, the lucky miner(who

2

firstly find the solution to the puzzle)will get corresponding reward and trans-
action fee. The mining process is a concurrently process, it may be the case
that conflicting versions of blockchain, called fork. Due to the Bitcoin consen-
sus mechanism [33], miners solve the problem of fork by mining on the longest
chain. Instead, blocks on the shorter chain become the orphaned blocks, and
all transactions in the orphaned blocks are returned to the transaction pool for
recertification.

In the consensus mechanism, the most important part is the Scratch-off Puz-
zle(SoP). The SoP used by Bitcoin is based on moderately hard computational
puzzle[3, 15], known as Proof of Work(PoW) puzzle. Essence of PoW puzzle is
to solve the inequation, miners keeps doing hash computation to find a random
number which satisfies the special inequation. Now, there are several challenges
for PoW puzzle. Firstly, unequal mining probability. Some oligarch use their
own mining resources or mining strategy, making their possession of scarcity of
resources (ie, physical resources) account for most of the entire network of re-
sources. Eventually the probability of common miners successfully mining block
is getting smaller and smaller. Indeed, over the past few years, the computa-
tion power of large mine pool have exceeded the entire network by one-third
over several times [39]. For example, GHash.io[1] computation power has more
than half the amount of power in the entire network. Now, large mine pools
(F2Pool, AntPool, BTCC and BW) are all located in China. Their total com-
putation power reaches 60% of the whole network. Secondly, security is severely
challenged. Bitcoin’s security relies on the assumption that honest miner control
most of the power in the network. In other words, if the attacker controls more
than 50% of the power in the whole network, the network is not secure (for exam-
ple, there exist double spending attack). Then, the above assumption has been
seriously questioned. Eyal and Sirer[18] state that when a selfish mine pool has
more than 25% of the whole network, and under the influence of selfish mining
strategies[26, 37]and economies of scale[32], it attracts more miners to join the
pool. Making the computation power of the mine pool has been more than half
the power of the entire network or even more. Eventually, the Bitcoin system is
no longer safe to decentralized system. Third, energy waste. In Bitcoin, in order
to mine new blocks, miners run PoW algorithms, keep doing hash computation,
thus causing a lot of unnecessary computational expense.

As mentioned above, a good SoP is crucial to the consensus mechanism and
the extensibility of the entire blockchain. In this paper, we propose a new SoP -
Proof of Transaction(PoT) puzzle. The idea of constructing the PoT puzzle is as
follows: (1) Consideration of the transaction data in the blockchain. Obviously, a
lot of data in the blockchain is the transaction. In addition to the currency trans-
fer function, these transaction data has other attributes such as unforgeability,
authenticity, traceability, etc. How can we use these data function and property
once again perfect use? (2) Who will generate the next block? Needless to say,
the next block is generated by Bitcoin miner in Bitcoin. In the PPcoin[24], the
miner with large amount of coins generates the next block. In the Ethereum
[9], the next block is generated by miners who have large computation power.

3

The computation power then easily be increased by external resources (such as
state power), seriously affecting the security of the blockchain and increasing the
instability of the blockchain. Based on the above two ideas, we used sequential
aggregate signature scheme in the PoT puzzle. We use the transaction data in
the blockchain so that those users who have initiated those transactions generate
the next block. In other words, we give the mining right to those who really use
the blockchain, so that these users really use the blockchain system as a “mas-
ter”. Unlike other cryptocurrencies, as computational power and coins increase,
nodes will dominate the block generation. On the contrary, in the system we
constructed, the number of transactions is not easy to increase in a short period
of time. For the details of the sequential aggregate signature, see section 3.

We construct proof of transaction puzzle using sequential aggregate signa-
ture, and we show that proof of transaction puzzle satisfies the basic conditions
for constructing Scratch-off puzzle[31]. Based on proof of transaction puzzle,
we designed PoTcoin that have good performance, such as strengthening the
network topology and facilitating the circulate of PoTcoin.

The contribution of this article is as follows:

• We successfully constructed a new Proof of Transcation puzzle using sequential
aggregate signature and proved that the basic conditions for constructing
Scratch-off puzzle are satisfied.

• Application for proof of transaction puzzle-PoTcoin. PoTcoin has the good
performance of strengthening the network topology, promoting the circulate
of PoTcoin, resistance to outsourcing computation and environment-friendly.

1.1 Related Work

As mentioned above, the Bitcoin PoW puzzle have been severely challenged in
performance. In order to solve these problems, a large number of researchers
have proposed many new Scratch-off puzzles. These puzzles can be classified in
three main classes.

Scratch-off puzzle based on physical resources. Which is divided into
three categories, the first category of puzzles are based on the computation of
the hard puzzle, mining depends on the CPU computability. Bitcoin is using
such computability to continuously do SHA-256 computations. Miller et al.[30]
found that it takes approximately 255 SHA-256 computations to mine a new
block in the Bitcoin(which is equivalent to the amount of work required to crack
a DES password), resulting in a waste of computation and natural resources.
And solving this puzzle has no real value to society. Therefore, Scratch-off puz-
zles are considered based on useful computational puzzle (eg, protein folding
problems[40]). In 2013, King [23] proposed Primecoin, using the huge computa-
tional power of the whole network to find prime numbers, the disadvantage is
that the complete proof of security is ungiven. In 2014, Miller [30] proposed a
Scratch-off puzzle based on Proofs-of-Retrievability (PoR) [22]. The main feature
of this mechanism is the use of Bitcoin mining resources for distributed storage
of archives, reducing the overall waste of Bitcoin. The main drawback is that

4

it takes longer time to verify the results of the puzzle. The second category of
scratch-off puzzle is based on storage puzzle. The capability of mining new block
is dependent on miners storagability. Dziembowski [17] proposed the Proof-of-
Space (PoS) and later the PoS was improved by [35, 36, 16]. The third category
of scratch-off puzzle is based on the CAPTCHA problem[2]. This category of
scratch-off puzzle can make miners more fair during mining a new block. Blocki’s
Proof-of-Human (PoH)[7] puzzle is based on CAPTCHA and indistinguishabil-
ity obfuscation (IO)[19] and uses human-machine interaction to solve artificial
intelligence problems (for example, reading distorted letters). The solution to
the problem must rely on human participation, the probability of each miners
successfully mining new blocks is uniform. However, the development achieve-
ments of IO [19] can not meet the demand of the PoH mechanism, therefore the
PoH is unable to practical implement.

Scratch-off puzzle based on virtual resources. The main advantage of
this type of Scratch-off puzzle is the reduction of consumption and transfer the
physical resources needed for mining to virtual resources. For example, in the
Nextcoin[13] based on the Proof-of-Stake (PoS) [25, 10], a user who owns the
large amount of coins during the mining process, decide to produce the next
block. At the same time, it also brought a significant flaw, centralization of the
coin break decentralization of system. In other words, the more coins a miner
has, the greater the probability of mining new blocks. Thus, a few number of
miners who have most of the coins, more and more easy to mine new blocks and
result in centralization of system.

Hybrid scratch-off puzzle based on physical resource and virtual
resource. This type of scratch-off puzzle increases security and the cost of at-
tacks. Duong[14] and Bentov[6] show that the advantage of this mechanism is
that honest nodes still have the chance to use stakes to prevent the blockchain
even if the malicious nodes have more than 50% computability. Typical cryp-
tocurrencies are TwinsCoin[12].

Section 2 gives the basic knowledge and sequential aggregate signature are
given in section 3, then we define the PoT puzzle and show its security. In section
5 we give application of the PoT puzzle, and its advantage and we conclude the
whole article in last section.

2 Preliminaries

2.1 Assumption

PoT protocol is based on the Bitcoin protocol. In the PoT protocol, we assume
that the resources (the number of transactions that have been initiated and
recorded in the blockchain) owned by each PoT user are equal, and we also
assume that the number of users in the PoT protocol is n, denoted as ui (i ∈
[1, n]), where the number of online users is m(m ≤ n). Note that this is an
“ideal assumption”. In reality, each different user ui has a different number of
transactions. However, this ideal assumption is not loss of generality, because in

5

reality user ui is a combination of arbitrary users under ideal assumptions. We
pointed out that in the protocol, the number of users who really participate in the
operation of the protocol can not be determined. That is, we can not identify
the number of users in this protocol that are participating in the operational
protocol. In short, this is a static model under our assumption that the number
of users is fixed while running the protocol.

2.2 Scratch-off puzzle

As mentioned in the introduction, the Bitcoin protocol is based on a computa-
tionally moderate puzzle that all miners compete with each other to solve it.
However, it is common to call Bitcoin’s puzzle as proof of work puzzle, and
the basic requirements for building such a puzzle are somewhat different[11, 15,
21, 38]. Miller et al.[30, 31] shows some requirements that a Bitcoin puzzle(aka
scratch-off puzzle) should satisfies.The following gives Miller[31] for the definition
of scratch-off puzzle and a scratch-off puzzle must meet the three requirements.

In what follows, let λ denote a security parameter. A scratch-off puzzle is
parameterized by parameters(t, µ, d, t0) where, informally speaking, t denotes
the amount of work needed to attempt a single puzzle solution, µ refers to the
maximum amount by which an adversary can speed up the process of finding
solutions, d affects the average number of attempts to find a solution, and t0
denotes the initialiazation overhead of the algorithm.

Definition 1. A scratch-off puzzle is parameterized by parameters (t, µ, d, t0),
and consists of the following algorithms (satisfying properties explained shortly):

1) G(1λ)→ puz: generates a puzzle instance.
2) Work(puz,m,t) → ticket: The Work algorithm takes a puzzle instance puz,

some payload m, and time parameter t. It makes t unit scratch attempts,
using t · t+ t0 time steps in total. Here t = ploy(λ) is the unit scratch time,
and t0 can be thought of as the initialization and finalization cost of Work.

3) Verify(puz,m,ticket)→ {0,1}: checks if a ticket is valid for a specific instance
puz, and payload m. If ticket passes this check, we refer to it as a winning
ticket for (puz,m).

Intuitively, the honest Work algorithm makes t unit scratch attempts, and each
attempt has probability 2−d of finding a winning ticket, where d is called the
puzzle’s difficulty parameter. For simplicity, we will henceforth use the notation
ζ(t, d) := 1 − (1 − 2−d)t to refer to the probability of finding a winning ticket
using t scratch attempts. For technical reasons that will become apparent later,
we additionally define the shorthand ζ+(t, d) = ζ(t+ 1, d).

A scratch-off puzzle must satisfy three requirements:

1) Correctness. For any (puz,m,t), if Work(puz,m,t) outputs ticket ̸= ⊥, then
Verify(puz,m,ticket) = 1.

6

2) Feasibility and parallelizability. Solving a scratch-off puzzle is feasible, and
can be parallelized. More formally, for any ℓ = poly(λ), for any t1, t2, ..., tℓ =
ploy(λ), let t :=

∑
i∈[ℓ] ti.

Pr


puz ← G(1λ),
m← {0, 1}λ,

∀i ∈ [ℓ] : ticketi ←Work(puz,m, ti),
∀i ∈ [ℓ] : V erify(puz;m; ticketi)

 ≥ ζ(t)− negl(λ)

Intuitively, each unit scratch attempt, taking time t, has probability 2−d of
finding a winning ticket. Therefore, if ℓ potentially parallel processes each
makes t1, t2, ..., tℓ attempts, the probability of finding one winning ticket
overall is ζ(t)± negl(λ) where t =

∑
i∈[ℓ] ti.

3) µ-Incompressibility. Roughly speaking, the work for solving a puzzle must
be incompressible in the sense that even the best adversary can speed up
the finding of a puzzle solution by at most a factor of µ.More formally, a
scratchoff puzzle is µ-incompressible (where µ ≥ 1) if for any probabilistic
poly-nomial-time adversary A taking at most t · t steps,

Pr

 puz ← (1λ),
(m, ticket)← A(puz) :

V erify(puz,m, ticket) = 1

 ≤ ζ+(µt)± negl(λ)

Note that ζ+(t) = 1− (1− 2−d)t+1 is roughly the probability of outputting
a winning ticket after t unit scratch attempts, though we additionally allow
the adversary to make a final guess at the end (as in [38]), and hence the
t+1 in the exponent instead of just t. Ideally, we would like the compress-
ibility factor µ to be as close to 1 as possible. When µ =1, the honest Work
algorithm is the optimal way to solve a puzzle.

3 Sequential Aggregate Signature Scheme

Aggregate signature[8](based on pairing) is a generalization of multi-signature
in which several users sign on distinct messages. In aggregate signature, those
signatures are generated by individuals and aggregate them. Note that the aggre-
gating party may malicious. A sequential aggregate signature(SAS)[28] is very
same as aggregate signature but the every signer will sign the message by some
order. In a SAS scheme the signer may take the secret key and a message to be
signed plus a SAS signature so far as input and output a SAS signature. Note
that every signer will sign the message and aggregate then too. After all the SAS
signature should be valid signature corresponding to all the signers public keys.

In this paper our purpose is to construct a secure proof of puzzle, So we
didn’t go any further. The following definition and the security experiment are
very similar to [27] and the definition is as follows.

7

Definition 2. An aggregate signature is consisted of three PPT algorithms (Key-
Gen,AggregateSign, AggregateVerify) such that:

KeyGen(1n) input a security parameter 1n and output public-secret key pair
(pk,sk).

AggregateSign(σk, ((m1, pk1), · · · , (mk, pkk))) inputs an aggregate signature
σk and k tuple of message-public key pairs ((m1, pk1), · · · , (mk, pkk)) . Out-
puts an aggregate signature σk+1 and k+1 tuple of message-public key pairs
((m1, pk1), · · · , (mk+1, pkk+1))

AggregateVerify(σn, ((m1, pk1), · · · , (mn, pkn))) Checks aggregate signature against
the all messages and returns a boolean bit b. b=1 means σn match all the
messages, b=0 implies σn is a invalid signature.

A trivial sequential aggregate signature scheme can be constructed from or-
dinary signature scheme by putting all the signatures together. Namely, sup-
pose (Keygen, Sign, V erify) is a ordinary signature scheme , then we can ob-
tain a sequential signature scheme by letting AggregateSign(Mi,M, ski, σi) =
((M,mi), (σi, σ)), and AggregateV erify on the fly, where σ = Sign(mi, ski).

the security of sequential aggregate signature schemes(SAS) is defined as the
nonexistence of an adversary capable, within the restrict of a certain game, of
existentially forging a sequential aggregate signature. Existential forgery here
means that the adversary attempts to forge a sequential aggregate signature,
on messages of his choice, by some set of users not all of whose private keys
are known to the forger. We formalize this intuition as the sequential aggregate
chosen-key security model. In this model, the adversary A is given a single public
key. His goal is the existential forgery of a sequential aggregate signature. We
give the adversary power to choose all public keys except the challenge public
key. The adversary is also given access to a sequential aggregate signature oracle
on the challenge key. His advantage, AdvAAggSig , is defined to be his probability
of success in the following experiment between a challenger and a PPT adversary
A:

Setup choose (pk, sk) = Keygen(1n) , and give pk to A as a challenge.
Certification Query A provides key pairs (pk′, sk′) to certification center C

for certifying his public key pk′. C = (C, pk′), if sk′ is matching pk′.
Signature Query A can query a sequential aggregate signature under the

challenge public key pk, on a message M of his own choice. furthermore,
A provide an aggregate signature σ′ so far on message vector M under
public key pk. Challenger checks that the validity of σ′; that pk /∈ pk ;
that |pk| < n (n is upper bound on the length of sequential signature);
that pk ⊂ C. If any of them fails the return ⊥, otherwise respond with
σ = AggregateSign(sk,M, σ′,M,pk).

Output After polynomially many time querying the AggregateSign() algorithm,
A outputs a forgery (σ∗,M,pk) and this forgery must be valid under Ag-
gregateVerify(); pk ∈ pk and pk\{pk} ⊂ C ; |pk| ≤ n ;

8

We will denote the advantage of adversary successes in the above game by
AggSignForgeSAS

A and upper bound on the length of sequential aggregate sig-
nature by a positive integer n. ϵ and t positive reals , and qC , qS are polynomials
in security parameter. The security of sequential aggregate signature scheme is
given below:

Definition 3. A sequential aggregate signature scheme is (t, qC , qS , n, ϵ)−secure
if there not exists a t-time adversary making qC certification queries and making
qS queries to Signing algorithm and win the above game with advantage more
than ϵ,that:

Prob[AggSignForgeSAS
A (n) = 1] ≤ ϵ.

The probability is taken over the randomness used in the experiment and adver-
sary.

secure SAS schemes can be constructed permutations[28]. There is lattice
based SAS scheme[4] which is secure in the random oracle model[5]. It can be
constructed by any collection of preimage sampleable trapdoor functions like [20]
or more efficient one[29]. When we say SAS scheme we mean by that a secure
SAS scheme. We will use a simplified sequential aggregate signature scheme in
our PoT puzzle. In the next section we will describe a new scratch-off puzzle
using sequential aggregate signature scheme in detail and prove its security.

4 Proof of Transaction Puzzle

In this section, we define the syntax and security of the proof of transaction
puzzle and use the sequential aggregate signature to illustrate the structure of
the proof of transaction puzzle.

4.1 Definition

In the proof of work puzzle, all nodes in the entire network compete with each
other to solve the puzzle in each a epoch. The node that first provides the correct
answer indicates that it effectively solves the puzzle and obtains the block reward.
The proof of work puzzle is composed of a set of algorithms: setup algorithm
Setup(), puzzle instance generation algorithm G(), puzzle solution algorithm C()
and verification algorithm V(). In the setup algorithm, it is mainly used to design
public parameters. In the puzzle instance generation algorithm, it mainly uses the
parameters and data of the setup algorithm to generate a puzzle instance. In the
puzzle solution algorithm, the node keeps doing SHA-256 computation and tries
to find the answer. It is worth noting that this is a non-deterministic algorithm.
Because a user try an answer every time, the user do not know whether the
answer will solve the puzzle. in the verification algorithm, the node verifies the
answers to the puzzle received in the network. Note that this is a deterministic
algorithm. Because each node that receives the puzzle and answers can verify
the correctness of the answer through a verification computation. In order to

9

reach a consensus, the proof of work puzzle must meet the basic conditions for
constructing Scratch-off puzzle.

Our proof of transaction puzzle and proof of work puzzle are similar, but
main differences are as follows: (1) Different mining resources. In the proof of
work puzzle, the probability of miners mining new block is proportional to the
computation power. The greater the computation power of miners, the greater
the probability of miners mining new block. In proof of transaction puzzle, the
probability of users mining a new block is proportional to the number of transac-
tions they own. The greater transactions they have, the greater the probability
of users mining new block; (2) The form of the puzzle is different. In the proof
of work puzzle, miners solve an inequation problem. in the proof of transac-
tion puzzle, users solve an equation problem; (3) The way to solve the puzzle
are different. In the proof of work puzzle, miners constantly change the random
numbers so that the hash value of the random number and the public parameters
are less than the difficulty value. In proof of transaction puzzle , the user needs
to find a chain of sequential signatures whose length is equal to the difficulty
value. the syntax is as follow:

Definition 4 (Proof of Transaction Puzzle). The proof of transaction puzzle
consists of a set of algorithms (Setup, G, uO(·), V) as follows:

Setup: Setup is a system random setting algorithm that inputs the parameter
1λ (λ is a security parameter) and outputs a system public parameter PP ←
Setup(1λ), which includes a puzzle difficulty parameter is ω = ploy(λ).

G: G is a probabilistic puzzle generation algorithm, input the common parameter
PP, and output the puzzle instance puz =

∑
i∈[1,ω] puzi ← G(PP).

uO(·): uO(·) is a puzzle solution algorithm that outputs a answer σ ← uO(·)(PP, puz)
of length ω where O(·) is a signature oracle which inputs an online transac-
tion 3, a special signature and message, outputs the signature of the owner
of the transaction4.

V: V is a deterministic puzzle verification algorithm that inputs public pa-
rameters PP and a pair of puzzle-answer (puz, σ) and outputs a bit b :=
V (puz, σ, PP), which also includes signature verification. b = 1 means that
σ is the valid signature of the puzzle puz, otherwise b = 0.

We require Setup, G, uO(·) are a probabilistic polynomial time algorithm, V is a
deterministic polynomial time algorithm.

Following notation of Miller et at.[31] we will let ϵ(k, ω) = 1− (1−m−ω)k ,
where m represents the number of online users in the network and m−1 represents
probability of a user obtaining a valid signature after calling signature oracle
once. In simple terms, ϵ(k, ω) represents the probability of the user calling k
times of signature oracle to get a valid answer to the puzzle.
3 This transaction is in the longest block chain
4 Note that this signature is for public parameters and the data which the user received

from former user

10

Definition 5 (Honest User Solvability). If a proof of transaction puzzle
system (Setup, G, uO(·) , V) is honest user solvable for each polynomial k = ploy
(λ), and for any honest user uO(·) who controls k work unit, it holds that

Prob


PP ← Setup(1λ);
puz ← G(PP);

σ ← uO(·)(PP, puz);
V (PP, puz, σ) = 1;

 ≥ ϵ(k, ω)− negl(λ)

Definition 6 (Adversarial User Unsolvability). If a proof of transaction
puzzle system (Setup, G, uO(·) , V) is adversarial user unsolvable for each poly-
nomial k = ploy (λ), and for any adversary A who controls at most k work unit,
it holds that

Prob


PP ← Setup(1λ);
puz ← G(PP);

σ ← AO(·)(PP, puz);
V (PP, puz, σ) = 1;

 ≤ ϵ(k + 1, ω) + negl(λ)

Remark 1) in the proof of transaction system, the adversary can try to guess
the signature value he needs without calling the signature oracle, just as in[38].
after calling the signature oracle k times, the adversary can try to guess the
signature value. Therefore, the probability that ϵ(k + 1, ω) = 1− (1−m−ω)k+1

is approximately equal to probability of calling k times the signature oracle and
then obtain a valid answer. 2) Like Miller’s incompressibility factor µ in[31],
we have µ = 1 here. This is because our proof of transaction puzzle system is
optimal. As in Definition 3, honest users need at least k work units to solve the
puzzle.

4.2 Structure

In this part, we will present the structure of proof of transaction puzzle on
Bitcoin system. In Bitcoin system, the proof of work puzzle generates a puzzle
instance puz ← G(s) with the latest recent public parameter s. And miners try a
random number xi by constantly calling the random oracle(e.g.,the SHA256 hash
function). A valid random number xi makes the hash value of public parameter
s and random number xi less than the difficulty value. Namely, miners compute
yi = RO(s, xi). If yi < Tω, the corresponding xi is regarded as the answer to
the proof of work puzzle. Given a random oracle RO : {0, 1}⋆ → {0, 1}n, we will
use the notation Tω = 2n−ω. Intutitively, this ensures that RO(s, xi) < Tω with
probability is 2−ω.

In our proof of transaction system, we first give a security parameter λ, where
ω = ploy(λ) indicates the difficulty of the puzzle puz. The proof of transaction

11

system generates a puzzle instance puz← G(s) with the latest public parameter
s, where s represents the block header of the packed block constructed by the
user. The packed block contains hash value of the block header of the previous
block and transaction information. In order to solve the proof of transaction
puzzle, the user needs to call the signing oracle O(·), so that the length of a
sequential aggregate signature chain is equal to the difficulty value. First, every
user ui computes σi = Hash(s) with Hash is a hash function, and Hi = σi

mod H with H is the height of the current blockchain, Hi is a specific block on
the blockchain. The purpose is to randomly select a block from the blockchain;
Then the user computes Txi = σimodϕ(Hi)(ϕ is a function that computes the
number of transactions contained in a block.) and broadcasts Txi to the net-
work. Note that Txi is a specific transaction on the block Hi. The purpose of
this step is to randomly selected a transaction from the block Hi. That is to
say, the whole process is equivalent to each user randomly select a transaction
Txi from the blockchain; Third, every user who received the transaction Txi

verify that whether he is owner(who launched the transaction) of the transac-
tion Txi. If the user ui+1(also called a pair-key (ski+1, pki+1)) is owner of the
transaction Txi, the user ui+1 uses his private key ski+1 which used to sign on
the transaction Txi, to sign on σi and Mi(Mi is i tuple of message-public key
pairs ((m1, pk2), ..., (mi, pki+1) with m1 is s and mi = σi||s), and get a aggregate
signature σi+1 = u

O(·)
i+1 (σi,Mi). Namely, the signature of the user ui+1 can be

obtained by calling signature oracle O(·); Further, the user computes a hash on
σi+1 to get σ′

i+1, and computes a block Hi+1 = σ′
i+1 mod H; Then the user

ui+1 computes Txi+1 = σ′
i+1modϕ(Hi+1) and broadcasts Txi+1 to the network.

Similarly, every user who received the transaction Txi+1 verify that whether he
is owner of the transaction Txi+1, if the user ui+2 (ski+2, pki+2) is owner of the
transaction Txi+2, the user ui+2 uses his private key ski+2 which used to sign on
the transaction Txi+1, to sign on σi+1 and Mi+1, and get a aggregate signature
σi+2 = u

O(·)
i+2 (σi+1,Mi+1). And so on, a series of signature values (σi+3, ..., σk+1)

will be obtained; Finally, users compute length τ of the series of signature val-
ues (σi+1, ..., σk+1). If τ = ω, it means that users successfully find the answer
Ticket := {σk+1, [(m1, pk2), ..., (mk, pkk+1)]} to the proof of transaction puzzle.

Structure Our proof of transaction puzzle structure consists of the following
three phases (Setup, Scratch-off, Verify).

Setup s ← Setup(1λ). λ is a security parameter, ω = ploy(λ) indicates the
difficulty of puzzle puz. s is a parameter used to generate the puzzle puz ←
G(s), which indicates the block header of the packed block constructed by
the user itself.

Scratch-off puzzle puz :=
∑

i∈[1,ω] puzi is solved during the Scratch-off phase.
Every user can generate the parameter s, and compute hash value of s and
export the next user. After that, the previous user needs to call the signature
oracle O(·) to export the next user.

12

1: procedure PoT(s) ◃ s is block information
2: σ1 ← Hash(s)
3: H1 = σ1mod H
4: Tx1 = σ1 mod ϕ(H1)
5: u2 ← Tx1

6: for i = 1 . . . k do
7: σi+1 ← u

O(·)
i+1 (σi||Mi)

8: σ′
i+1 = Hash(σi+1)

9: Hi+1 = σ′
i+1mod H

10: Txi+1 = σ′
i+1modϕ(Hi+1)

11: ui+1 ← Txi+1

12: end for
13: return (σk+1,Mk) ◃ a sequential aggregate signature on Mk

14: end procedure
The answer Ticket is defined as follows:

Ticket := (σk+1,Mk)

Verify Compute b := V (puz, T icket, ω). If b = 1, the Ticket is the correct
answer to puz. That is, τ = ω. Otherwise, b = 0. The verification is necessary
to repeat the Scratch-off process to verify that each Scratch-off is performed
correctly.
To prove the security of the proof of transaction, we mimic Blocki’s proof

idea in[7]. If the Definition 3 is true in the sequential aggregate signature, we can
easily verify that the proof of transaction puzzle is honest user solvable. Next,
we give the security theorem of our proof of transaction puzzle.

Theorem 1. If the sequential aggregate signature used in the PoT puzzle is se-
cure and Hash is random oracle, then PoT puzzle is adversarial user unsolvable.

Proof. Suppose there exists an adversary A which controls k work-unit and the
success probability in definition 6 is greater than ϵ(k+1)+negl(λ), then we can
construct another adversary A′ who can also (controls all secret keys except the
challenged one) succeed in the SAS security game with noticeably.

Let qH be the number of queries that the adversary Amake to random oracle.
Without lose of generality. we assume that the adversary A query an input on
the random oracle only once.

we define an algorithm D that works as follows:
Algorithm D
The algorithm input a (pk, publicparam)

1 Choose uniform j ∈ {1, ..., qH}.
2 Run A in input publicparam,
3 When A makes ith random oracle query Hash(σi), answer it as follows:

– If i = j, choose any feasible number r such that pk = (r mod H) mod
ϕ(Hi), and return it to A as a response.
– If i ̸= j, choose a random number r, and return r as a respond to the
query.

13

4 When A makes SAS query on (Mi−1,pk, σi−1) for pki, answers the query as
follows:
– if i = j, query (Mi−1,pk, σi−1) to SAS scheme and obtain σi.
– if i ̸= j, produce a SAS signature σi by his own.
– return the SAS signature σi.

Now we define two games in the view of adversary A.
Game0: This is the real game. In this game A will communicate with a chal-
lenger who works as same as in the Procedure PoT (s). Namely, the challenger
take a SAS signature σi−1 so far as an input, then outputs a SAS signature σi

corresponding to pki; taking random oracle query and responses with randomly.
The adversary may query the random oracle and does two modulo computation
to decide the next signer’s public key. The adversaryA will query the random
oracle at most qH times and query on signature oracle at most m times, then it
outputs a valid SAS chain of length k+1.
Game1: In this game the adversary A will communicate with algorithm D. All
the random oracle and signature queries are responds by D as above. The ad-
versary A may make qH times random oracle query and m times SAS queries.
After all it will outputs a SAS chain of length k+1.
Lemma 1. Game0 and Game1 are computationally indistinguishable.
Proof. Note that in Game0, the way to decide next signer in the SAS chain
is random due to the randomness returned by random oracle and two modulo
computation. In Game1 , all the queries are similar to Game0 but jth ran-
dom oracle query. Because the challenge public key is generated randomly, the
generation process for the next signer is the same. The SAS queries in these two
games are completely indifferent. In the view of adversary A, these two games
are indistinguishable. ⊓⊔

Lemma 2. If A wins in Game1 with noticeably, then A′ wins in experiment
AggSignforgeSAS

A′ with non negligibly.
Proof. If the adversary A successfully generate a valid SAS chain of length k+1
by querying signature oracle at most m times, then it should forge one of his SAS
chain. Without lose of generality, we assume that the adversary A only success-
fully generate a valid signature corresponding to a public key which is decided
by querying on random oracle. We can compute the successful probability of A′

as follows:

Prob[A′] = Prob[Awin ∧ l = j] (1)
= Prob[Awin] Prob[l = i] (2)

=
1

qH
Prob[Awin] (3)

Note that l is index of public key that A attacks. Thus, if the adversary A
succeed with noticeably, then the adversary A′ will break the SAS scheme with
non negligibly. ⊓⊔

The proof of theorem1 is straight based on the above two lemmas. ⊓⊔

14

5 Application—PoTcoin

In this section, we show how to use proof of transaction to construct a new
cryptocurrency– PoTcoin. As mentioned earlier, our PoT protocol is very similar
to the PoW protocol, except that PoT is used instead of PoW. In PoTcoin, we are
not going to introduce PoT in detail, we mainly focus on the differences between
them. In the following discussion, we use bitcoin (or PoTcoin) to represent coin
units in the Bitcoin protocol (or PoT protocol).

5.1 Backgrand of Bitcoin

There are many interesting innovations and features in the Bitcoin protocol.
However, in order to better introduce the PoTcoin, we have given the corre-
sponding knowledge.

Blockchain. All transactions in Bitcoin are on blockchain. These transac-
tions are stored with a special cryptographic structure, and we represent the
blockchain as C = b0, ..., bN . C is valid if and only if bi(i ≤ N) is valid. A
single block bi = (Txi, Noncei, hi−1) is valid if and only if the following three
conditions must be met: Firstly, all transactions Txi recorded in the block are
valid. That is to say, each transaction is signed by the sender and all output
amounts cannot exceed all input amounts; Secondly, the cryptographic hash
value hi−1 = SHA256(bi−1) must be the hash value of the previous block
bi−1; Third, the random number Noncei contained in the block bi satisfies
SHA256(bi) < 2256−ω, where ω represents the difficulty parameter ,which we
will discuss in detail below. The first condition ensures that users cannot spend
coin from other users. The second condition ensures that users can not forge a
new blockchain C ′ = b0, ..., bi−1, b

′
i, b

′
i+1. The third condition ensures that it is

moderated difficult to mine a new block on the blockchain.
Reward,epoch bitcoin is issued in a predetermined ratio in the Bitcoin

protocol. At this writing, 12.5 bitcoins are distributed about every 10 minutes
(a epoch). When a new time epoch begins, the node generates a puzzle puz by
computing the latest block in the current blockchain. Then, nodes compete with
each other to solve the puzzle puz for this epoch. The node that first submits a
valid answer, will get the reward newly mined in the corresponding epoch.

5.2 PoTcoin

Similar to bitcoin, all PoTcoin transactions are recorded in the blockchain, de-
noted as C = b0, ..., bN , where each block bi = (Txi, T icketi,Hi−1) contains three
pieces of data. Namely, all transactions Txi in the block bi, answer Ticketi of
the proof of transaction puzzle and hash Hi−1 = SHA256(bi−1) of the previous
block bi−1. In the block bi, all transactions Txi must be valid and the block
bi must contain the hash value Hi−1. In our PoT protocol, each user can find
answers to PoT puzzle and verify the validity of the answer. In detail, given
a PoT puzzle system (Setup, G, uO(·), V), each user can get the parameters s
and ω by running the setup algorithm, a valid block bi must contain a valid

15

Ticketi. Let the verifier output 1 after running algorithm V (puz, T icketi, ω),
Ticketi is the valid answer to the puzzle puz. Given an effective blockchain
C = b0, ..., bN , the user can constructs a valid block by constructing a valid
block bN+1 = (TxN+1, T icketN+1,HN). In order to find TicketN+1, users must
stay online and sign certain data until a sequential aggregate signature chain of
length ω is obtained. In the process of forming a sequential aggregate signature
chain, if the next user who has been confirmed is not online or the signature
generated by the next user is not available, users need to start again to form a
new sequential aggregate signature chain. Otherwise, users find a valid sequential
aggregate signature chain and successfully construct a valid block bN+1.

The choice of parameters In Bitcoin, ω is a difficulty parameter. In gen-
eral, it takes about 10 minutes for miners to generate a block [34]. That is, the
user needs to compute 2ω times for mining new block. In a new difficulty cycle,
initially it takes 10 minutes or more to generate a block. However, as time goes
on and changing of the computability, the time to generate a block is slowly
less than or greater than 10 minutes ,until near the end, it may take less or
more time to generate a block (such as 6 minutes or 14 minutes). We can clearly
recognize that the dynamic difficulty is conducive to stability. If the difficulty
is fixed, as more and more miners join the Bitcoin system, the time to generate
a block will be reduced. Therefore, the difficulty value ω must be periodically
adjustable. In Bitcoin, the difficulty value ω is adjusted every 2016 blocks for
about two weeks and the difficult parameter ω = ωold − log(

telapsed

2016×10min) [34].
In the PoT protocol, our difficulty parameter ω = ploy(λ) is very easy to

adjust. We can adjust the difficulty parameter ω directly by adjusting the secu-
rity parameter λ. When the time to generate a block is smaller or larger, we can
adjust the security parameter λ so that the time of block generation is stable at
a certain time.

Reward distribute In the PoT protocol, on the one hand, we rewarded
users who mined block, on the other hand, we motivated users to stay online.
The production of a new block requires a group of users to work together to
complete. Each user is likely to be the first miner to form an effective chain of
sequential aggregate signature, but it is not easy to become a second, third, etc.
Therefore, we assign rewards and transaction fees to miners who participated to
mine new block based on the order of miners in the sequential aggregate signature
chain. For example, it takes k users to form a valid chain of sequential aggregate
signature, and all rewards awarded to users are denoted as M. We divide k users
into three equal groups of users. The first k/3 users of the sequential aggregate
signature chain are share M/5 of the reward. The second k/3 users share 3M/10
of the reward; The last k/3 users share M/2 of the reward. Of course, this ratio is
not necessarily fixed and may change as the actual operation of the PoT protocol.

6 Advantage of PoTcoin

PoTcoin has the following advantages over bitcoin and other cryptocurrencies:

16

1. Enhancing network topology, facilitating PoTcoin circulation. Firstly, users
must stay online in order to get the reward; Secondly users should initiate
more transactions to increase their share of total transactions; Finally, it will
strengthen the network topology and facilitate the circulation of PoTcoin as
the number of users and transactions in the network increases.

2. Environmentally friendly. We know that cryptocurrencies such as Bitcoin
consume a large amount of useful computing resources such as energy or
storage space during mining [35]. And in our PoTcoin mining process, the
user stays mostly online and does some signature computations and verifica-
tion, where resources are consumed as much as a normal computer consumes.
So we think PoTcoin is environment-friendly.

3. Resistance to outsourcing computation. In Bitcoin, some ”rational” miners
outsource their mining resources to one or more large mining pool in order to
expand their revenues and form Hosted mining, such as Alydian[17]. Hosted
mining is very attractive, as it reduces the cost of miners mining due to
economies of scale. In the PoT protocol, it is clear that if a user outsources
his own mining resources (the ownership of the transaction – the private key
) to several large mining pool, the user leaks his private key, and the large
mining pool can take away the user’s PoTcoin.

7 Conclusion

Currently, most cryptocurrencies are based on proof of work puzzle and proof
of stake puzzle. However, these cryptocurrencies are faced with a very serious
challenge. The Bitcoin based on the proof of work faces the problem of resource
waste and security. The Peercoin based on the proof of stake faces centralization
of the coin.

In this paper, inspired by the challenges faced by cryptocurrencies, we con-
struct a novel proof of transcation puzzle for the first using sequential aggre-
gation signature. We show that proof of transcation puzzle satisfies the basic
conditions of constructing scratch-off puzzle. We also designed a new cryptocur-
rency – PoTcoin, based on the proof of transcation puzzle. Our PoTcoin has
good performance, for example, strengthening the network topology, facilitating
the circulation of PoTcoin, resistance to outsourcing and environment-friendly.
We leave behind a public challenge that how many transactions the user owns
when the users will dominate the generation of blocks in the network? Just as
Eyal et al.[18] analyzed in Bitcoin, selfish miners will dominate the generation of
blocks in the network through selfish mining strategy, when selfish miners own
mining power more than 25% of the total network.

Bibliography

[1] http://arstechnica:com/security/2014/06/bitcoin/security/guarantee/
shattered/by/anonymousminer/with/51/network/power/ , 2014.

[2] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
Captcha: Using hard ai problems for security. Lecture Notes in Computer
Science, 2656:294–311, 2003.

[3] Adam Back. Hashcash - a denial of service counter-measure. In USENIX
Technical Conference, 2002.

[4] Rachid El Bansarkhani and Johannes A. Buchmann. Towards lattice based
aggregate signatures. In Progress in Cryptology - AFRICACRYPT 2014 -
7th International Conference on Cryptology in Africa, Marrakesh, Morocco,
May 28-30, 2014. Proceedings, pages 336–355, 2014.

[5] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In CCS ’93, Proceedings of the
1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 3-5, 1993., pages 62–73, 1993.

[6] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of
activity: Extending bitcoin’s proof of work via proof. 2014.

[7] Jeremiah Blocki and Hong Sheng Zhou. Designing proof of human-work
puzzles for cryptocurrency and beyond. In Proceedings, Part II, of the 14th
International Conference on Theory of Cryptography - Volume 9986, pages
517–546, 2016.

[8] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. In Advances in Cryp-
tology - EUROCRYPT 2003, International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, pages 416–432, 2003.

[9] Vitalik Buterin. A next-generation smart contract and decentralized appli-
cation platform. 2014.

[10] Vitalik Buterin. Proof of stake faq.
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ, 2016/ ,
2016.

[11] Liqun Chen, Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. Se-
curity notions and generic constructions for client puzzles. In International
Conference on the Theory and Application of Cryptology and Information
Security: Advances in Cryptology, pages 505–523, 2009.

[12] Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. Twin-
scoin: A cryptocurrency via proof-of-work and proof-of-stake. In In Cryp-
tology ePrint Archive, 2017.

[13] NXT Community. Nxt whitepaper. https:
//www.dropbox.com/s/cbuwrorf672c0yy/ NxtWhitepaper v122 rev4.pdf/
, 2016.

18

[14] Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2-hop blockchain: Combining
proof-of-work and proof-of-stake securely. In In Cryptology ePrint Archive,
2016.

[15] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk
mail. In International Cryptology Conference on Advances in Cryptology,
pages 139–147, 1992.

[16] Stefan Dziembowski. Proofs of space and a greener bitcoin. 2013.
[17] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. Proofs of space. 9216:585–605, 2015.
[18] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is

vulnerable. 8437:436–454, 2013.
[19] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and

Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits (extended abstract). Annual IEEE Symposium
on Foundations of Computer Science, 311(2):40–49, 2013.

[20] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 197–206, 2008.

[21] Bogdan Groza and Bogdan Warinschi. Cryptographic puzzles and dos re-
silience, revisited. 2014.

[22] Ari Juels and Burton S. Kaliski. Pors:proofs of retrievability for large files.
In ACM Conference on Computer and Communications Security, pages
584–597, 2007.

[23] S. King. Primecoin: Cryptocurrency with prime number proof-of-work.
2013.

[24] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. 2012.

[25] Jae Kwon. Tendermint: Consensus without mining.
[26] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale

transactions. 2016.
[27] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.

Sequential aggregate signatures, multisignatures, and verifiably encrypted
signatures without random oracles. J. Cryptology, 26(2):340–373, 2013.

[28] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Se-
quential aggregate signatures from trapdoor permutations. In Advances in
Cryptology - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland, May
2-6, 2004, Proceedings, pages 74–90, 2004.

[29] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In Advances in Cryptology - EUROCRYPT 2012 -
31st Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
pages 700–718, 2012.

[30] A Miller, A Juels, E Shi, and B Parno. Permacoin: Repurposing bitcoin
work for data preservation. In IEEE Symposium on Security and Privacy,
pages 475–490, 2014.

19

[31] Andrew Miller, Ahmed Kosba, Jonathan Katz, and Elaine Shi. Nonout-
sourceable scratch-off puzzles to discourage bitcoin mining coalitions. In
ACM Sigsac Conference on Computer and Communications Security, pages
680–691, 2015.

[32] Frederick T Moore. Economies of scale: Some statistical evidence. Quarterly
Journal of Economics, 73(2):232–245, 1959.

[33] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Con-
sulted, 2008.

[34] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and Cryptocurrency Technologies: A Compre-
hensive Introduction. Princeton University Press, 2016.

[35] Sunoo Park, Krzysztof Pietrzak, Joel Alwen, Georg Fuchsbauer, and Peter
Gazi. Spacecoin : A cryptocurrency based on proofs of space. 2015.

[36] Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In
Theory of Cryptography Conference, pages 262–285, 2016.

[37] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal self-
ish mining strategies in bitcoin. In International Conference on Financial
Cryptography and Data Security, pages 515–532, 2016.

[38] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and
Juan Gonzalez Nieto. Stronger difficulty notions for client puzzles and
denial-of-service-resistant protocols. In International Conference on Topics
in Cryptology: Ct-Rsa, pages 284–301, 2011.

[39] VitalikButerin. Bitcoin network shaken by blockchain fork. 2013.
[40] Peter G. Wolynes. Energy landscapes and solved protein-folding problems.

Philosophical Transactions, 363(1827):453, 2005.

