1,400 research outputs found

    Numerical simulation of water impact of solid bodies with vertical and oblique entries

    Get PDF
    The flow problem of hydrodynamic impact during water entry of solid objects of various shapes and configurations is simulated by a two-fluid free surface code based on the solution of the Navier-Stokes equations (NSE) on a fixed Cartesian grid. In the numerical model the free surface is captured by the level set function, and the partial cell method combined with a local relative velocity approach is applied to the simulation of moving bodies. The code is firstly validated using experimental data and other numerical results in terms of the impact forces and surface pressure distributions for the vertical entry of a semi-circular cylinder and a symmetric wedge. Then configurations of oblique water entry of a wedge are simulated and the predicted free surface profiles during impact are compared with experimental results showing a good agreement. Finally, a series of tests involving vertical and oblique water entry of wedges with different heel angles are simulated and the results compared with published numerical results. It is found that the surface pressure distributions and forces predicted by the present model generally agree very well with other numerical results based on the potential flow theory. However, as the current model is based on the solution of the NSE, it is more robust and can therefore predict, for example, the formation and separation of the thin flow jets (spray) from surface of the wedge and associated ventilation phenomena for the cases of oblique water entry when the horizontal velocity is dominant. It is also noted that the potential flow theory can result in over-estimated negative pressures at the tip of the wedge due to its inherent restriction to nonseparated flows. © 2013 Elsevier Ltd. All rights reserved

    A GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impact problems

    Get PDF
    This paper presents a GPU based compressible multiphase hydrocode for modelling violent hydrodynamic impacts under harsh conditions such as slamming and underwater explosion. An effort is made to extend a one-dimensional five-equation reduced model (Kapila et al., 2001) to compute three-dimensional hydrodynamic impact problems on modern graphics hardware. In order to deal with free-surface problems such as water waves, gravitational terms, which are initially absent from the original model, are now considered and included in the governing equations. A third-order finite volume based MUSCL scheme is applied to discretise the integral form of the governing equations. The numerical flux across a mesh cell face is estimated by means of the HLLC approximate Riemann solver. The serial CPU program is firstly parallelised on multi-core CPUs with the OpenMP programming model and then further accelerated on many-core graphics processing units (GPUs) using the CUDA C programming language. To balance memory usage, computing efficiency and accuracy on multi- and many-core processors, a mixture of single and double precision floating-point operations is implemented. The most important data like conservative flow variables are handled with double-precision dynamic arrays, whilst all the other variables/arrays like fluxes, residual and source terms are treated in single precision. Several benchmark test cases including water-air shock tubes, one-dimensional liquid cavitation tube, dam break, 2D cylindrical underwater explosion near a planar rigid wall, 3D spherical explosion in a rigid cylindrical container and water entry of a 3D rigid flat plate have been calculated using the present approach. The obtained results agree well with experiments, exact solutions and other independent numerical computations. This demonstrates the capability of the present approach to deal with not only violent free-surface impact problems but also hull cavitation associated with underwater explosions. Performance analysis reveals that the running time cost of numerical simulations is dramatically reduced by use of GPUs with much less consumption of electrical energy than on the CPU

    Shear Wave Splitting Analysis to Estimate Fracture Orientation and Frequency Dependent Anisotropy

    Get PDF
    Shear wave splitting is a well-known method for indication of orientation, radius, and length of fractures in subsurface layers. In this paper, a three component near offset VSP data acquired from a fractured sandstone reservoir in southern part of Iran was used to analyse shear wave splitting and frequency-dependent anisotropy assessment. Polarization angle obtained by performing rotation on radial and transverse components of VSP data was used to determine the direction of polarization of fast shear wave which corresponds to direction of fractures. It was shown that correct implementation of shear wave splitting analysis can be used for determination of fracture direction. During frequency- dependent anisotropy analysis, it was found that the time delays in shear- waves decrease as the frequency increases. It was clearly demonstrated throughout this study that anisotropy may have an inverse relationship with frequency. The analysis presented in this paper complements the studied conducted by other researchers in this field of research

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Field Emission Properties and Fabrication of CdS Nanotube Arrays

    Get PDF
    A large area arrays (ca. 40 cm2) of CdS nanotube on silicon wafer are successfully fabricated by the method of layer-by-layer deposition cycle. The wall thicknesses of CdS nanotubes are tuned by controlling the times of layer-by-layer deposition cycle. The field emission (FE) properties of CdS nanotube arrays are investigated for the first time. The arrays of CdS nanotube with thin wall exhibit better FE properties, a lower turn-on field, and a higher field enhancement factor than that of the arrays of CdS nanotube with thick wall, for which the ratio of length to the wall thickness of the CdS nanotubes have played an important role. With increasing the wall thickness of CdS nanotube, the enhancement factorβdecreases and the values of turn-on field and threshold field increase

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Assessing L2 vocabulary depth with word associates format tests: issues, findings, and suggestions

    Get PDF
    Word Associates Format (WAF) tests are often used to measure second language learners’ vocabulary depth with a focus on their network knowledge. Yet, there were often many variations in the specific forms of the tests and the ways they were used, which tended to have an impact on learners’ response behaviors and, more importantly, the psychometric properties of the tests. This paper reviews the general practices, key issues, and research findings that pertain to WAF tests in four major areas, including the design features of WAF tests, conditions for test administration, scoring methods, and test-taker characteristics. In each area, a set of variables is identified and described with relevant research findings also presented and discussed. Around eight topics, the General Discussion section provides some suggestions and directions for the development of WAF tests and the use of them as research tools in the future. This paper is hoped to help researchers become better aware that the results generated by a WAF test may vary depending on what specific design the test has, how it is administered and scored, and who the learners are, and consequently, make better decisions in their research that involves a WAF test

    Targeted gene therapy of nasopharyngeal cancer in vitro and in vivo by enhanced thymidine kinase expression driven by human TERT promoter and CMV enhancer

    Get PDF
    <p>Abstract</p> <p>Background/Aim</p> <p>To explore the therapeutic effects of thymidine kinase (TK) expressed by enhanced vector pGL3-basic- hTERTp-TK-EGFP-CMV driven by human telomerase reverse transcriptase promoter (hTERTp) as well as cytomegalovirus immediate early promoter enhancer (CMV).</p> <p>Materials/Methods</p> <p>Enhanced TK-EGFP expression was confirmed by fluorescent microscopy, real time PCR and telomerase activity. Its effects were examined by survival of tumor cells NPC 5-8F and MCF-7, index of xenograft implanted in nude mice and histology.</p> <p>Results</p> <p>Compared with non-enhanced vector pGL3-basic-TK-hTERTp-EGFP, TK expressed by the enhanced vector significantly decreased NPC 5-8F and MCF-7 cell survival rates after ganciclovir (GCV) treatment (p < 0.001) and tumor progress in nude mice with NPC xenograft and treated with GCV, without obvious toxicity to mouse liver and kidney.</p> <p>Conclusion</p> <p>The enhanced TK expression vector driven by hTERTp with CMV enhancer has brighter clinical potentials in nasopharyngeal carcinoma therapy than the non-enhanced vector.</p
    corecore